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Abstract: Motivated by the recurrence relation satisfied by the 4-peg tower of the Hanoi Problem, 
Matsuura [1] has considered the generalized recurrence relation of the form 
  
 
 

 { }
nt1                   

, )3,t(S),,tn(T     min     ),,n(T
≤≤

β+βα−α=βα                                    
 
 
 
 

where α and β are natural numbers, and S(t, 3) = 2t – 1 is the solution of the 3-peg Tower of Hanoi problem 
with t discs. This paper studies more closely the above recurrence relation and gives some new 
relationships, including some local-value relationships. The Reve’s puzzle is a particular case of the above 
recurrence relation with α = 2. 
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1. INTRODUCTION 
 
The generalized 4-peg Tower of Hanoi problem (commonly known as the Reve`s puzzle), posed by 
Dudeney [2] is as follows : There are 4 pegs, designated as S, P1, P2, and D, and n discs D1, D2, …, Dn of 
different sizes, where D1 is the smallest disc, D2 is the second smallest, and so on with Dn being the 
largest. Initially, the discs rest on the source peg, S, in a tower in increasing order, with the largest disc Dn 
at the bottom, the second largest disc, Dn – 1, above it, and so on, with the smallest disc D1 at the top. The 
objective is to move the tower from the source peg S to the destination peg, D, in minimum number of 
moves, under the conditions that a move can transfer only the topmost disc from one peg to another such 
that no disc is ever placed on top of a smaller one. 
 
 Denoting by M(n, 4) the minimum number of moves required to solve the 4-peg Tower of Hanoi 
problem, the scheme followed is : 
 
 
 

Step 1 :  Move (optimally) the topmost n       –        k (smallest) discs from the source peg, S, to one of the 
auxiliary peg, say, P1, using the 4 pegs, in M(n       –        k,  4) moves, 

 

Step 2 :  Move (optimally) the tower of the largest k discs from the peg S to the destination peg, D, using 
the 3 pegs available, in M(k, 3) moves, 

 
 
 

Step 3 :     Move (optimally) the n       –        k discs from the peg P1 to the peg D, in M(n       –        k,    4) moves, 
 
 
 
 
 

where k is to be determined such that the total number of moves is minimum. 
 

 The above scheme leads to the following dynamic programming equation :   
 
 

{ }
1nk0                

, )3 ,kn(M)4 ,k(M2         min        )4 ,n(M
−≤≤

−+=                                (1.1) 
  
 
 
 
 
 
 
 

M(0,   4)        =        0; M(n,        3)        =        2n
         –       1, n        ≥        0.                                                                (1.2)                                    

 

 

 Motivated by the recurrence relation (1.1), Matsuura [1] considers the following recurrence relation 
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{ }
nt1                   

,  )3 ,t(S) , ,tn(T     min     ) , ,n(T
≤≤

β+βα−α=βα                                            (1.3) 
 
 
 
 
 

T(0,     α,       β)            =        0; S(t,      3)        =        2t
          –    1, t              ≥        0,                                                                                                    (1.4)                                    

       
 
 

where α and β are natural numbers. It may be mentioned here that, the particular case T(n,   2,    1)        =        M(n,        4). 
 

This paper gives some local-value relationships involving T(0,   α,    β), in connection with the recurrence 
relation (1.3). They are given in Section 3. In Section 2, we give some preliminary results, that would be 
required to prove the results in Section 3. We conclude the paper with some remarks in Section 4. 
 
 
2. SOME  PRELIMINARY  RESULTS 
 
The result below has been established by Matsuura [1]. 
 
Lemma 2.1 : For any natural numbers α and β, 
 
 

  T(n,     α,       β)        =        βT(n,      α,    1), n        ≥        1. 
 
In view of the Lemma 2.1, it is sufficient to consider T(n,     α,    1)        =        T(n,       α), say, where T(n,   α) satisfies the 
following recurrence relation : 
 
 
 

{ }
nt1               

,  )3,t(S),tn(T     min     ),n(T
≤≤

+α−α=α                                                              (2.1) 
 
 
 

T(0,   α)        =        0.                                                                                                     (2.2)                                    
 

An equivalent form of (2.1) is the following : 
{ }

1nk0               
,  )3 ,kn(S) ,k(T        min        ),n(T

−≤≤
−+αα=α                                           (2.3) 

 
The following result deals with the special case T(n,   1).                                                
 

 
Proposition 2.1 : For any n        ≥        1, T(n,    1)           =               n. 
 
 
 

 
Proof : The proof is by induction on n. By (2.1), T(1,     1)           =           1, so that the result is true for n     =     1. So, we 
assume that the result is true for some n (so that T(i,     1)           =           iS(1,   3) for all 1     ≤        i     ≤          n). Now, using the induction 
hypothesis, we get 
 
 
 

{ }
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{ }
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Now, the sequence of numbers { }n
1t)3 ,t(S)t1n( =+−+  is strictly increasing in t, since 

 
 
 

(n     +     1     –          t      – 1)     +     S(t         +     1,     3)          >          (n     +     1     –          t)     +     S(t   ,     3) 
if and only if  

S(t + 1, 3) – S(t, 3) > 1, 
 
 
 
 
 
 

which is true for all t        ≥        1. Thus, T(n     +     1,     1) is attained at t     =     1, so that 
 
 
 
 

T(n     +     1,     1)       =       n     +     1, 
 
 
 

completing induction. 
 
 From Proposition 2.1, we see that, it is sufficient to consider the case when α        ≥        2. Since the case x =        2 
has been treated in more detail in Majumdar [3], it is, in fact, sufficient to concentrate our attention to the 
case when α        ≥        3. 
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For small values of n, the explicit forms of T(n,   α) can be derived. This is done in the following Lemmas 
2.2 – 2.7. 
 
 
 
 

Lemma 2.2 : T(2, α) = 3 for all α ≥ 2. 
 
Proof : By definition,  

{ }
2t1               

 )3 ,t(S) ,t2(T     min     ),2(T
≤≤

+α−α=α     
                              
 
 

=  min{α T(1,      α)       +     S(1, 3), S(2, 3)} 
 
 
 
 
 

=  min{α     +   1 , 3}, 
 
 
 

from which the result follows immediately. 
 
 
 
 
 

Lemma 2.3 : 
      4 if

42 if
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,3),3(T
≥α

≤α≤


 +α=α  

 
 

Proof : Using the definition, together with Lemma 2.2, we get, 
 
 
 

{ }(3, )      min      (3 ,  ) ( ,  3)
               1 3
T T t S t

t
α α α= − +

≤ ≤
    

                                 
 
 
 

=  min{α T(2,      α)       +     S(1, 3), α T(1,   α)       +     S(2, 3), S(3, 3)} 
 
 
 
 
 

=  min{3α       +    1, α       +     3, 7}}. 
 
 
 

Now, for any α        ≥        2, 3α       +     1 > α       +     3; moreover, 
 
 
 
 

α       +     3 > 7 if and only if α        ≥        4. 
 
 
 
 

All these establish the lemma. 
 
 
 
 
 
 
 

Corollary 2.1 : 
      4 if

42 if
 ,4
,),2(T),3(T

≥α
≤α≤



α=α−α  

Lemma 2.4 : 
      8 if

82 if
    ,15

,7),4(T
≥α

≤α≤


 +α=α  

 
 
 

Proof : By definition, together with Lemma 2.2 and Lemma 2.3, we have 
 
 
 

{ }
4t1               

)3 ,t(S) ,t4(T     min     ),4(T
≤≤

+α−α=α     
                                 
 
 
 

=  min{α T(3,   α)       +     S(1,3), α T(2,   α)       +     S(2,3), α T(1,   α)       +     S(3,3), S(4,3)} 
 
 
 
 
 

=    min{α   T(3,        α)       +     1, 3(α       +     1), α       +     7, 15}}. 
 
 
 

 

Now, for any α        ≥        2, 3(α       +     1) > α       +     7; and  α       +     7 > 15 if and only if α        ≥        8. 
 
 
 
 

Also, for any α        ≥        2,  
α(α       +     3)     +     1 > α       +     7, 7α     +     1 > α       +     7. 

 
 

 
Thus, we get the desired expression for T(4,      α). 

Corollary 2.2 : 
          61 if

     164 if
       42 if

  
,8
,
,4

 ),3(T),4(T
≥α

≤α≤
≤α≤







α=α−α  

Lemma 2.5 : 
          61 if

     164 if
       42 if

  
      ,31
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,73
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+α
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Proof : By definition, together with Lemma 2.2 – Lemma 2.4, we have 
 
 
 

{ }
5t1               

)3 ,t(S),t5(T     min     ),5(T
≤≤

+α−α=α     
                                 
 
 
 

=    min{α T(4,   α)       +     S(1,3), α T(3,   α)       +     S(2,3), α T(2,   α)       +     S(3,3), 
α T(1,   α)       +     S(4,3), S(5,3)} 
 
 
 
 

=  min{α     T(4,      α)       +     1, αT(3,        α)       +     3, 3α       +     7, α       +     15, 31} 
 
 
 

=      min{3α       +     7, α       +     15, 31}, 
 
 
 
 

 
where the last equality follows by virtue of Corollary 2.1 and Corollary 2.2. 
Now,  

3α       +     7 ≥ α       +     15 if and only if α        ≥        4, 
and  

S(5, 3) = 31 ≤ α       +     15 if and only if α        ≥        16. 
 
 
 

 
All these complete the proof of the lemma. 
 

Corollary 2.3 : 

    16 if
618 if 

84 if
42 if

,16
 ,
  ,8
,2

),4(T),5(T

≥α
≤α≤
≤α≤
≤α≤










α
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Lemma 2.6 : 
          23 if

     328 if
       83 if

  
      ,31

 ,31
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≤α≤
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+α
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Proof : Using Lemma 2.2 – Lemma 2.4, as well as Corollaries 2.1 – 2.3, we have 
 
 
 

{ }
6t1               

)3 ,t(S),t6(T     min     ),6(T
≤≤

+α−α=α     
                                 
 
 
 

=  min{αT(5,   α)       +     S(1,3), αT(4,   α)       +     S(2,3), αT(3,   α)       +     S(3,3),  
αT(2,   α)       +     S(4,3), αT(1,   α)       +     S(5,3), S(6,3)} 
 
 
 
 
 

=  min{α   T(5,        α)       +     1, αT(4,      α)       +     3, αT(3,        α)       +     7, 3α       +     15, α       +     31, 63} 
 
 
 

=  min{3α       +     15, α       +     31, 63}. 
 
 
 
 

 
Now,  

3α       +     15 ≥ α       +     31 if and only if α        ≥        8, 
and 

α       +     31 ≥ 63 if and only if α        ≥        32. 
 
 
 
 
 
 

 
Hence the lemma. 

Corollary 2.4 : 

       23 if
3216 if
  168 if

   84 if
   43 if
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Lemma 2.7 : 

      64 if
6416 if 
 164 if

  42 if

 

             ,127
         ,63
        ,313

,15)3(
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≤α≤

≤α≤
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++αα
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Proof : Using Lemma 2.2 – Lemma 2.4 and Corollaries 2.1 – 2.3, we have 
 
 
 

{ }
7t1               

)3 ,t(S),t7(T     min     ),7(T
≤≤

+α−α=α     
                                 
 
 
 

=  min{αT(6,   α)       +     S(1,3), αT(5,   α)       +     S(2,3), αT(4,   α)       +     S(3,3),  
αT(3,   α)       +     S(4,3), αT(2,   α)       +     S(5,3), αT(1,   α)       +     S(6,3), S(7,3)} 
 
 
 
 
 

=  min{α   T(6,   α)       +     1, αT(5,   α)       +     3, αT(4,   α)       +     7, αT(3,   α)       +     15, 3α       +     31, α       +     63, 127} 
 
 
 

=  min{αT(3,     α)       +     15, 3α       +     31, α       +     63, 127}. 
 
 
 
 

 
Now,  if 2 ≤ α ≤ 4,  

α(α + 3) + 15 ≤ 3α + 31,  
and if α ≥ 4,  

7α + 15 ≥ 3α + 31. 
Also, 
  

3α       +     31 ≥ α       +     63 if and only if α        ≥        16, 
and 

α       +     63 ≥ 127 if and only if α        ≥        64. 
 
 
 
 
 
 

Thus, we get the desired expression for T(6, α). 
 

Corollary 2.5 : 

      64 if
6432 if 
3216 if 
  168 if 

  84 if
  43 if

 

,64
,
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 ,2
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 ),6(T),7(T

2

≥α
≤α≤
≤α≤

≤α≤
≤α≤
≤α≤















α

α

α

=α−α  

 

In Corollaries 2.1 – 2.5, we give the expressions for T(i + 1, α) – T(i, α) for 1 ≤ i ≤ 6. In determining the 
values of T(n + 1, α), these differences are vital, since 
  

T(n + 1, α) =∑
+

=
α−−α

1n

1i
)],1i(T),i(T[  

 

In the next Section 3, we derive some local-value relationships involving the functions T(n, α), T(n + 1, α) 
and T(n + 2, α). 
 
 
3. SOME  LOCAL-VALUE  RELATIONSHIPS 
 
We start with the following lemma. 
 
Lemma 3.1 : For any α        ≥        2 fixed, T(n,    α) is strictly increasing in n, that is, 
 
 
 

T(n   +   1,   α) – T(n,   α)     >     0 for all n (        ≥        1). 
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Proof : Let T(n   +   1,   α) be attained at t    =    t1, that is, let 
 
 
 

T(n   +   1,   α) = αT(n   +   1 – t1,         α)         +       S(t1, 3). 
 
 
 

 
We now consider the following two cases that may result : 
 

Case (1) : When t1  =  n     +     1. 
Here, 

T(n   +   1,   α) = S(n     +     1,     3) < αT(1,     α)         +       S(n, 3) = α         +       S(n, 3) 
 
 
 
 
 

⇒ α     >     S(n     +     1,     3) – S(n,   3) = 2n.                                                                  (1) 
 
 

 

 
We now want to show that T(n,   α) is attained at t = n, that is, T(n,α) = S(n ,3). The proof is by 
contradiction. So, let T(n,       α) be attained at some t = t2 with 1     ≤            t2     <            n. Then, 
 
 
 
 
 

T(n,     α) = αT(n – t2,        α)         +       S(t2, 3) <       S(n, 3) 
 
 
 
 
 

⇒ α T(n – t2,         α)              <     S(n,     3) – S(t2,   3) < 2n,                                      
 
 
 
 
 

and we reach to a contradiction by virtue of (1). Therefore, T(n,         α) = S(n ,     3), so that 
 
 
 
 
 

T(n   +   1,      α) – T(n,     α)     =     S(n     +     1,     3) – S(n,   3) = 2n
     >     0. 

 
 
 

Case (2) : When 1     ≤       t1     <     n     +   1. 
 
 
 

 
In this case, the proof is by induction on n. Since 

T(2,      α)           =           S(2,      3)        >        T(1,      α)           =           S(1,     3) for any α        ≥        2, 
 
 
 

we see that the result is true for n   =    1. So, we assume that the result is true for some n. Then, we need only 
prove that the result is true for n   +   1 as well. Now, since 
 
 
 

T(n,   α) ≤ αT(n – t1,   α)     +     S(t1,3),  
it follows that 
 
 
 

 T(n   +   1,      α) – T(n,      α)   ≥ α[T(n   +   1 – t1,      α) – T(n – t1,      α)      ]   >   0, 
 
 
 

where the last inequality follows by virtue of the induction hypothesis. 
 
 
 

All these complete the proof of the lemma. 
 

 
The corollary below follows immediately from Lemma 3.1, noting that 
 
 
 

 T(2,     α) – T(1,      α)   = 2. 
 
Corollary 3.1 : For any α        ≥        2 fixed, T(n   +   1,     α) – T(n,      α)         ≥     2 for all n (        ≥        1). 
 

In course of proving Lemma 3.1, we also proved the following results. 
 

 
Corollary 3.2 : For any α         ≥        2 fixed, if T(n   +   1,         α) is attained at t = n + 1, then T(n,          α) is attained at t = n. 
 

 
Corollary 3.3 : For any α          ≥        2 fixed, if T(n,         α) is attained at t = n, then α > 2n – 1 (n        ≥        2). 
Lemma 3.2 : For n        ≥        2 and α ≥        3, T(n,           α) is not attained at t = 1. 
 
 

 
Proof : We note that 
 
 

αT(n – 1,          α)         +       S(1, 3) > αT(n – 2,         α)         +       S(2, 3) 
 
 

if and only if  
 

α[T(n – 1,          α) – T(n – 2,          α)] > S(2, 3) – S(1, 3) = 2, 
 
 
 

which is true (by Lemma 3.1) for any n        ≥        2 and any α ≥        3. 
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Lemma 3.3 : For any α        ≥        3 fixed, let T(n,         α) be attained at k = k1 and T(n + 1,         α) be attained at k = k2. 
Then, k2 ≥ k1. 
 
 

 
Proof : Since (by (1.3)), 
 
 

T(n,      α) = αT(k1,         α)         +       S(n – k1, 3) 
 
 
 

≤ αT(k2,         α)         +       S(n – k2, 3), 
 
 
 

T(n   +   1,      α) = αT(k2,       α)         +       S(n   +   1 – k2, 3) 
 
 
 

≤ αT(k1,         α)         +       S(n   +   1 – k1, 3), 
 
 
 

 

we get the following chain of inequalities : 
 
 
 

2
kn

2
−

= S(n   +   1 – k2,   3) – S(n – k2,   3) 
 
 
 

≤ T(n   +   1,        α) – T(n   ,         α) 
 
 
 

≤ S(n   +   1 – k1,   3) – S(n – k1,   3) = 1
kn

2
−

.                                          (2) 
 
 
 

Then, we must have n – k2 ≤ n – k1, giving the result desired. 
 
Corollary 3.4 : For any α        ≥        3 fixed, let T(n,      α) be attained at t = t1 and T(n + 1,      α) be attained at t = t2. 
Then, t2 ≤ t1 + 1. 
 
 

 
Proof : follows immediately from Lemma 3.3, since t1 = n – k1, t2 = n + 1 – k2. 
 
Lemma 3.4 : For any α        ≥        3 fixed,  
 
 

(a) let T(n,     α) be attained at t = t1 and T(n + 1,    α) be attained at t = t2; then, t2 ≥ t1, 
 
 

(b) for all n        ≥        1, 
 
 

T(n   +   1,      α) – T(n,      α) ≤ T(n   +   2,      α) – T(n   +   1,      α) 

 
 
 
       

≤     2[T(n   +   1,      α) – T(n,     α)]. 
 
 
 
 

 
Proof : To prove part (b), we consider all the three possible cases that may arise. 
 
 
 

Case (1) : When T(n   +   2,        α) = S(n   +   2,   3). 
 
 
 

In this case, by Corollary 3.2,  
 
 
 

T(n   +    1,      α) = S(n   +   1,   3), T(n,     α) = S(n,   3), 
so that 

T(n   +   2,      α) – T(n    +   1,     α) = 2n
  

+
  

1
  =     2[T(n   +   1,      α) – T(n,      α)]. 

 
 
 

Case (2) : When T(n   +   1,      α) = S(n   +   1,   3). 
 
 
 

Here, by Corollary 3.2, T(n,      α) = S(n,   3), so that 
 
 
 
 
 

T(n   +   1,      α) – T(n,      α) =  2n. 
 
 
 

 
Now, let T(n   +   2,   α) be attained at t    =        t1 for some 1 ≤ t1

 ≤ n + 1, that is, let 
 
 
 

T(n   +   2,      α) = αT(n   +   2 – t1,      α)         +       S(t1, 3) ≤ S(n + 2, 3). 
Then, since 

T(n   +   1,      α) ≤ αT(n   +   1 – t1,        α)         +       S(t1, 3), 
 
 
 

we get the following chain of inequalities : 
 
 
 
 
 

T(n   +   2,      α) – T(n   +   1,      α)         ≥ α[T(n   +   2 – t1,         α) – T(n + 1 – t1,      α)] 
 
 
 

> α    > 2n = T(n   +   1,      α) – T(n,       α) 
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where the last two inequalities follow by virtue of Corollary 3.1 and Corollary 3.3. 
Also, 

T(n   +   2,      α) – T(n   +   1,      α)         ≤ 2n
 

+
 

1 = 2[T(n   +   1,      α) – T(n,      α)]. 
 
 
 

Case (3) : When T(n   +   2,      α) ≠ S(n   +   2,   3) and T(n   +   1,     α) ≠ S(n   +   1,   3). 
 
 
 
 
 

 
This case and part (a) of the lemma is proved by induction on n. By Corollary 2.1, 
 
 
 

T(3,     α) – T(2,     α)             ≥ 2 = T(2,     α) – T(1,    α) for any α ≥ 3. 
 
 
 

Thus, part (b) of the lemma holds true for n = 1. So, we assume the validity of the result for some n. 
 
 
 
 
 

 
Now, let T(n,     α) be attained at t = t1 and T(n + 1,    α) be attained at t = t2 with t1 > t2. Then, 
 
 
 
 
 

T(n,     α) = αT(n – t1,     α)         +       S(t1, 3) < αT(n – t2,      α)         +       S(t2, 3), 
  

 
 
 
 

and we get the following chain of inequalities : 
 
 
 
 
 

α[T(n   +   1 – t2,       α) – T(n – t2,            α)] 
 
 
 
 
 

< T(n   +   1,       α) – T(n,       α)         ≤ α[T(n   +   1 – t1,         α) – T(n – t1,         α)], 
 
 
 
 
 

which contradicts the induction hypothesis, since n   +   1 – t2
 > n   +   1 – t1. Thus, t2 ≥ t1, which we wanted to 

prove. 
 
 
 

 
To complete the proof of part (b), let T(n,  α) be attained at k = k1, T(n + 1,   α) be attained at k = k2 and T(n + 

2,      α) be attained at k = k3. By part (a) of the lemma and Lemma 3.3, we need to consider the following 
four cases : 
 
 
 

 
Case (A) : When  k1 = k2 = k3 = K, say. 
 
 
 

 
In this case,  
 
 
 

T(n   +   2,         α) – T(n   +   1,        α) = 2n – K +1 = 2[T(n   +   1,         α) – T(n,          α)]. 
 
 
 

Case (B) : When  k1 = k2 = K, k3 = K + 1. 
 
 
 

Here, 
T(n   +   2,         α) – T(n   +   1,         α) > 2n – K = T(n   +   1,      α) – T(n,       α). 

 
 
 
 
 
 

Also, 
T(n   +   2,      α) – T(n   +   1,      α) < 2n

 

+
  

1 – K = 2[T(n   +   1,      α) – T(n,       α)]. 
 
 

Case (C) : When  k1 = K, k2 = k3 = K + 1. 
 
In this case, 

T(n   +   2,      α) – T(n   +   1,      α) = 2n – K ≥ T(n   +   1,      α) – T(n  ,      α). 
 
 

Again, since 
T(n   +   1,      α) – T(n   ,       α) ≥ 2n – K – 1, 

 

 
we see that 

T(n   +   2,      α) – T(n   +   1,      α) ≤2[T(n   +   1,      α) – T(n,       α)]. 
 
 
 

Case (D) : When  k1 = K, k2 = K + 1, k3 = K + 2. 
 
Here, 

T(n   +   2,      α) – T(n   +   1,      α) = α[T(K   +   2,     α) – T(K   +   1  ,        α)], 
 
 
 
 
 

T(n   +   1,      α) – T(n  ,      α) = α[T(K   +   1,     α) – T(K ,       α)], 
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so that the result follows by virtue of the induction hypothesis. 
 
 

All these complete the proof of the lemma. 
 
 From part (a) of Lemma 3.4 together with Corollary 3.1, we see that, if T(n, α) isattained at t = t1, and 
T(n + 1, α) is attained at t = t2, then t1 ≤ t2 ≤ t1 + 1. From the computational point of view, this allows to 
calculate recursively the value(s) of t where T(n + 1, α) is attained, starting with the value(s) of t at which 
T(n, α) is attained. Part (b) of Lemma 3.4 shows that, for any α ≥ 3 fixed, T(n, α) is convex in n in the 
sense of the inequality. It also shows that for any α ≥ 3 fixed, T(n   +   1,       α) – T(n  ,             α) is increasing (non-
decreasing) in n.  
 

 
Lemma 3.5 : For some α ≥ 3 and α ≥ 3, let T(n, α) be attained at the values k = k1 and k = k2. Then, T(N, 

α) is attained at all k1 ≤ k ≤ k2. 
 
Proof : Let T(n, α) be attained at the values k = k1 and k = k2, so that 
 
 
 
 

α[T(k2,      α) – T(k1  ,      α)] = 1
kn

2
−

  – 2
kn

2
−

. 
 
 
 
 
 

There is nothing to prove if k2 = k1 + 1. So, let k2 ≥ k1 + 2.  
The proof is by contradiction. So, we assume that T(n, α) is not attained at k = k1 + 1, so that 
 
 
 

α[T(k1 + 1,      α) – T(k1  ,        α)] > 
1kn

12
−−

.  
 
 
 
 
 

Let k2 = k1 + m for some integer m ≥ 2. Then, by part (b) of Lemma 3.4, together with the above inequality, 
we get the following chain of inequalities : 
 
 
 
 
 

1
kn

2
−

  – 2
kn

2
−

 =  α[T(k2,      α) – T(k1  ,     α)] 
 
 
 
 
 
 

=  α[T(k1 + m,      α) – T(k1  ,      α)] 
 
 
 
 

=   α )],1ik(T),ik(T[ 11

m

1i
α−+−α+∑

=
 

 
 
 
 
 
 

≥ mα[T(k1 + 1,     α) – T(k1  ,      α)] > m
1kn

12
−−

, 
 
 
 
 
 
 

which leads to a contradiction for m ≥ 2. Thus, T(n, α) is attained at k = k1 + 1. 
 
 
 

Continuing the argument, we get the desired result. 
 

 
Lemma 3.6 : For any α ≥ 3 fixed, T(n, α) is not attained at three (consecutive) values. 
 

 
Proof : If possible, let T(n, α) be attained at the three values k = K – 1, K, K + 1. Then, using part (b) of 
Lemma 3.4, we get 
 
 
 

2n – K – 1
 = α[T(K + 1,     α) – T(K  ,      α)] 

 
 
 
 
 
 

≥ α[T(K,      α) – T(K – 1  ,      α)] = 2n – K, 
 
 
 
 

which is absurd. 
 

From Lemma 3.5 and Lemma 3.6, we see that, for any α ≥ 3 fixed, T(n, α) is attained either at a unique k, 
or else at two (consecutive) values. 
 
Lemma 3.7 : For some α ≥ 3, let T(n, α) be attained at k = K, K + 1. Then, 
 
 
 
 

α[T(K + 1,      α) – T(K  ,      α)] = 2n – K – 1. 
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Proof : The proof follows immediately from the fact that 
 
 
 
 

T(n, α) = αT(K,      α) + S(n – K, 3) = αT(K + 1,      α) + S(n – K – 1, 3). 
 
 
 
 
 
 
 
 
 
 
 

Corollary 3.5 : If α is not of the form 2i, then T(n, α) is attained at a unique k. 
 
 

 
Proof : If T(n, α) is attained at two values k = K, K + 1, then the result in Lemma 3.7 is violated if α is not 
of the form 2i. 
 
Lemma 3.8 : For any α        ≥        3 fixed (with α ≤ n), let T(n,   α) and T(n + 1,   α) both be attained at k = K. Then,  

T(n   +   1,      α) – T(n   ,       α) = 2n – K.                                                                                (3) 
 
 
 
 

Moreover, in such a case, if α is not of the form 2i then 
 
 

(a) T(n – 1, α) is not attained at k = K. 
 
 

(b)  T(n + 2,      α) is not attained at k = K. 
 
 

 
Proof : (3) follows from (2) (with k1 = k2 = K). 
 
 

We prove parts (a) and (b) assuming that α is not of the form 2i. 
 
 
 

(a) Let T(n – 1, α) be attained at k = K, so that 
 
 
 

T(n   –   1,      α) = αT(K, α) + S(n – K – 1, 3) 
 
 
 

≤ αT(K – 1, α) + S(n – K, 3). 
 
 

 
Now, since  
 
 

T(n   +   1,      α) = αT(K, α) + S(n + 1 – K, 3) 
 
 
 

< αT(K + 1, α) + S(n – K, 3), 
 
 
 

we have the following chain of inequalities :  
 
 
 

α[T(K   +   1,   α) – T(K   ,   α)] > 2n – K  
 
 
 

≥ 2α[T(K, α) – T(K – 1, α)], 
 
 
 

which contradicts part (b) of  Lemma 3.4.  
 
 
 

 
In this case, T(n – 1, α) is attained at the (unique) point k = K – 1, with 
 
 
 

2n – K – 1 < T(n,   α) – T(n – 1   ,   α) 
 
 
 

=  α[T(K,   α) – T(K – 1   ,   α)] < 2n – K.  
 
 
 

(b) Let T(n + 2,   α) be attained at k = K. Then, 
 
 
 

T(n   +   2,   α) = αT(K, α) + S(n + 2 – K, 3) 
 
 
 

≤ αT(K + 1, α) + S(n + 1 – K, 3). 
 
 

Now, since  
 
 
 

T(n,   α) = αT(K, α) + S(n – K, 3) 
 
 
 

< αT(K – 1, α) + S(n + 1 – K, 3), 
 
 
 

we get  
 
 
 

α[T(K   +   1,   α) – T(K   ,   α)] ≥ 2n
 

+
 

1 – K  
> 2α[T(K, α) – T(K – 1, α)], 

 
 
 

contradicting part (b) of  Lemma 3.4.  
 
 
 

 
Thus, T(n + 2,      α) is attained at the (unique) point k = K + 1, satisfying the following chain of relations. 
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2n – K < T(n   +   2,   α) – T(n + 1   ,   α) 
 
 
 

= α[T(K + 1,   α) – T(K   ,   α)] < 2n
 

+
 

1 – K.  
 
 
 

All these complete the proof of the lemma. 
 
Lemma 3.9 : Let, for some α ≥ 3, T(n, α) be attained at k = K, K + 1. Then, 
 

(a) T(n – 1, α) is attained at k = K, 
 
 

(b) T(n + 1, α) is attained at k = K + 1, 
 
 
 

(c) T(n,        α) – T(n – 1,      α) = 2n – K
 

–
   

1= T(n   +   1,         α) – T(n,          α). 
 
 

 
Proof : Let T(n, α) be attained at k = K, K + 1. Then, 
 
 
 

T(n,     α) = αT(K, α) + S(n – K, 3) 
 
 
 

=  αT(K + 1, α) + S(n – K – 1, 3) 
 
 
 

< αT(K – 1, α) + S(n – K + 1, 3). 
 
 
 

 
(a) Let T(n – 1, α) be attained not at k = K. Then, it must be attained at k = K – 1. Thus, 
 
 
 
 
 

T(n   –   1,       α) = αT(K – 1, α) + S(n – K, 3) 
 
 
 
 
 

< αT(K, α) + S(n – K – 1, 3). 
 
 

 
But, then  
 
 
 

α[T(K   +   1,      α) – T(K,        α)] = 2n – K
 

–
   

1   
 
 
 

< α[T(K, α) – T(K – 1, α)], 
 
 
 
 

which contradicts part (b) of  Lemma 3.4.  
 
 
 

Thus, T(n – 1, α) is attained at the (unique) point k = K. 
 
 
 

 
(b) If, on the contrary, T(n + 1,   α) is attained at k = K + 2, then 
 
 
 
 
 

T(n   +   1,       α) = αT(K + 2, α) + S(n – K – 1, 3) 
 
 
 
 
 

< αT(K + 1, α) + S(n – K, 3). 
 
 

Therefore,  
 
 
 

α[T(K   +   2,       α) – T(K + 1,   α)] < 2n – K – 1   
 
 
 

=  α[T(K + 1, α) – T(K, α)], 
 
 
 
 
 

and we are led to a contradiction to part (b) of  Lemma 3.4.  
 
 
 

Hence, T(n + 1, α) is attained at the (unique) point k = K + 1. 
 
 
 

 
(c) follows from the proofs of parts (a) and (b).                      

 
For any α ≥ 3 and n ≥ 1 fixed, let 
 
 
 
 
 

Tα(n, k) = αT(k, α) + S(n – k, 3) for 0 ≤ k ≤ n – 1. 
Then,  

{ }
1nk0               

. )k ,n(T        min       ),n(T
−≤≤

=α α                                           

 
Lemma 3.10 : Tα(k) is convex in k in the sense that 
 
 
 

Tα(n, k + 2) – Tα(n, k + 1) ≥ Tα(n, k + 1) – Tα(n, k) for all 0 ≤ k ≤ n – 2. 
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Proof : Since  
 

Tα(n, k + 2) – Tα(n, k + 1)  
 
 
 
 

= α[T(k + 2, α) – T(k + 1, α)] – S(n – k – 2, 3), 
 
 
 
 
 
 
 
 

 
Tα(n, k + 1) – Tα(n, k)  
 
 
 
 

=  α[T(k + 1, α) – T(k, α)] – S(n – k – 1, 3), 
 
we get 

[Tα(n, k + 2) – Tα(n, k + 1)] – [Tα(n, k + 1) – Tα(n, k)] 
 
 
 
 

=  α[{Tα(n, k + 2) – Tα(n, k + 1)} – {Tα(n, k + 1) – Tα(n, k)}] 
 
 
 
 
 

+2n – k – 2. 
 
 
 
 

The result now follows by virtue of part (b) Lemma 3.4. 
 
 
4. DISCUSSION 
 
When α = 2, it can be proved that (see, for example, Majumdar [3]) 
 
 
 
 

T(n   +   1,       2) – T(n ,        2) = 2s for some integer s ≥ 1. 
 
 
 
 
 

However, for α ≥ 3, such a relationship need not hold, as can be verified from the entries of Table 1, 
which gives the values of T(n, α) for 1 ≤ n ≤ 9 and 3 ≤ α ≤ 9. 
 
Table 1. Values of T(n, α) for 1 ≤ n ≤ 9 and 3 ≤ α ≤ 9. In each cell, the number in parathesis gives the 
value(s) of k at which T(n, α) (in the formulation of (2.3)) is attained. 
 

     n 
α 

1 2 3 4 5 6 7 8 9 

3 1 
(0) 

3 
(0) 

6 
(1) 

10 
(1) 

16 
(2) 

24 
(2) 

33 
(3) 

45 
(4) 

61 
(4) 

4 1 
(0) 

3 
(0) 

7 
(0, 1) 

11 
(1) 

19 
(1, 2) 

27 
(2) 

43 
(2, 3) 

59 
(3, 4) 

75 
(4) 

5 1 
(0) 

3 
(0) 

7 
(0) 

12 
(1) 

20 
(1) 

30 
(2) 

46 
(2) 

66 
(3) 

91 
(4) 

6 1 
(0) 

3 
(0) 

7 
(0) 

13 
(1) 

21 
(1) 

33 
(2) 

49 
(2) 

73 
(3) 

105 
(3) 

7 1 
(0) 

3 
(0) 

7 
(0) 

14 
(1) 

22 
(1) 

36 
(2) 

52 
(2) 

80 
(3) 

112 
(3) 

8 1 
(0) 

3 
(0) 

7 
(0) 

15 
(0, 1) 

23 
(1) 

39 
(1, 2) 

55 
(2) 

87 
(2, 3) 

119 
(3) 

9 1 
(0) 

3 
(0) 

7 
(0) 

15 
(0) 

24 
(1) 

40 
(1) 

58 
(2) 

90 
(2) 

126 
(3) 

 
 
For α ≥ 3, it is an interesting problem to find the value(s) of n such that 
 
 
 

T(n   +   1,   α) – T(n ,   α) = 2s for some integer s ≥ 1. 
 
 
 

In this connection, we have the following result : 
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Lemma 4.1 : Let α be of the form 2i (for some integer i ≥ 1). Then, for all n ≥ 1, the difference T(n   +   1,       α) 
– T(n ,       α) is of the form 2s. 
 
 

 
Proof : The proof is by induction on n. Corollary 2.1 shows that the result is true for  n = 2. So, we 
assume the validity of the result for some n  (so that the result is true for all i with 2 ≤ i ≤ n). We have to 
show the validity of the result for n + 1. 
 
 
 

To do so, let T(n, α) be attained at k = K. Then, one of the following two cases arises : 
 
 
 

 
Case 1 : When T(n + 1, α) is attained at k = K. 
 
In this case, 

T(n   +   1,      α) – T(n ,           α) = 2n – K. 
 
 

 
Case 2 : When T(n + 1, α) is attained at k = K + 1. 
 
In this case, 

T(n   +   1,      α) – T(n ,          α) = α[T(K + 1, α) – T(K, α)]. 
 
 
 

 
Then, by virtue of the induction hypothesis, T(n   +   1,        α) – T(n ,        α) is of the form 2s for some integer s ≥ 1. 
 

If α be of the form 2i, T(n   +   1,       α) – T(n ,        α) is of the form 2s in the trivial case when  T(n + 1, α) = S(n + 1, 

α) (see Corollary 3.2). Thus, 
 
 
 
 
 

T(2,       α) – T(1 ,             α) = 2 for all α ≥ 3, 
 
 
 
 
 

T(3,     α) – T(2 ,         α) = 22 for all α ≥ 4. 
 
 
 
 
 
 
 
 
 
 

Lemma 4.2 : Let α ( ≥ 3) be an integer, not of the form 2i. Then T(n   +   1,        α) – T(n ,        α) is of the form 2s (for 
some integer s ≥ 1) if and only if T(n   +   1,        α) and T(n ,        α) both are attained at the same k = K. 
 

 
Proof : The “if” part of the lemma follows from Lemma 3.8. To prove the “only if” part, let T(n, α) be 
attained at k = K and T(n + 1, α) be attained at k = K+1. Then, 
 
 
 
 

T(n,   α) = αT(K, α) + S(n – K, 3) 
 
 
 

< αT(K + 1, α) + S(n – K – 1, 3), 
 
 
 
 
 

T(n   +   1,   α) = αT(K + 1, α) + S(n – K, 3) 
 
 
 

< αT(K, α) + S(n + 1 – K, 3). 
 
 
 
 

 
Then, we get the following chain of inequalities : 
 
 
 

2n – K – 1 < T(n   +   1,         α) – T(n,         α) <     2n – K. 
 
 

The above inequality shows that T(n   +   1,        α) – T(n ,        α) can not be of the form 2s (for some integer s ≥ 1). 
Let α ( ≥ 3) be not of the form 2i. Let for any α fixed, T(n, α) and T(n + 1, α) be such that T(n   +   1,        α) – T(n ,        

α) is of the form 2s (for some integer s ≥ 1). From Lemma 3.8, coupled with Lemma 4.2, we see that, T(n     

+       2,        α) – T(n   +       1 ,         α) is not of the form 2s. This raises the following question : Is there any integer N with N 

> n, such that T(N   +   1,      α) – T(N ,       α) is of the form 2t (for some integer t > s)? The following lemma answers 
the question in the affirmative. 
 
Lemma 4.3 : Let α = 2i for some integer i ( ≥ 1). Let T(n, α) be attained at the two values k = N, N + 1. Let 
m be such that 
 
 
 

m – n = n – N + i – 1.                                                                                    (4) 
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Then, T(m, α) is attained at the two values k = n – 1, n. 
 
 

 
Proof : Let T(n, α) be attained at the two values k = N, N + 1, so that by Lemma 3.9, 
 
 
 
 

T(n, α) – T(n – 1, α) = 2n – N – 1 = T(n + 1, α) – T(n, α). 
Then, 

α[T(n, α) – T(n – 1, α)] = 2m – n, 
 

so that 
αT(n – 1, α) + S(m – n + 1, 3) = αT(n, α) + S(m – n, 3). 

 
Also, since 

α[T(n+1, α) – T(n, α)] = 2m – n > 2m – n – 1,  
 
 
 

it follows that 
 
 
 

αT(n + 1, α) + S(m – n – 1, 3) > αT(n, α) + S(m – n, 3). 
Hence,  

T(m, α) = αT(n – 1, α) + S(m – n + 1, 3)  
 
 
 
 
 

=  αT(n, α) + S(m – n, 3) 
 
 
 
 
 

< αT(n + 1, α) + S(m – n – 1, 3), 
 
 
 

which shows that T(m, α) is attained at the two values k = n – 1, n. 
 
Lemma 4.3 shows that the sequence { }∞

=α 1n) ,n(T  contains an infinite number of functions of the form 
T(m, α), each of which is attained at exactly two values of k. 
 
 When α = 2, it can be shown (as in Majumdar [3]) that exactly one of the following two alternatives 
holds true : 
 
 

Case (1) T(n   +   2,        α) – T(n   +   1,       α)         =     T(n   +   1,       α) – T(n,       α),                                                (5) 
 
 

Case (2) T(n   +   2,        α) – T(n   +   1,         α)         =     2[T(n   +   1,      α) – T(n,       α)].                                           (6) 
 
 
 

 
 When α( ≥ 3) is of the form 2i (i ≥ 2) T(n   +   2,        α), T(n   +   1,        α) and T(n,        α) still satisfy one of the above 
two relationships. We now look at this problem more closely. Let T(n, α) be attained at two values k = N, 
N + 1. By Corollary 3.5, α must be of the form 2s (for some integer s ≥ 1). From the proof of Lemma 3.9, 
we see that the necessary conditions (that T(n, α) is attained at k = N, N + 1) are 
 
 
 

1. T(n, α) – T(n – 1, α) = 2n – N –1, 
 
 
 
 
 

2. T(n + 1, α) – T(n, α) = 2n – N –1, 
 
 
 
 

3. α[T(N + 1, α) – T(N, α) = 2n – N – 1. 
 
 
 

Now, we consider the function T(n+2,α). One of the following two cases arises : 
 
 
 

Case 1 : When T(n + 2, α) is attained at k = N + 1. 
In this case,  
 
 

T(n + 2, α) – T(n + 1, α) = 2n – N, 
so that 

T(n + 2, α) – T(n + 1, α) = 2[T(n + 1, α) – T(n, α)]. 
 
 
 

 
Case 2 : When T(n + 2, α) is attained at k = N + 2. 
Here,  

T(n + 2,   α) = αT(N + 2, α) + S(n – N, 3) 
 
 
 

< αT(N + 1, α) + S(n – N + 1, 3), 
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and hence, 
 
 

α[T(N + 2, α) – T(N + 1, α)] > 2n – N.                                                          (7) 
 
 
 

 
Then, T(n + 1, α) is attained at k = N + 2; otherwise, 
 
 
 

T(n + 1,   α) = αT(N + 1, α) + S(n – N, 3) 
 
 
 

< αT(N + 2, α) + S(n – N – 1, 3), 
 

giving 
α[T(N + 2, α) – T(N + 1, α)] > 2n – N – 1,                                                           

 
 
 
 

which, together with Lemma 4.1, contradicts (7).  
 
 
 

 
Hence, T(n + 1, α) is attained at k = N + 2, and consequently, 
 
 
 
 

T(n + 2, α) – T(n + 1, α) = 2n – N – 1. 
 
When α( ≥ 3) is not of the form 2i (i ≥ 2), then T(n   +   2,        α), T(n   +   1,        α) and T(n,        α) need not satisfy either of 
the two relationships (5) and (6). For example, 
 
 
 
 
 

 4        =     T(4,   3) – T(3,   3)         <         6 =     T(5,   3) – T(4,   3)         <     8 =     2[T(4,   3) – T(3,   3)]. 
 
We conjecture that, in such a case, neither of the relationships (4) and (5) holds true. 
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