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Abstract: An AG-groupoid that satisfies the identity a(bc) = c(ab) is called a CA-AG-groupoid [1]. In
this article various properties of CA-AG-groupoids are explored and their relations with various other
known subclasses of AG-groupoids and with some other algebraic structures are established. We proved
that in CA-AG-groupoid left alternativity implies right alternativity and vice versa. We also proved that a
CA-AG-groupoid having a right cancellative element is a Tl, a T “and an alternative AG-groupoid. We
provided a partial solution to an open problem of right cancellative element of an AG-groupoid. Further,
we proved that a CA-AG-groupoid having left identity is a commutative semigroup and investigated that
the direct product of any two CA-AG-groupoids is again cyclic associative. Moreover, we investigated
relation among CA, AG* and Stein AG-groupoids.
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1. INTRODUCTION

A groupoid satisfying the “left invertive law” is called an Abel-Grassmann’s groupoid (or simply AG-
groupoid [2]). In literature different names like “left almost semigroup” (LA-semigroup) [3], left
invertive groupoid [4] and right modular groupoid [5] has been used by different authors for the said
structure. Many properties of AG-groupoids have been studied in [6, 7]. Various aspects of AG-groupoids
have been studied in [2,8 — 14]. In [1,15], we introduced CA-AG-groupoid as a new subclass of AG-
groupoid and studies some fundamental properties of it. In the same paper we introduced CA-test for the
verification of cyclic associativity for an arbitrary AG-groupoid. We also enumerated CA-AG-groupoids
up to order 6 and further classified it into different subclasses.

2. PRELIMINARIES

A groupoid (G,) or simply G satisfying the “left invertive law [3]: (ab)c = (ch)a Va, b, c € G” is called
an Abel-Grassmann’s groupoid (or simply AG-groupoid [2]). Through out the article we will denote an
AG-groupoid simply by S otherwise stated else. S always satisfies the “medial law: (ab)(cd) =
(ac)(bd) [16, Lemma 1.1(i)], while S with left identity e is called an AG-monoid and it always satisfies
the paramedial law: (ab)(cd) = (db)(ca) [16, Lemma 1.2(ii)]”. A groupoid G is called right AG-
groupoid or right almost semigroup (RA-semigroup) [3] if Va,b,c € G, a(bc) = c(ba). An AG-
groupoid S is called:

1. cyclic associative AG-groupoid (CA-AG-groupoid) [15]; if a(bc) = c(ab) Va,b,c € S.
ii. AG* [8]; if (ab)c = b(ac).

iii. AG**[9];if a(bc) = b(ac).

iv. TI—AG—groupoid [10] ifVa,b,c,d € S, ab = cd implies ba = dc.
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vi. left T3—AG—groupoid (Tl3—AG—groupoid) if Va,b,c € S, ab = ac implies ba = ca.
vii. right T3—AG—groupoid (Tf—AG—groupoid) if ba = ca implies ab = ac.

viii. T’-AG-groupoid [10] ifitis T,” as well as T,".

ix. transitively commutative if ab = ba and bc = cb implies ac = ca Va,b,c € S.

X.  Bol*-AG-groupoid [17] if it satisfies the identity a(bc - d) = (ab - c)d Va, b,c,d € S.

xi.  left alternative if Va, b € S, (aa)b = a(ab) and is called right alternative if b(aa) = (ba)a. S is
called alternative [10], if it is both left alternative and right alternative.

xii. An element a € S is left cancellative (resp. right cancellative) [17] if Yw,y € S, aw = ax 2> w =
x (wa =xa=w=x).

xiii. An element a € S is cancellative if it is both left and right cancellative. S is left cancellative (resp.
right cancellative, cancellative) if every element of S is left cancellative (right cancellative,
cancellative).

xiv. left commutative (resp. right commutative) if Va, b,c € S, (ab)c = (ba)c (a(bc) = a(ch)). S is
called bi-commutative AG-groupoid [18], if it is left and right commutative.

xv.  Stein-AG-groupoid [18], if a(bc) = (bc)a Va,b,c € S.

xvi. An element a € S is called idempotent if a’=a and an AG-groupoid having each element as
idempotent, is called AG-2-band (or simply AG-band) [12].

xvii. A groupoid in which (ab)c = a(bc), Va,b,c € S holds is called a semigroup. If a semigroup
contains the identity element e such that ea = a = ae, then it is called monoid.

Due to non-associativity of AG-groupoid, left identity does not imply right identity and so the
identity.

For two AG-groupoids S; and S, the set {(a, b)|a € Sy, b € S,} with the “binary operation defined by
(a1, by) (as, by) = (a1ay, b1b,) is called the direct product of S; and S,, denoted by S; X S,”, in this case
we say that S; and S, are the direct factors of §1X S..

3. VARIOUS PROPERTIES OF CA-AG-GROUPOIDS

In the following, it is observed that the subclass of CA-AG-groupoid is distinct from that of T and T'-
AG-groupoids. We provide a counter example to show that a CA-AG-groupoid is not a Tl-AG-groupoid,
however, a CA-AG-groupoid with a right cancellative element is (i) TI—AG—groupoid and (ii) T’-AG-
groupoid.

Example 1. Table 1 represents a CA-AG-groupoid of order 4. As4 -3 =2=3-3but3-4 # 3 -3, thus
itis not a TI-AG-groupoid.

Table 1. CA-AG-groupoid that is not T"
2 3

R R R R R
N R R RN

1
1
1
1

B N -
N N = =

However, we have the following;

Theorem 1. Every CA-AG-groupoid having a right cancellative element is a T' 4 G-groupoid.
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Proof. Let S be a CA-AG-groupoid having a right cancellative element z and a, b, c,d € S. Let ab = cd,
then by cyclic associativity, left invertive law and right cancellativity, we have;

z?(ba) = a(z%b) = a(zz - b) = a(bz - z) = z(a - bz)
=2z(z-ab)=2z(z-cd) =z(d - zc) = z(c - dz)
= (dz)(zc) = c(dz - z) = c(z%d) = d(cz?) = z*(dc)
= z2(ba) = z%(dc) = (ba-z)z = (dc - 2)z
= ba-z=dc-z= ba=dc.
Hence, S is a TI—AG—groupoid.
Since a TI-AG-groupoid is (i) a T3-AG-gr0up0id [10], and (ii) an AG**-groupoid [11]. Thus, we

immediately have the following corollary.

Corollary 1. Every cancellative CA-AG-groupoid or simply having a right cancellative element is
(i) a T3—AG—gr0upoid.
(it) an AG**-groupoid.

Lemma 1. Every left cancellative CA-AG-groupoid S is transitively commutative.

Proof. Let S be a left cancellative CA-AG-groupoid and a, b, ¢ € S such that ab = ba and bc = cb. We
have to show that ac = ca. Using cyclic associativity and the assumption, we have b(ac) = c(ba) =
c(ab) = b(ca) = b(ac) = b(ca), which by left cancellativity imply ac = ca. Hence S is transitively
commutative.

Now, we discuss an open problem given in [17] and provide a partial solution to that open problem.
To this end, we first restate the following [17, Theorem 26].

b

Theorem 2. “Every right cancellative element of an AG-groupoid S is (left) cancellative.’

The converse of the above theorem is not true in general. In 2012, M. Shah proposed an open Problem in
his Ph.D thesis [17]: “Prove or disprove that in an AG-groupoid, without left identity, every left
cancellative element is right cancellative”. In [17], the open problem have been partially resolved by the
proposer himself, that is: (a) “An AG-groupoid, a left cancellative element is right cancellative, if either
S is cancellative or if S has left identity [17, Theorem 28]”, (b) “In an AG-groupoid, a left cancellative
element x is right cancellative if any of the following holds: (i) If x is idempotent (ii) If X is left
cancellative (iii) If there exists a left nuclear left cancellative element in S”. The converse of the problem
has also been proved for AG*-groupoid, AG**-groupoid and self-dual AG-groupoid i.e. (i) “every left
cancellative element of an AG*-groupoid is right cancellative [17] (ii) every left cancellative element of
an AG**-groupoid is right cancellative [17] (iii) every left cancellative element of self-dual AG-
groupoid is right cancellative [19]”. We claim that the converse of Theorem 2 also holds for CA-AG-
groupoids and verify the claim in the following theorem.

Theorem 3. Every left cancellative element of a CA-AG-groupoid is right cancellative.

Proof. Let a be a left cancellative element of a CA-AG-groupoid S. To show that a is right cancellative,
let xa = ya for all x, y € S. Then, by cyclic associativity, medial law and assumption, we have

a(a - ax) = (ax)(aa) = (aa)(xa) = (aa)(ya)
= (ay)(aa) = a(ay - a) = a(a - ay)
= a(a-ax) =ala-ay).

This by repeated use of the left cancellativity of a implies that x = y. Hence a is right cancellative.
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Next we prove that any cancellative element of a CA-AG-groupoid can be written as the product of
its two cancellative elements.

Theorem 4. Every cancellative element of a CA-AG-groupoid can be written as the product of its two
cancellative elements.

Proof. Let a be an arbitrary cancellative element of a CA-AG-groupoid S. Suppose a = ¢, c,, where
¢, and c, are any arbitrary elements of S. We have to show that c¢; and c, are cancellative. Consider
xc,= ycy, then by cyclic associativity we have

xa = x(c1¢3) = c3(xcq) = c(ye1) = c1(czy) = y(ci¢3) = ya = xa = ya.

Which by the right cancellativity of a implies x =y. Thus c; is right cancellative and hence
cancellative by Theorem 2. Now let c,x = c¢,y. Then

xa = x(c163) = cz(xc1) = c1(€2x) = ¢1(€2y) = y(c162) = ya

this by the right cancellativity of a implies that x = y. Thus c, is left cancellative and thus cancellative by
Theorem 3. Hence the result follows.

Example 2. Table 2 represent a CA-AG-groupoid having 1 and 3 as cancellative elements, while 2 as
non-cancellative element. 1 and 3 are the product to two cancellative elements.

Table 2. CA-AG-groupoid with two cancellative elements.

3

[\S)
W N = =
N NN

3
2
1

Theorem 5. Let k be a fixed element of a CA-AG-groupoid S such that ak = ka and bk = kb for some
a,binS. If'k is left or right cancellative then a, b commute.

Proof. First assume that k is left cancellative. Then, using cyclic associativity and given condition,
k(ab) = b(ka) = a(bk) = a(kb) = b(ak) = k(ba)
which by left cancellativity of k implies that ab = ba.

Now, let k is right cancellative, then by Theorem 2, k is left cancellative and hence the result follows.

Theorem 6. Every CA-AG-groupoid is paramedial [1].

Next attention is paid towards alternative AG-groupoids. The following example shows that left
alternative and right alternative are distinct subclasses of AG-groupoids.

Example 3. Left alternative AG-groupoid of order 4 given in Table 3 is not right alternative because,
a(bb) # (ab)b.

Table 3. Left alternative AG-groupoid that is not right alternative.

a b c d
a c c d d
b d b d d
c d d d d
d d d d d
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The right alternative AG-groupoid of order 3 represented in Table 4 is not a left alternative AG-groupoid
since (1-1)2 # 1(1-2).

Table 4. Right alternative AG-groupoid that is not left alternative.

1 2 3
3 2 3
1 3 3
3 3 3 3

However, if an AG-groupoid is cyclic associative then left alternativity implies right alternativity and vice
versa, as proved in the next theorem.

Theorem 7. Let S be a CA-AG-groupoid, then S is left alternative if and only if S is right alternative.
Proof. Assume first that S is a left alternative CA-AG-groupoid, then for any a,b in S

b-aa=a-ba=a-ab=aa-b=ba-a
=b-aa=ba-a.
Conversely, assume that S is right alternative, then
aa-b=ba-a=b-aa=a-ba=a-ab
=aa-b=a-ab.
Hence the theorem is proved.

In the following example it is shown that the class of CA-AG-groupoid is distinct from the class of
alternative AG-groupoids.

Example 4. CA-AG-groupoid of order 4, presented in Table 5, is neither a left alternative nor a right
alternative because (4 - 4)4 + 4(4 - 4).

Table 5. CA-AG-groupoid that is not alternative AG-groupoid.

AW N~

S Sy S —
—_ = = =N
DN = = = W
W = = =

However, if a CA-AG-groupoid contains element either as a left or as a right cancellative then, it
becomes an alternative AG-groupoid, as established in the following result.
Theorem 8. A CA-AG-groupoid with a left cancellative element is an alternative AG-groupoid.

Proof. Let S be a CA-AG-groupoid having a left cancellative (and hence a cancellative) element x and
a,b € S. Then by cyclic associativity and left invertive law:

x(aa-b) =b(x-aa) =b(a-xa) = (xa)(ba)
=a(xa-b) =a(ba x)=x(a-ba) =x(a-ab),

which by left cancellativity of x implies (aa)b = a(ab). Thus S is left alternative AG-groupoid. By
virtue of Theorem 7, S is also right alternative. Hence S is alternative.

The following example suggests that neither every cancellative AG-groupoid nor every alternative
AG-groupoid is CA.
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Example 5. Table 6, represents a cancellative AG-groupoid of order 3. As 3(2 1) # 1(3 - 2), hence it is
not cyclic associative.

Table 6. Cancellative AG-groupoid that is not CA-AG-groupoid.

1 2 3
1 1 2 3
3 1 2
3 2 3 1

Table 7 represents an alternative AG-groupoid of order 4, which is not cyclic associative since a(ba) #
a(ab).

Table 7. Alternative AG-groupoid that is not CA-AG-groupoid.

b d

a
b
c

a o QL o Q
a o o a o

c b
c c
c c
d a c

Now, we demonstrate that the class of CA-AG-groupoid is distinct from the class of Stein AG-groupoid.
To begin with, consider the following:

Example 6. CA-AG-groupoid of order 4, represented in Table 8, is not a Stein AG-groupoid as: (1 -
1)1 # 1(1 - 1). While a Stein AG-groupoid of order 4, presented in Table 9, is not a CA-AG-groupoid
since 1(1-2) # 2(1-1).

Table 8. CA-AG-groupoid that is not Stein AG-groupoid.

2 4

W W kA N =
W W W W W

1 3 3
2 3 3
3 3 3
4 3 3

Table 9. Stein AG-groupoid that is not CA-AG-groupoid.

1 2 3 4 5
1 3 3 4 5 5
2 4 4 5 5 5
3 4 5 5 5 5
4 5 5 5 5 5
5 5 5 5 5 5

Further, the following example establish that neither every AG*-groupoid is Stein, nor every Stein AG-
groupoid is AG*.

Example 7. Table 10, represents an AG*-groupoid of order 6. As 1(1-2) # (1 - 2)1, hence it is not a
Stein AG-groupoid. A Stein AG-groupoid of order 5 given in Table 9 of Example 6 is not an AG*-
groupoid as (1-1)2 = 1(1 - 2).
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Table 10. AG*-groupoid that is not Stein AG-groupoid.

2 4

AN L W =
W L O D W W —
(S IRV B e NV R N N
wnm L L W N D W
W W L D N WD
DN L WD D D W WD
LN W W L b D N

However, by coupling any two from CA, Stein and AG*-groupoids, we get the third one. As proved in
the following;

Theorem 9. Let S be an AG-groupoid then, any two of the following implies the third one.

(i) Sis CA.

(ii) Sis AG*.

(iii) S is Stein.

Proof. Let S be an AG-groupoid and a, b,c € S.

(i) and (ii) implies (iii): Using the properties of cyclic associativity, definition of AG* and the left
invertive law, a(bc) = c(ab) = b(ca) = (cb)a = (ab)c = b(ac) = c(ba) = (bc)a. Hence S is a Stein
AG-groupoid.

(ii) and (iii) implies (i): Using the properties of Stein AG-groupoid, the left invertive law and AG*,
a(bc) = (bc)a = (ac)b = c(ab). Hence S is a CA-AG-groupoid.

(iii) and (i) implies (ii): Using the definition of Stein AG-groupoid, the left invertive law and the cyclic
associativity we have, (ab)c = (cb)a = a(cb) = b(ac). Hence S is an AG*-groupoid.

Next we provide some counter examples to verify that (i) a Stein AG-groupoid is neither a left
commutative nor a right commutative, and (ii) a bi-commutative AG-groupoid is not a Stein AG-
groupoid.

Example 8. Table 9 of Example 6 represents a Stein AG-groupoid of order 5. As (1-2)1 # (2-1)1,
hence it is not left commutative. Also, as 1(1 - 2) # 1(2 - 1), hence it is also not a right commutative.
While Table 11, represents a bi-commutative AG-groupoid of size 3, that is not a Stein AG-groupoid as,
a(aa) # (aa)a.

Table 11. Bi-commutative AG-groupoid that is not Stein AG-groupoid.

b

Q
a o o Q
a o S a0

b
c
c

However, we have the following;

Theorem 10. A Stein AG-groupoid S is CA, if any of the following hold.
(i) S is left commutative.
(ii) S is right commutative.

(iii) S is bi-commutative.
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Proof. (i) Let S be a left commutative Stein AG-groupoid and a,b,c € S. Then a(bc) = (bc)a =
(cb)a = (ab)c = c(ab). Hence S is CA-AG-groupoid.

(it) Let S be a right commutative Stein AG-groupoid and a,b,c € S. Then a(bc) = a(cb) = (cb)a =
(ab)c = c(ab). Hence S is CA-AG-groupoid.

(iii) Obvious.
Lemma 2. Every Stein CA-AG-groupoid is a semigroup.

Proof. Let S be a Stein CA-AG-groupoid and a, b, c € S, then a(bc) = c(ab) = (ab)c. Hence S is a
semigroup.

Stein CA-AG-groupoid

Example 9. Table 12, represent a non-commutative Stein CA-AG-groupoid of order 4, where 3 -4 #+ 4 -
3.

Table 12. Non-commutative Stein CA-AG-groupod.

2 3 4

—_ e
N N = =
N = =

1 1
2 1
3 1
4 1

As clear from Example 8 that a Stein AG-groupoid need not to be a bi-commutative AG-groupoid.
However, we have the following.

Theorem 11. Every Stein CA-AG-groupoid is bi-commutative.

Proof. Let S be a Stein CA-AG-groupoid and x,y,z € S. Then (xy)z = (zy)x = x(zy) = y(xz) =
z(yx) = (yx)z. Hence S is left commutative. Again, using the given properties we have, x(yz) =
(yz2)x = (xz)y = y(xz) = z(yx) = x(zy). Thus S is also right commutative. Hence the result follows.

Here we provide a counter example to verify that a bi-commutative CA-AG-groupoid is not
necessarily a Stein AG-groupoid.

Example 10. Bi-commutative CA-AG-groupoid of order 4 presented in Table 13, is not a Stein AG-
groupoid as (1-1)1 # 1(1-1).

Table 13. Bi-commutative CA-AG-groupoid that is not Stein.

3 4

W W kA NN -
W W W W N

3 3
3 3
3 3
3 3

AW N =

Remark 1. Let S be a Stein AG-groupoid, then for all a,b,c € S, a(bc) = (bc)a = (ac)b = b(ac) =
a(bc) = b(ac). Thus, every Stein AG-groupoid is an AG**. It is also proved that “every AG** is Bol*
[17, Lemma 8] and that each Bol* is paramedial [17, Lemma 9]”. Hence every Stein AG-groupoid is
paramedial.

Example 11. In Table 9 of Example 6, represent a Stein AG-groupoid, which is not cyclic associative.
Table 14 represents an AG-band of order 4, which isnot CA as 1(2-1) # 1(1- 2).
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Table 14. AG-band that is not cyclic associative.

1 2 3 4
1 1 3 4 2
2 4 2 1 3
3 2 4 3 1
4 3 1 2 4

However, we have the following;

Theorem 12. A Stein AG-groupoid is CA if it is an AG-band.

Proof. Let S be a Stein AG-band and a, b, ¢ € S, then using the definition of a Stein AG-groupoid, the left
invertive law, definition of AG-band, Remark 1 and the medial law we have,

a(bc) = (bc)a = (ac)b = b(ac) = (bb)(ac)
= (cb)(ab) = (ab - b)c = c(ab -b) = c(bb - a)
= c(ba) = (cc)(ba) = (cb)(ca) = (ab)(cc)
= (ab)c = c(ab) = a(bc) = c(ab).
Equivalently, S is a CA-AG-groupoid.

However, a Stein CA-AG-groupoid is not necessarily an AG-band, as clear from the following
example.

Example 12. Table 15 represents a Stein CA-AG-groupoid of order 3. As 1.1 # 1, hence it is not an AG-
band.

Table 15. Stein AG-groupoid that is not AG-band.

—
—_ = N =
DN = N
N N = W

3

As every CA-AG-band is commutative semigroup [1, Theorem 2], thus the following corollary is
obvious.

Corollary 2. Every CA-AG-band is Stein AG-groupoid.

Now, we discuss role of the (left/right) identity in CA-AG-groupoids. As proved in [6, Theorem 2.3] that
“in AG-groupoids the right identity element is always a left identity, while left identity does not imply
right identity”. Here, we prove that in CA-AG-groupoid the phenomenon is somewhat different, and
prove that in CA a left identity becomes the identity, and in this case a CA-AG-groupoid becomes a
commutative semigroup.

Lemma 3. If a CA-AG-groupoid S contains the left identity, then it is also the right identity of S.

Proof. Let S be a CA-AG-groupoid with the left identity e. Then ae = e(ae) = e(ea) = ea = a. Hence
e is the right identity.

The following corollary is now obvious.

Corollary 3. In a CA-AG-groupoid S, the following results are equivalent.



334 Muhammad Igbal et al

(i) e is the left identity of S.
(i7) e is the right identity of S.
(iii) e is the identity of S.
(iv) S is a monoid.

(v) S is commutative.

We provide an example to verify that an AG-groupoid having a left identity is not necessarily a CA-AG-
groupoid. In other words, any AG-monoid is not a CA-AG-groupoid.

Example 13. Table 16, represents an AG-monoid of order 3. As a * (b * ¢) # ¢ * (a * b), hence it is not
a CA-AG-groupoid.

Table 16. AG-monoid that is not cyclic associative.

%

a
b

S Q Q
a Q T«
Q T"- a o

However, the following is obvious.

Corollary 4. Every monoid is CA-AG-groupoid.
It has been proved in [7] that locally associative AG-groupoids have associative powers. Here, we
characterize CA-AG-groupoid by the powers of its elements.
Lemma 4. In CA-AG-groupoid S, (ab)? = (ba)? Va,b € S.
Proof. Let S be a CA-AG-groupoid, then Va,b € S.
(ab)? = (ab)(ab) = (aa)(bb) = b(aa - b)
= b(b - aa) = b(a - ba) = (ba)(ba) = (ba)?.

As, by medial law in AG-groupoid S, forall a,b € S,
(ab)? = (ab)(ab) = (aa)(bb) = a®b>.
Thus by using this result and Lemma 4, we immediately have that squares of elements commute with
each other in CA.
Corollary 5. In CA-AG-groupoid S, a®?b? = b%a?,Va,b € S.
Lemma 5. Let S be a CA-AG-groupoid. Then if for all x in S there exist a in S such that (a) ax = x or
(b) xa = x, then
(i) ax? = x2
(i) x%a = x2
(iii) ax? = x?a.
Proof. (a). (i) By cyclic associativity and the given condition ax = x,

ax? = a(xx) = x(ax) = xx = x? = ax? = x2.
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(ii) By left invertive law and by the given condition

x%a = (xx)a = (ax)x = xx = x? = x%a = x2.
(iii) By (i) and (ii).
(b). (i) By cyclic associativity and given condition xa = x

2 = x2.

ax? = a(xx) = x(ax) = x(xa) = xx = x?> = ax
(ii) By left invertive law, given condition and cyclic associativity
x2a = (xx)a = (ax)x = (ax)(xa) = a(ax - x)
=x(a-ax) =x(x-aa) = x(a-xa) = x(ax)
= x(xa) = xx = x? = x%a = x2.
(iii) By (i) and (ii).

Now, we prove that the direct product of two CA-AG-groupoids with same binary operation is cyclic
associative and will generalize this idea to two CA-AG-groupoids having arbitrary binary operations.
Theorem 13. The direct product Sy X S, of two CA-AG-groupoids with same binary operation (Sy,") and
(S,,°) is a CA-AG-groupoid.

Proof. Let S| and S, be two CA-AG-groupoids with same binary operation “-”, then S; X S, is also an
AG-groupoid by [13]. To prove that S; X S, is CA, let (aq,b;), (az, by), (az, bz) € S; X S,, where
a4,0a,,a3 € Sy and by, by, b3 € S,. Then

(as, by) ((azjbz) (a3,b3)) = (a1, by) (azas, byb3)
= (a1 - azas, by - byb3) = (az - a;a,, bz - biby)
= (a3, b3)(a1az, b1by) = (az, b3)((a, b1) (az, by))
= (a1,b1)((az, b2) (as, b)) = (as, bz) ((ay, b1) (az, by)).

Hence the direct product of two CA-AG-groupoids is cyclic associative.

(1382

As proved in [17, Theorem 32] that the direct product of two cancellative AG-groupoids is cancellative.
Hence we have the following.

Corollary 6. The direct product S; X S, of two cancellative CA-AG-groupoids S; and S, is cancellative
CA-AG-groupoid.

Next, we generalize the idea of direct product of CA-AG-groupoids with same binary operation to two
arbitrary binary operations and prove that the direct product of any two CA-AG-groupoids is again a CA-
AG-groupoid.

Theorem 14. Let (S1,a,) and (Sy,a,) be two CA-AG-groupoids with a; binary operations defined on
each S; for i = 1,2. The direct product of S; and S, denoted by S = S; X S, = {(a,b)| a € S;,b € S,}
by component wise multiplication on S, then S becomes a CA-AG-groupoid.

Proof. As (51, ;) and (S,, a;) are CA-AG-groupoids with binary operations a; and a,. If a = (a4, by),
b = (a,,b,) € S; X S,, where ay,a, € S; and by, b, € S,, define * on S as follows; a * b = {(a ;1 a,,
bia,b;y)}. Clearly, a * b € S. Hence S is a groupoid.

To prove that S = §; X S, is an AG-groupoid, let ¢ = (asz, b3) € S; X S,, where a; € §; and b; € S,.
Then

(ax b)x c= ((ap by) (az:bz)) (as, b3)

= (aya1ay, by azb,) (as, bs)
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= ((mayaz)a;az, (byazby)azbs)
((azaiaz)aiaq, (bzazby)azb,)
(azaiay, bsazby) (ai,by)

= ((as, b3) (az bz)) (ai,by)
=>(ax b)xc = (c* b)* a.

Hence S is an AG-groupoid. Now to prove that S = §; X S, is CA, consider

a x(bx* c) = (a,b1) ((az bz) (as, bs))
= (a1, b1) (azaias, byazbs)
= (a1a1(aza1a3), byaz(byazbs))
= (aza1(a1a1a3), bzaz(biazby))
= (az, b3) (a1a1a;, byazb;)
= (as, b3) (a1, b1) (az, b7))
=2>ax(b*x c) = c* (ax b).

Hence S is a CA-AG-groupoid.

4. CONCLUSIONS

We

precisely discussed some fundamental characteristics of CA-AG-groupoids and established their

relations with some other subclasses of AG-groupoids and with semigroup, monoid etc. We used the
modern techniques of GAP, Prover-9 and Mace-4 to produce counterexamples and provide several other
examples to improve the standard of this research work.
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