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Abstract: In this paper, the new integral form of Popoviciu inequality for convex functions is constructed 

and also the new refinement of integral form of Jensen’s inequality is given. For the purpose of application 

some new quasi arithmetic means are defined along with their monotonicity property. 
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1.  INTRODUCTION AND PRELIMINARY RESULTS  
 
A function R→Cg : , where C  is a convex subset of real vector space, is said to be convex if  

 ),()()( ybgxagbyaxg +≤+  (1) 

 for all Cyx ∈,  and 0, ≥ba , such that 1=ba +  (see [10, page ~1]).  

In [10, page ~43] the Jensen’s inequality in discrete version is given as follows:  

Theorem 1.1 Let C  be a convex subset of real vector spaceX, R→Cg :  be convex function, 
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In [10, page ~63] the integral form of Jensen’s inequality is defined as follows.  

 

Theorem 1.2 Let h  be an integrable function on a probability space ),,( µAX  taking values in an 

interval R⊂I . If g  is a convex function on I  such that the composition function hg   is integrable, 

then  .µµ hdghdg
XX

∫∫ ≤





 (3) 

 In [2], Brneti c′ , Pearce and Pe c aric give the refinement of integral form of Jensen’s inequality 

(3)  by using refinement of discrete Jensen’s inequality. Moreover in [7], László Horváth and Pečarić give 
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the improvement of integral form of Jensen’s inequality (3)  by using some refinement of discrete 

Jensen’s inequality which is generalization of result given in [2], they also give new quasi arithmetic means 

and prove their monotonicity. 

The Popoviciu inequality is given by (see [10, page 173]).  

Theorem 1.3 Let N∈nm, , such that 3≥n , 12 −≤≤ nm , R⊂],[ ba  be an interval, 

n
n baxx ],[),,(= 1 ∈x , ),,(= 1 npp p  be a n -tuple such that nipi ,1,2,=0, ≥  with 
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and 

 𝐶𝐶𝑚𝑚𝑛𝑛 = 𝑛𝑛!
𝑚𝑚!(𝑛𝑛−𝑚𝑚)!

. 

 In the current century, the Popoviciu inequality (4) is studied by many authors. In the monograph 

[6], the generalization of (4) for real weights, mixed symmetric means, exponential convexity, mean value 

theorems and Cauchy means are studied. In [8, 9], the integral version and refinement of a special case of 

(4) is proved respectively. In [1], the higher dimension analogue of a special case of (4) is given. Moreover, 

in [3, 4, 5] (4) is generalized for higher order convex functions via different interpolating polynomials. We 

use the idea of Brneti c′ , Pearce and Pe c aric given (for Jensen’s inequality) in [2] to construct the integral 

form of Popoviciu inequality (4) . Also following the way of László Horváth and J. Pe c ari c′  given (for 

refinements of Jensen’s inequality) in [7] we give application to the quasi arithmetic means.  

 

2.  MAIN RESULTS 
 

We now consider some hypotheses which are used in our work.  

)( 1H  Let ),,( µEX  be a probability space, and let npp ,,1   be positive numbers with 

1=
1= i

n

i
p∑ . 

)( 2H  Let R⊂→ IXh :  be an integrable function.  

)( 3H  Let g  be a convex function on interval I  such that the composition hg   is integrable.  



 Integral Form of Popoviciu Inequality for Convex Function 341

Let 2≥m  be a fixed integer. The σ -algebra in kX  generated by the projection mapping 

),1,=( : mlXXpr k
l →  

 lml xxxpr :=),,( 1   (6) 

 is denoted by kE . And mµ  is defined as the product measure on E , this measure is uniquely ( µ  is σ

-finite) specified by  

 1 1( ) := ( ) ( ),   ,   = 1, , .m
m m lB B B B B l mµ µ µ× × ∈  E  (7) 

 
 
Theorem 2.1 Assume )( 1H - )( 3H , then the following inequalities hold. 
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Proof. (a) On integrating the inequality (4)  over nX  and replacing 
jix  by )(

jixh , we have  
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 On simplification we have  
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 This gives  
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 (b) Using the discrete Jensen’s inequality in the last term of inequality given in (a) and on solving, we have  
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 Under the hypothesis )( 1H , )( 2H  and )( 3H , define the function )(tHm  on [0,1] given by  
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Theorem 2.2 For 𝑚𝑚 ≥ 2 be an integer, we assume )( 1H - )( 3H  and consider mH  :[0,1]→ 𝑅𝑅 as defined in 

(8) then the following statements are valid. 

    a.  mH  is convex.  

    b.  
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 Therefore mH  is convex function.  

(b) By the integral from Jensen’s inequality (8)  yields  
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Proof. Using )(b  and )(c  of Theorem 2.2 we get first two inequalities, and for the last inequality  
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 Using the discrete Jensen’s inequality, we have  
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Remark 2.4 A refinement similar to (10) of integral form of Jensen’s inequality is proved in 

Proposition 7 of [7].  

 

3.  NEW QUASI-ARITHMETIC MEANS 

Now we introduced some new quasi arithmetic means. For this first assume some conditions:  

)( 4H  Let IXh →: , where R⊂I  be an interval, is measurable.  

)( 5H  Let α , R→I:β  are continuous and strictly monotone functions.  

Definition 1 Assume )( 1H , )( 4H  and )( 5H .  

For [0,1]∈t  we define the class of quasi-arithmetic mean given by  
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 where the integrals are supposed to be exist.  

 Assume )( 6H , let R→I:η  be a continuous and strictly monotone function such that the 

composition hη  is integrable on X . Define the mean  
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Theorem 3.1  Assume )( 1H , )( 4H , )( 5H  and assume that hλ  and hχ  an integrable on X .  

)(a  If 1−λχ   is convex with χ  is increasing or 1−λχ   is concave with χ  is decreasing, 

then  

 ),,(),,(),( , µµµ χλχλ hMhtMhM ≤≤  (13) 

 holds for all [0,1]∈t .  

)(b  If 1−λχ   is convex with χ  is decreasing or 1−λχ   is concave with χ  is increasing, 

then  

 ),,(),,(),( , µµµ χλχλ hMhtMhM ≥≥  (14) 

 holds for all [0,1]∈t .  

Proof. )(a  Using pair of functions 1−λχ   and )(hλ  ( )(Iλ  is an interval) in Theorem 2.3, we have  
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 Using the discrete Jensen inequality on the right side of last inequality we get  
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 On taking 1−χ  on both sides we have (13) .  

)(b  Similarly using the pair of functions 1−− λχ   and )(hλ  in Theorem 2.3, where 1−λχ   

is concave. On taking 1−χ  the we have (14) . 
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