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Abstract: The N-body problem is one of the well-known and most central computational problem. The 
N-body problem of the Solar System is not only a rich source of initial value problems (IVPs) for ordinary 
differential equations (ODEs), but is also very convenient to understand the orbital evolution of the Solar 
System; see, for example,[1, 2]. Wide range of numerical integrators have been developed and 
implemented for performing such N-body simulations. The main objective of this research paper is to 
analyze and compare the accuracy and efficiency of different ordinary differential equation (ODE) solvers 
applied to the Kepler’s two-body problem for Terrestrial planets. Throughout this paper, the error growth is 
investigated in terms of global error in position and velocity, and the relative error in terms of angular 
momentum and total energy of the system. To quantify the quality of different ODE solvers, we performed 
numerical tests applied to the Kepler’s two body problem for Terrestrial planets with local error tolerances 
ranging from 10−12 to 10−4. 
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1. INTRODUCTION 
In the dynamical astronomy and celestial mechanics, the numerical integration plays a vital role to 
investigate complex problems, for example, N-body problems. Computational astronomers make 
extensive use of accurate N-body simulations to investigate the orbital evolution of the planets, comets, 
asteroids, and other small celestial bodies in the Solar System. The numerical simulations of N-body 
problems are performed by first obtaining a set of second order ODEs for the acceleration of the N-
bodies, and describing the positions and velocities of the N-bodies at the initial time = 𝑡𝑡0 . The initial 
value problem (IVP) we are considering is represented by: 

𝑦𝑦′′(𝑡𝑡) = 𝑓𝑓�𝑡𝑡,𝑦𝑦(𝑡𝑡)�, 𝑦𝑦(𝑡𝑡0) = 𝑦𝑦0, 𝑦𝑦 ′(𝑡𝑡0) = 𝑦𝑦0′ ,                  (1) 

where, 𝑦𝑦0,𝑦𝑦0′ ∈ 𝑅𝑅𝑘𝑘 represent the initial positions and velocities, operator ′ represents  differentiation with 
respect to time, 𝑓𝑓 ∶ 𝑅𝑅 × 𝑅𝑅𝑘𝑘 → 𝑅𝑅𝑘𝑘 a smooth function, and 𝑘𝑘 is the dimension of the above IVP. In the N-
body problem, when N = 2 then the problem is in its simplest form, i.e., two-body problem. Large number 
of numerical integrators are developed and used to find numerical approximations of these types of 
problems; see, for example, Runge-Kutta [3, 4], ODE solvers for non-stiff problems [5, 6, 7]. 
 
2. MATERIALS AND METHODS 
In celestial mechanics, the Kepler’s two-body problem [10, 11] involves the motion of one body about 
another under the influence of their mutual gravitational attraction. The two-body problem is considered 
as the simplest problem in the dynamical astronomy, because the exact solution of the two-body problem  
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exists. The best direct orbit calculations arise when the central body is largely heavier than the orbiting 
body, for example, the man-made satellite around the Earth and planetary orbits around the Sun. In this 
research work, we used Kepler’s two-body problem for Terrestrial planets as the test problem. Terrestrial 
planets (inner planets), i.e., Mercury, Venus, Earth, and Mars are closest to the Sun [12, 13, 14]. The 
equations of motion of Kepler’s two body problem are: 

𝑦𝑦1′′ = −𝑦𝑦1
𝑟𝑟3

,                           (2) 

𝑦𝑦2′′ = −𝑦𝑦2
𝑟𝑟3

,                           (3) 

where, 𝑦𝑦1,𝑦𝑦2 represent the 𝑥𝑥 − and 𝑦𝑦 −components of one body corresponding to the other body, and 
𝑟𝑟 = �𝑦𝑦12 + 𝑦𝑦22. The initial conditions are 

𝑦𝑦1(0) = 1 − 𝑒𝑒, 𝑦𝑦2(0) = 0,    𝑦𝑦1′ (0) = 0,𝑦𝑦2′ (0) = �1+𝑒𝑒
1−𝑒𝑒

 . 

 The parameter 𝑒𝑒 is the orbital eccentricity and 0 ≤ 𝑒𝑒 < 1. Since, the true solution of Kepler 
problem is available. Therefore, the Kepler’s two body problem is quite useful for observing the accuracy 
of different ODE solvers over a short duration of time. The analytical solution of the Kepler’s two body 
problem is given by 

𝑦𝑦1 = cos(𝜂𝜂) − 𝑒𝑒,                                    𝑦𝑦2 = √1 − 𝑒𝑒2sin (𝜂𝜂), 

𝑦𝑦1′ = − sin(𝜂𝜂) �1 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝜂𝜂)�−1,       𝑦𝑦2′ = �(1 − 𝑒𝑒2)cos (𝜂𝜂)(1 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝜂𝜂))−1, 

where, the eccentric anomaly 𝜂𝜂 satisfies Kepler’s equation 𝑥𝑥 = 𝜂𝜂 − esin(𝜂𝜂). 
 Throughout this paper, we have discussed different types of errors. To quantify the quality of 
numerical approximations obtained by different ODE solvers, the global error is of main concern. The 
main source of error, for the total error in the system, is the integration error. The integration error 
consists of two types of errors, namely, truncation and round-off error. Since, computer stores number to 
a certain arithematic precision. Therefore, for accurate N-body simulations, round-off error can contribute 
significantly to the global error.  
 Suppose, 𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) and 𝑦𝑦𝑡𝑡𝑟𝑟𝑛𝑛𝑒𝑒(𝑡𝑡) are position vectors of the solutions obtained numerically and 
analytically, respectively, and 𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛′ (𝑡𝑡)  and 𝑦𝑦𝑡𝑡𝑟𝑟𝑛𝑛𝑒𝑒′ (𝑡𝑡) are velocity vectors of numerical and analytical 
solutions, respectively. The 𝐿𝐿2 -norm of global errors in the position and velocity are defined as 

𝐸𝐸𝑟𝑟(𝑡𝑡) = ‖𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) − 𝑦𝑦𝑡𝑡𝑟𝑟𝑛𝑛𝑒𝑒(𝑡𝑡)‖2 ,     𝐸𝐸𝑣𝑣(𝑡𝑡) = �𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛′ (𝑡𝑡) − 𝑦𝑦𝑡𝑡𝑟𝑟𝑛𝑛𝑒𝑒′ (𝑡𝑡)�2 , where, ‖. ‖2 is the 𝐿𝐿2 -norm. 

 Physical systems usually have conserved quantities, for example, angular momentum 𝐿𝐿(𝑡𝑡) and total 
energy 𝐻𝐻(𝑡𝑡). Generally, 𝐿𝐿(𝑡𝑡) and 𝐻𝐻(𝑡𝑡) are not conserved accurately by numerical approximations. 
However, this digression provides evaluation to quantify the quality of numerical approximations. The 
total energy 𝐻𝐻(𝑡𝑡) of the two-body system is defined as 

𝐻𝐻(𝑡𝑡) = 𝑦𝑦1′2+𝑦𝑦2′2

2
− 1

�𝑦𝑦12+𝑦𝑦22
. 

The relative error in energy is defined as 

𝐻𝐻𝑟𝑟𝑒𝑒𝑟𝑟(𝑡𝑡) = �𝐻𝐻0−𝐻𝐻(𝑡𝑡)
𝐻𝐻0

�, 

where, 𝐻𝐻0 is the total energy at 𝑡𝑡 = 𝑡𝑡0. 
The total angular momentum 𝐿𝐿(𝑡𝑡) is defined as 

𝐿𝐿(𝑡𝑡) = 𝑦𝑦1𝑦𝑦2′ − 𝑦𝑦2𝑦𝑦1′ . 
The relative error in angular momentum is defined as 

𝐿𝐿𝑟𝑟𝑒𝑒𝑟𝑟(𝑡𝑡) = ‖𝐿𝐿0−𝐿𝐿(𝑡𝑡)‖2
‖𝐿𝐿0‖2

 , 
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where, 𝐿𝐿0 is the angular momentum at 𝑡𝑡 = 𝑡𝑡0. Notice that, unlike the global error in position and velocity, 
the exact solution is not required to calculate 𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡). Hence, fewer computing resources are 
required to observe the quality of different ODE solvers. Since, 𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 are scalar quantities. So, in 
order to obtain small error, 𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 require only one constraint. Whereas, for 𝐸𝐸𝑟𝑟 and 𝐸𝐸𝑣𝑣, being vector 
quantities, each coordinate of  𝐸𝐸𝑟𝑟 and 𝐸𝐸𝑣𝑣 has to be small. 
 
3. ODE SOLVERS 
A wide range of numerical integration techniques have been developed for the numerical approximations 
of ODEs that correspond to the continuous state of dynamic systems. MATLAB is a software that is used 
to solve an extensive variety of such problems. The MATLAB ODE suit is a set of codes for solving first 
order systems of ODEs for IVPs and plotting mathematical results of these problems [5]. The ODE 
solvers control the estimated local error for initial value problems. A local error tolerance is specified and, 
if the estimated local error is too large comparative to this specific tolerance. Then the time-step is 
rejected and a new attempt is made with smaller time-step. All ODE solvers in MATLAB use the same 
function interface, so it is very easy to try several methods on the same problem and observe their 
behavior [8]. The most important non-stiff solvers are ODE23, ODE45, and ODE113 [5].  

3.1 ODE45 Solver 
The ODE45 solver is a popular (4, 5) embedded pair of Dormand and Prince [7]. The ODE45 solver 
consists of six-stage embedded pair of Runge-Kutta methods of order 4 and 5. The ODE45 solver is a 
very attractive one step solver for the numerical approximations of non-stiff problems. The ODE45 
advances the solution with 5th order method and the local error is controlled by taking the difference 
between the numerical approximations obtained by 5th order and 4th order methods. In order to compute 
𝑦𝑦(𝑡𝑡𝑛𝑛), ODE45 solver requires only the solution 𝑦𝑦(𝑡𝑡𝑛𝑛−1) at the immediately preceding time-step. 
Generally, the ODE45 solver is the best solver to implement as a “first choice” for most of the problems. 

3.2  ODE23  Solver 
The ODE23 solver is based upon explicit Runge-Kutta (2, 3) embedded pair of Bogacki and Shampine 
[6]. In the presence of mild stiffness and at crude tolerances, the ODE23 solver may be more efficient 
than ODE45 solver. The ODE23 solver is a one step solver which is frequently used for non-stiff 
problems. The ODE23 solver consists of four-stage embedded pair of explicit Runge-Kutta methods of 
order 2 and 3. The ODE23 advances the solution with 3rd order method and the local error is controlled by 
taking the difference between the numerical approximations obtained by 3rd order and 2nd order methods. 

3.3 ODE113 Solver 
The ODE113 solver is a variable order and variable time-step solver. The ODE113 solver uses Adams-
Bashforth-Moulton predictor-corrector methods of order 1 to 13 [9]. When the ODE function is very 
expensive to evaluate then at stringent tolerances, the ODE113 solver may be more efficient than ODE45 
solver. Normally, the ODE113 solver requires solution at several preceding time-steps to obtain the 
current solution values [5]. 
 
4. RESULTS AND DISCUSSION 
In this section, we investigate the global error in position and velocity, and the relative error in angular 
momentum and energy for Terrestrial planets. We perform numerical experiments for different numerical 
ODE solvers applied to the Kepler’stwo body problem for Terrestrial planets over the orbital time period 
of each of the planet with 𝑇𝑇𝑇𝑇𝐿𝐿 = [10−12 − 10−4]. The eccentricity of Mercury, Venus, Earth, and Mars is 
approximately 0.21, 0.0068, 0.017, and 0.093, respectively. Whereas, for the Terrestrial planets, the 
corresponding time of the orbital motion to complete one vibration is approximately 28π, 72π, 117π, and 
219π, respectively. Different time-steps are chosen to perform these numerical experiments. We evaluate 
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the position and velocity on each of the time-step using ODE solvers. The values of positions, velocities, 
and time are stored in separate files. Then we obtain error in positions and velocities with respect to the 
true solutions obtained at the saved values of time. 
 Fig. 1, shows four sets of experiments with time-steps π/2, π/4, π/8, and π/16 to obtain the maximum 
global error in position using ODE23, ODE45, and ODE113 integrators applied to the Sun-Mercury 
system with 𝑇𝑇𝑇𝑇𝑇𝑇 = [10 −12 − 10−4]. Fig. 1(a) shows four sets of numerical experiments with time step 
𝜋𝜋/2. From Fig. 1(a), we observe that ODE45 gives the least error, which is approximately 1.9929 ×
10−9 for the Sun-Mercury system at a combination of tolerance 10−12 and time-step 𝜋𝜋/2. The ODE23 
integrator gives the 2nd least error, which is approximately 3.6778 × 10−9and the 3rd least error, which is 
approximately 5.8392× 10−9 is attained by ODE113 integrator at the same combination of tolerance and 
time-step. Fig. 1(a) depicts a clear pattern. When the tolerance is increased, the maximum global error in 
position is also increased.  
 Fig. 1(b) shows the same set of experiments with time-step 𝜋𝜋/4. We see that at tolerances less than 
10−10 all three integrators lose their accuracy by approximately two orders of magnitude as compared to 
the global errors at time-step 𝜋𝜋/2. When the time-step is 𝜋𝜋/8 and tolerance 10−12, as shown in Fig. 1(c), 
all the three integrators have achieved almost the same accuracy, which is approximately 0.0272. Fig. 
1(d) shows the experiments performed with time-step 𝜋𝜋/16. We observed that all three integrators lose 
their accuracy at tolerances less than 10−6 and give us straight lines which shows that there is no change 
in error when we further reduce the tolerance.  

 
Fig. 1. The maximum global error in position using ODE23, ODE45, and ODE113 for the Sun-Mercury system 
against tolerances ranging from 10−12 to 10−4 and using time-steps from π/16 to π/2. 

 

 From all sets of experiments in Fig. 1, we observe that the accuracy of the given ODE solvers is 
improved if the time-step is increased at tolerance 10−12. We conclude that a combination of tolerance 
10−12and time-step π/2 gives better results in terms of maximum global error in position for all three 
integrators. We also observe that using ODE45 solver the least maximum global error in position is 
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approximately 1.993 × 10−9, which is the best observed accuracy. The ODE45 integrator achieved 
approximately 45% and 65% better accuracy than ODE23 and ODE113, respectively.  
 Fig. 2 shows four sets of experiments with time-steps π/2, π/4, π/8, and π/16 to obtain the maximum 
global error in position using ODE23, ODE45, and ODE113 integrators applied to the Sun-Venus system 
with 𝑇𝑇𝑇𝑇𝑇𝑇 = [10−12 − 10−4]. Fig. 2(a) shows four sets of numerical experiments with time step 𝜋𝜋/2. 
From Fig. 2(a), we observe that ODE113 gives the least error, which is approximately 5.0325× 10−10 for 
the Sun-Venus system at a combination of tolerance 10−12 and time-step 𝜋𝜋/2. The ODE45 integrator 
gives the 2nd least error, which is approximately 1.0321× 10−8and the 3rd least error, which is 
approximately 2.2642× 10−8 is attained by ODE23 integrator at the same combination of tolerance and 
time-step. The ODE113 integrator achieved approximately 95% and 97% better accuracy than ODE45 
and ODE23, respectively. Fig. 2(b) and Fig. 2(c), show the same sets of experiments with time-steps 𝜋𝜋/4 
and 𝜋𝜋/8, respectively. We observed that at time-steps 𝜋𝜋/4 and 𝜋𝜋/8, the behavior of the global error 
obtained by using three integrators was very similar to that for the experiments performed with time-step 
𝜋𝜋/2.  

 
Fig. 2. The maximum global error in position using ODE23, ODE45, and ODE113 for the Sun-Venus system 
against tolerances ranging from 10−12 to 10−4 and using time-steps from π/16 to π/2. 

 Fig. 2(d) shows the experiments performed with time-step 𝜋𝜋/16. We observed that all three 
integrators lose their accuracy using tolerances less than 10−7 and give us a straight line which shows that 
there is no change in the error when we further reduce the tolerance. We observed from Fig. 2 that all 
three ODE solvers behave in a similar manner at time-steps 𝜋𝜋/2, 𝜋𝜋/4, and 𝜋𝜋/8 for the Sun-Venus 
system. However, for the efficiency reason, the time-step 𝜋𝜋/2 is recommended, because all the three 
integrators take least amount of CPU time with time-step 𝜋𝜋/2. 
 Fig. 3 shows four sets of experiments with time-steps π/2, π/4, π/8, and π/16 to obtain the maximum 
global error in position using ODE23, ODE45, and ODE113 integrators applied to the Sun-Earth system 
with 𝑇𝑇𝑇𝑇𝑇𝑇 = [10−12 − 10−4]. Fig. 3(a) shows four sets of numerical experiments with time step 𝜋𝜋/2. 
From Fig. 3(a) we observe that ODE23 gives the least error, which is approximately 6.3404× 10−6for the 
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Sun-Earth system at a combination of tolerance 10−12 and time-step 𝜋𝜋/2. The ODE45 integrator gives the 
2nd least error, which is approximately 6.3714× 10−6and the 3rd least error, which is approximately 
6.3974× 10−6 is attained by ODE113 integrator at the same combination of tolerance and time-step. The 
ODE23 integrator achieved approximately 0.49% and 0.89% better accuracy than ODE45 and ODE113, 
respectively.  
 

 
Fig. 3. The maximum global error in position using ODE23, ODE45, and ODE113 for the Sun-Earth system against 
tolerances ranging from 10−12 to 10−4 and using time-steps from π/16 to π/2. 

 
 Fig. 4 shows four sets of experiments with time-steps π/2, π/4, π/8, and π/16 to obtain the maximum 
global error in position using ODE23, ODE45, and ODE113 integrators applied to the Sun-Mars system 
with 𝑇𝑇𝑇𝑇𝑇𝑇 = [10−12 − 10−4]. Fig. 4(a) shows four sets of numerical experiments with time step 𝜋𝜋/2. 
From Fig. 4(a), we observe that ODE113 gives the least error, which is approximately 9.7285× 10−8 for 
the Sun-Mars system at a combination of tolerance 10−12 and time-step 𝜋𝜋/2. The ODE45 integrator gives 
the 2nd least error, which is approximately 1.7289× 10−7and the 3rd least error, which is approximately 
2.6425× 10−7 attained by ODE23 integrator at the same combination of tolerance and time-step. The 
ODE113 integrator achieved approximately 43% and 63% better accuracy than ODE45 and ODE23, 
respectively. When the time-step is 𝜋𝜋/4, as shown in Fig. 4(b), the behavior of the errors obtained by 
using three integrators is very much similar to that for the experiments performed with time-step 𝜋𝜋/2. 
Fig. 4(c) and Fig. 4(d) show that the experiments were performed with time-step 𝜋𝜋/8 and 𝜋𝜋/16, 
respectively. We observe that given integrators lose their accuracy using tolerances less than 10−7 and 
give us a straight line which shows that there is no change in error when we further reduce the tolerance. 
Furthermore, we have performed the previous sets of numerical experiments to investigate the error 
growth in velocity. We observed almost the same trend as of the errors in position but with certain orders 
of magnitude difference in accuracy.  
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Fig.  4. The maximum global error in position using ODE23, ODE45, and ODE113 for the Sun-Mars system against 
tolerances ranging from 10−12 to 10−4 and using time-steps from π/16 to π/2. 

 
 Let us now consider the accuracy of the integrators ODE23, ODE45, and ODE113 using the 
combination of tolerance 10−12 and time-step π/2 over the orbital time period of each Terrestrial planet 
by estimating the relative error in energy and angular momentum. 
 Fig. 5 shows four sets of experiments with time-step of π/2 to observe the error behavior in total 
energy using three integrators ODE23, ODE45 and ODE113 applied to the Sun-Mercury, Sun-Venus, 
Sun-Earth, and Sun-Mars system over the orbital time period of each Terrestrial planet. The tolerance and 
time step is selected to give the smallest maximum global error. From Fig. 5(a), we observe that the best 
observed accuracy in terms of the relative error in energy is again achieved by the ODE45 integrator for 
the Sun-Mercury system. From Fig. 5(b), for the Sun-Venus system, we observe that the best observed 
accuracy in terms of relative error in energy is again achieved by the ODE113 integrator. From Fig. 5(c), 
we observe that the best observed accuracy in terms of relative error in energy is achieved by ODE113 
rather than ODE23 for the Sun-Earth system. From Fig. 5(d), we observe for the Sun-Mars system that 
the best observed accuracy in terms of relative error in energy is again achieved by ODE113. As for 
Terretrial planets, we repeated the same sets of experiments and observe a similar behavior for the 
relative error in angular momentum.  
 Now we consider the efficiency of the ODE solvers discussed in this paper in terms of the amount of 
work done to attain a given accuracy. One way of observing the amount of work is to count the number of 
function evaluations against the maximum global error in position. Table 1 shows the number of function 
evaluations against the least maximum global error in position for the ODE45, ODE23 and ODE113 
integrators with tolerance of 10−12 and time-step π/2. 
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Fig. 5. The relative error in energy using ODE23, ODE45 and ODE113 integrators applied to the Sun-Mercury, 
Sun-Venus, Sun-Earth, and Sun-Mars system over the orbital time period of each Terrestrial planet. 
 

 For the Sun-Mercury system, the integrator ODE23 is approximately 25.4 times more expensive than 
ODE45 and the integrator ODE45 is approximately 9.13 times more expensive than ODE113. For the 
Sun-Venus system, the integrator ODE23 is approximately 22.5 times more expensive than ODE45 and 
the integrator ODE45 is approximately 14.2 times more expensive than ODE113 integrator. For the Sun-
Earth system, the integrator ODE23 is approximately 22.6 times more expensive than ODE45 and the 
integrator ODE45 is approximately 13.9 times more expensive than ODE113. Whereas, the integrator 
ODE23 is approximately 23.6 times more expensive than ODE45 and the integrator ODE45 is 
approximately 11.4 times more expensive than ODE113 for the Sun-Mars system. Overall, we observe 
that the ODE113 integrator takes the least number of function evaluations for each Terrestrial planet and 
the ODE23 is the most expensive ODE solver, because it takes the most number of function evaluations. 
 

Table 1.  Number of function evaluations against least maximum global error in position for ODE23, 
ODE45 and ODE113 integrators at ℎ = 𝜋𝜋/2 and tolerance =  10−12over the orbital time period of each 
Terrestrial planet. 

Solvers Mercury Venus Earth Mars 

ODE23 995641 2258569 3688531 7180777 

ODE45 39223 100375 163087 304303 

ODE113 3966 7061 11679 26735 
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5. CONCLUSIONS 
The main purpose of this paper was to observe the accuracy and efficiency of different ODE solvers 
applied to the real world problems involving the Sun and the Terrestrial planets. The simulations were 
performed over one orbital period of each of Terrestrial planet. For these simulations, we performed 
numerical experiments using three ODE integrators ODE23, ODE45, and ODE113 for the 𝑇𝑇𝑇𝑇𝑇𝑇 =
[10−12 − 10−4]. We observed that when the tolerance is increased, the maximum global error in position 
is increased. We also observed that these ODE solvers are more accurate when the time-step is large at 
tolerance 10−12. For the given range of tolerances from 10−12 to 10−4, and time-steps from π/16 to π/2, 
we observed that for the Sun-Mercury system the integrator ODE45 achieves the best observed accuracy. 
The ODE45 integrator has achieved approximately 45% and 65% better accuracy than ODE23 and 
ODE113, respectively. For the Sun-Venus system, we observed that the integrator ODE113 achieves the 
best observed accuracy. The ODE113 integrator achieved approximately 95% and 97% better accuracy 
than ODE45 and ODE23, respectively. We observed that the integrator ODE23 achieves the best 
observed accuracy for the Sun-Earth system. The ODE23 integrator achieved approximately 0.49% and 
0.89% better accuracy than ODE45 and ODE113, respectively. Finally we observed the results for the 
Sun-Mars system that the integrator ODE113 achieves the best observed accuracy. The ODE113 
integrator achieved approximately 43% and 63% better accuracy than ODE45 and ODE23, respectively.  
 We also analyzed the efficiency of the ODE solvers discussed in this paper by counting the number of 
function evaluations against the least maximum global error in position for Terrestrial planets. We 
observed that the best observed accuracy attained by the integrator ODE45 for the Sun-Mercury system 
uses approximately  9.13 times more function evaluations than ODE113 and approximately 25.4 times 
less function evaluations than ODE23. The best observed accuracy attained by the integrator ODE113 for 
the Sun-Venus system uses approximately 14.2 times less function evaluations than ODE45 and 
approximately 319.9 times less function evaluations than ODE23. For the Sun-Earth system, the best 
observed accuracy attained by the integrator ODE23 uses approximately 22.6 times more function 
evaluations than ODE45 and approximately 315.8 times more function evaluations than ODE113. For the 
Sun-Mars system, the best accuracy attained by the integrator ODE113 uses approximately 11.5 times 
less function evaluations than ODE45 and approximately 268.6 times less function evaluations than 
ODE23. 
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