
Research Article

Proceedings of the Pakistan Academy of Sciences: Pakistan Academy of Sciences
A. Physical and Computational Sciences 54 (1): 71–87 (2017)
Copyright © Pakistan Academy of Sciences
ISSN: 2518-4245 (print), 2518-4253 (online)

Risks Mitigation Practices for Multi-Sourcing Vendors in Green
Software Development

Muhammad Salam*, and Siffat Ullah Khan

Department of Computer Science and Information Technology,
University of Malakand, Dir (L), Pakistan

Abstract: Green and sustainable software development is the cry of the day and vendors are constantly
striving to develop such software that have less hazardous impact on environment, economy and
human beings. However developing green software in the context of software multi-sourcing is not a
risk free activity. Software development multi-sourcing vendor organizations have focused on the
adaptation of green practices in software development projects. In our previous study we have
identified eight critical risk factors (CRFs) via systematic literature review (SLR) process, in the
development of green and sustainable software. These CRFs are: ‘lack of green RE practices’, ‘high
power consumption’, ‘high carbon emission throughout the software development’, ‘poor software
design (architectural, logical, physical and user interface)’, ‘lack of ICTs for coordination and
communication’, ‘high resources requirements’, ‘lack of coding standards’, and ‘lack of green software
development knowledge’. The proactive management of the identified risks might allow software
development multi-sourcing vendor organizations to develop green and sustainable software
successfully. In this study we have presented the identified 76 practices for addressing the
aforementioned eight critical risk factors. The practices were extracted from sample of (N=102)
research papers via SLR process. We have validated the identified 76 solutions/practices from 108
relevant experts in software development multi-sourcing industry via questionnaire survey. The
findings of this study may help vendor organizations to address/mitigate the CRFs using the identified
solutions in order to develop green and sustainable software in multi-sourced software projects.

Keywords: Green software multi-sourcing, risk mitigation, solutions/practices, systematic literature
review (SLR), industrial survey

1. INRODUCATION

Green and sustainable software has been defined
in the literature [1, 2] as “the software, whose
direct and indirect negative impacts on economy,
society, human beings, and environment that result
from development, deployment, and usage of the
software are minimal and/or which has a positive
effect on sustainable development”. Where Green
and Sustainable Software Engineering is the art of
developing green and sustainable software
engineering process [3].

Currently much work has been done to obtain
green and sustainable software in general [2, 4-8].
The software which has a longer life time is
considered sustainable software. According to [9]
the term sustainable applies to both longer life and
greener aspects of software. Our aim in this study
is specifically focused on the development of

green and sustainable software in multi-sourced
software projects, which is explained in the
subsequent paragraphs.

In order to transfer the general concept of
sustainability into the computer systems (hardware
as well as software) the term ‘green computing’ or
‘sustainable computing’ or ‘green IT’ is used [10,
11]. Green computing can be defined as the
practice of maximizing the efficient use of
computing resources to minimize negative impact
on environment [12, 13]. In other words, green
computing or green IT is the study and practice of
designing, manufacturing, using and disposing of
computing resources efficiently and effectively
with minimal environment damages [14].

Lo and Qian [15] defined green computing as
“environmentally sustainable computing which
studies and practices virtually all computing

————————————————
Received, June 2016; Accepted, March 2017
*Corresponding author: Muhammad Salam; Email: msmdir@gmail.com

72 Muhammad Salam & Siffat Ullah Khan

efficiently and effectively with little or no impact
on the environment”. However, Tushi and Bonny
[16] defined green computing as “ the practice of
implementing policies and procedures that
improve the efficiency of computing resources in
such a way as to reduce the energy consumption
and environmental impact of their utilization”. The
goal of green IT is to yield as less possible waste
throughout the lifecycle of IT including
(development, operation and disposal) [17].

The best use of information and
communication technologies (ICTs) is to manage
enterprise activities in eco-friendly manner
comprising its product, services and resources
throughout their life. The principal objective of
green IT approach is to minimize the energy
consumption, uphold the operational costs and
minimize environmental impacts [16]. Though, it
is noteworthy that there are two aspects of Green
IT, primarily, IT can be the reason of ecological
problems, and otherwise it can be used to resolve
ecological problems [16, 18]. Literature [19]
reveals that the term ‘green IT’ and ‘green
computing’ are the same. Infrastructure plays an
important role in the development of software in
eco-friendly manner i.e. use meeting rooms with
natural lights, avoid the use of air-conditioners,
minimize the traveling and use modern ICT tools,
establish paperless offices, use the concept of
cloud computing in the software development
houses [6].

Till recently, the larger portion of the efforts
done in the era of ‘Green IT’ were linked to
hardware, concentrating mostly on improving the
hardware energy efficiency. Thus it is obvious that
research work needs to focus on the software as
well within green IT [10, 17]. The tendency has
been changed in the last few years, and research
on the new theme of green software is emerging.
In this study we have focused on the developmnt
of green software in multi-sourced software
projects.We have identified practices/solutions for
addressing the crtical risk factorsin order to
develop green and sustainable software in multi-
sourced projects.

Software outsourcing is the allocation of
software processes to external (offshore)
professionals in order to reduce cost, improve
quality, and minimize the development time [20,
21]. There are three components of outsourcing
i.e. client, vendor, and the project itself [22]. The
organization outsourcing the software processses

is referred to as the client, the organization that
develops the software and makes decisions is
called vendor, and the scope of the software
development work is captured in a project.Multi-
sourcing is a modern paradigm in outsourcing
which offers the benefits of using multiple vendors
for the development of software in a shorter time
span. In multi-sourcing, client(s) outsource their
software development work to multiple vendors.
Software development multi-sourcing is a modern
global software engineering paradigm for
developing high quality software at minimum cost
and time in low wages countries by contracting out
the software development work to multiple
vendors [23, 24].

Green methods and practices are getting
prominence in software development multi-
sourcing as well [25]. According to [26] software
development is a perilous process and is
vulnerable to risks from the initial phase till final
stage. A number of researchers have worked on
the identification and management of risks in the
software development in general [27-31]. A risk
has been defined in the literature as “a risk is a
potential future harm that may arise from some
present action” OR “Risk represents an
undesirable event or a negative outcome to the
expected result” [32]. Regardless of the
significance and importance of green software
development, little empirical research has been
conducted on the identification and management
of risk factors in the development of green and
sustainable software. This study focuses on
discovering solutions/practices for addressing
eight critical risk factors that affect green and
sustainable software development in multisourced
projects.

2. BACKGROUD OF STUDY

Penzenstadler et al. [33] conducted a systematic
mapping study to deliver an overview of the
present knowledge on sustainability and software
engineering. The authors of the study pointed out
that the topic of software engineering for
sustainability has acknowledged wide spread
attention in the community of software
engineering. Owing to the fact of being a
comparatively new research area, little empirical
research is available in practice on software
engineering and sustainability. The authors have
also highlighted that solutions/practices for green

 Risks Mitigation Practices for Multi-Sourcing Vendors 73

software development are still immature.
Penzenstadler’s findings propose that more
empirical results are needed on software
engineering for sustainability.

Becker et al. [34] have presented Karlskrona
Manifesto for sustainability design. The study
combines and enlarges the present understanding
of sustainability concerns inside the software
engineering (SE) community. The manifesto
reveals and levels out a number of communal
misinterpretations with respect to SE and
sustainability. The values of sustainability design
pretence new challenges to research on
sustainability and software engineering.

In the study conducted by Weyns et al. [35]
pointed out that integrating runtime adaptation and
evolution is vital for the sustainability of software
systems. This approach encompasses two
complementaries. The first component is AdEpS
model that defines the two combined processes to
handle change, concerning doubts: adaptation
management to preserve goals and evolution
management to deal with goal changes. The
second component is: three main engineering
standard to design software systems that follows
the AdEps model: design for meta-variability and
inconsistency, examining, and controlled change.
For each standard, the authors have showed new
ideas for understanding the level of constituent
models and languages.

Raturi et al. [36] have presented a
Sustainability Non-Functional Requirements
(SNFR) framework. The proposed framework can
assist the software requirements engineers to
classify and elicit sustainability requirements for
the system to be made. The authors outline a
roadmap which help the software requirement
engineers to implement the theoretical NFR
framework as quality factors.

Kern et al. [37] have focused on the green and
sustainable software engineering process.The
authors advised to have a close look at the
software products life cycle. The life cycle
contains three portions: (i) distribution and
development of the software products; (ii) the
usage phase (iii) disposal and deactivation of the
product. In order to create green and sustaianble
software, the developer should focus on the
processes during the software development life
cycle. Further, the authors have presented a model
(process model) for the orgnization and

development of green and sustainable software.
The authors recommended that sustainability
aspects should be considered in software
engineering processes

Bartenstein et al. [38] have introduced
‘GREEN STREAMS’ in order to address energy
efficiency of data-intensive software. GREEN
STREAMS deliver an effective and practical
approch to save the energy of data-intensive
software. The proposed programming
model/paradigm delivers appropriate language
abstractions for creating data-intensive software, it
also provides the perfect structure for efficient
energy management. As a future work, the authors
have planned to spread GREEN STREAMS to
upkeep dynamic flexibility.

Easterbrook [39] presented the role of
software researchers and practitioners in the
climate change. According to the author, climate
change is an importnat and urgent issue, and there
is need of mobilization and efforts in many
disciplines to address this problem. The author has
identified three main areas where work can be
done: software for understanding climate change;
software for supporting the global joint decision
making; and software that helps in reducing the
green house gas of current technology.

Moraga et al. [40] have focused on studying
measurement within the context of green software.
Nowadays individuals have such a standard of life
that puts the future generations resource at risk.
However, there is a rising awareness of this issue
in the civil societies. In the domain of software
engineering, one of the core drives for assessing
(measuring) has risen owing to the increasing
interests in this theme. The main objective of the
measurement is to improve the project, process or
the product itself. In this study the authors have
focused on the features allied to the product. The
authors have considered a set of 192 measures
recommended by different authors and have
chosen 74 measures relevent to the product
greenability (software greenability). They have
argued that these 74 measures can be classified as
regards the greenability.

Naumann et al. [41] have focused on the
meaning of sustainable software and sustainable
software engineering. Moreover, the authors
propose a model of sustainable software as well as
sustainable software engineering. Though, the
study delivers only a short overview of the model.

74 Muhammad Salam & Siffat Ullah Khan

The authors argued that software plays a key role
in the ICT sustainability, that is why, the authros
have considered particularly how to make software
engineering process and software product itself
more sustainable.

Lago [42] presented opportunities and
challenges for sustainable software development.
According to the author software play a key role in
supporting our society. Consequently,
environmental sustainability has become a major
factor in the operation and development of
software system. The author pointed out key areas
regarding green and sustaianble software
development. These includes: software energy
efficiency, green software, measuring software
energy consumption in practice, sustainable
architectural design, environmental-friendly and
cloud ready software.

Arakelyan et al. [43] have suggested design
choices that possibly improve appropriation of the
software and allows for the sequence to movement
efficiently from one phase to the other. The
authors intends to promote and improve the
proposed design choices as a future work by
performing a more detailed literature review along
with expert ratings.

A study was conducted by Beghoura et al. [44]
on measurement of the green software
requirements. The study recommends a clear
definition of green software requirements. The
authors proposed an approach to launch an energy
profiling tool to find the energy consuming lots of
code. The recommended assessment tool defines
the green efficiency by seeing the energy
consumption as the key feature to be considered
throughout the development phase.

Ignacio et al. [45] have worked and
emphasized on green software maintenance and
have attempted to predict a definition and possible
practices for green software maintenance.

Betz et al. [46] have worked on sustainable
software system engineering. They argue that
sustainability management is one of the key issue
of present that is why public and private
administrations are keen interested in the
“sustainable” practices and solutions. The study
further pointed out that, there is a dearth of
existing practices and solutions for sustainable
development. For this purpose the authors
proposed a conceptual model in order to
incorporate sustainability features in a business

development. Moreover, the study proposed that,
to incorporate sustainability traits in the domain of
software engineering, sustainability requirements
should be measured throughout the software
development life cycle.

Hayri et al. [47] have worked on the energy
measurement of software at runtime and identified
that ICTs are liable for nearby 2% of the global
greenhouse gas productions. Further, the usage of
mobile devices is repeatedly increasing. Because
of the Internet and the cloud computing,
consumers are using ever more software
applications which producing more greenhouse
gas. Therefore, a significant question is "in what
ways can we decrease or limit the energy intake
connected to ICTs and, in specific, connected to
software?". Most of the suggested solutions
focused only on the hardware aspect, though in
recent years the software facets have also become
significant.

Li et al. [48] have worked on green software
from the business requirements point of view. The
authors have pointed out that research on the new
theme of green software is still at nascent stage.
Initial research issues, problems, and
methodological practices have been suggested;
however widespread acceptance of green software
is not yet fully implemented.

Rahma et al. [49] have focused on the
development of a generic sustainable software
model. The authors argue that sustainability is
becoming an interesting topic in the domain of
software engineering. In order to cover the
different dimensions of sustainability, the authors
projected a Generic Sustainable Software Star
Model (GS3M). The proposed model covers a
“complete” outlook of sustainable software. The
different dimensions that the proposed model
covers are: social, individual, environmental,
economic, and technical. The authors have defined
corresponding values for each sustainability
dimension. The proposed model can be used to
assess software projects sustainability.

Penzenstadler et al. [50] worked on green
requirements engineering. The authors argue that
ecological sustainability can be implemented to
software systems in two ways, either as green
through software systems green in software systems.
The study demonstrates a checklist based method
that determines how to incorporate the aim of
ecological sustainability from the very first stages.

 Risks Mitigation Practices for Multi-Sourcing Vendors 75

The explanation is exemplified by a case study on a
sharing car system.

Kim et al. [51] worked on architectural
sustainability with respect to non-functional
requirements and have discussed that sustainability
of software designs has gained more consideration to
deal with the factors affecting architectural
modifications (changes), for example, requirements
modifications, technical changes, and modifications
in business approaches and objectives. However, it is
argued that there is a limited work done on
architectural sustainability. In their study, the authors
presented a new method for dealing with
architectural sustainability (with respect to non-
functional requirements changes) through defensive
architectural designs erected upon the joined use of
architectural designs and architectural strategies.

Jetley et al. [52] have pointed that software
industry needs to integrate the premium practices of
software engineering in their software application
development procedure to optimize quality and cost.
Though, this needs the factual set of methodologies
and tools that satisfies the requirements of the
software industry. Whereas, there have been a
limited up-to-date software engineering
methodologies, tools and techniques. The authors of
tha aforementioned study have highlighted some
challenges faced by the software industry while
implementing software engineering
methodologies/practices in the application
development. Moreover, the study emphasized that
there is a need for further research and efforts which
support the adaptation of software engineering and
methodologies and principles in the software
industry.

Dick et al. [53] have worked on the green
software engineering with agile methods. The
authors have proposed a model that mixes green
computing features into software engineering
procedures with agile methods to deliver green
and sustainable software.

Ardito et al. [54] have conducted a survey on
presented guidelines and data for reducing energy
intake of the information system i.e. the authors
have provided various energy efficiency
guidelines including: infrastructure, application,
operating system, hardware, and network.

Lami et al. [55] have worked on sustainability
from a software process viewpoint. The authors
argued that ICTs considerably contributes to the
production of global carbon dioxide. The same
researchers have discussed this problem from
different perspectives. In this way, they have

addressed the software sustainability from a
process centric perspective. For this purpose they
defined set of procedures that denote the
activities/actions to be executed to introduce and
incorporate the culture of green software
development in the organization.

Yuzhong et al. [56] have explored the
challenges to software (system software) in data
centers. The authors have summarized certain
tendencies that affect the data centers efficiency.
Moreover, they investigated the reasons of
inefficiency of the software system. They
discussed and presented the four key challenges of
building energy efficient software system: (a)
programming difficulty (b) extreme scalability (c)
energy efficiency of the software (d) adaptation to
soft architecture. The authors have also
recommended some basic practices for addressing
the identified aforementioned challenges.

The aforementioned studies have described a
number of issues in green software development in
general context. However there is a lack of well-
defined solutions for addressing the critical risks
in developing green and sustainable software in
the context of multi-sourncing. In this paper,we
have reported the identification of state-of-the-art
practices/solutions for addressing eight critical risk
factors in the development of green and
sustainable software in multi-sourced projects.

3. RESEARCH METHODLOGY

We have used two research methodologies i.e.
Systematic Literature Review (SLR) and Industrial
Survey. For identification of solutions/ practices,
we followed the systematic literature review
guidelines recommended by Kitchenham [57].
Consequently, we presented the core phases of our
review protocol i.e. planning, conducting, and
reporting, whereas industrial survey has been
conducted, in software multi-sourcing industry, for
validation of the SLR findings and to find any new
solution/practice apart from the SLR findings, if
any.

3.1 Planning the Review

3.1.1. Research Questions and Research
Objectives

The core objective of this resarch study is to find
out state-of-the-art practices for addressing critical
risk factors in the development of green and

76 Muhammad Salam & Siffat Ullah Khan

sustaianble software in multi-sourecd software
projects. To achive this goal, we outlined the
following research questions (RQs):

RQ1: What are the practices/solutions (as
identified in the literature) for mitigating the
identified risk factors in the development of green
and sustainable software?

RQ2: What are the practices/solutions (as
identified in in real-world practice), for mitigating
the identified risk factors in the development of
green and sustainable software?

3.1.2. Search Strategy

To carry out this study we followed the procedures
provided by Kitchenham [57, 58]. After the
finalization of research objectives and research
question, we defined a comprehensive search
strategy to examine possible available empirical
studiesaccording to the aims of this systematic
review. We also finalized the online search venues
for the execution of our search string. The list of
online digital libraries is presented as follow:
(a) Science Direct http://www.sciencedirect.com/
(b) ACM http://dl.acm.org/
(c) IEEE Xplore http://ieeexplore.ieee.org/
(d) Springer Link http://link.springer.com/
(e) Google Scholar https://scholar.google.com.pk/

3.1.3. Search String

We have designed the following two search strings
for searching our selected online digital
libraries.We derived the search strings from our
formulated research question presented in section
3.1.1.

λ1:("Green software" OR "sustainable
software") AND ("practices" OR "solutions" OR
"techniques") AND ("multi-sourcing")

λ2: Green software" OR "sustainable
software") AND ("practices" OR "solutions" OR
"techniques")

Where λ1denotes search stringto retrieve
empirical studies regarding the practices for the
development of green software multi-sourced
software projects, while λ2 denotes search string
to retrieve empirical studies regarding the
practices for the development of green software in
general context. The results of search string (λ1)
were very poor and almost negligible.
Consequently we decided to implement search
string λ2 after detaileddiscussions with experts of

the software engineering research group (SERG-
UOM) at the university, to implement search
string λ2. The search results of λ2 are showed in
Table 1. The practices, identified through the SLR
(using search string λ2), will be validated through
empirical studies in multi-sourcing software
industry to know whether these findings are
applicable specifically, or can be adopted, in
software multi-sourcing environment. The same
approach for verifying the SLR findings via
empirical study has been used by other researchers
as well [59]. Moreover,limited numbers of
empirical research studies have been conducted in
the context of global software development in
general and software multi-sourcing in particular
[60].

3.2 Conducting the Review

In this section, we have presented the outcomes of
the implementation of our finalized search string
(λ2) retrieved form the selected digital libraries.
The selected online venues were searched using
search string (λ2) and considerable amount of
studies were retrieved. The search results are
presented in Table 1.

3.2.1. Study Selection

In the first phase of papers selection we selected
papers on the basis of titles and abstracts that were
relevant to our research question.The included and
excluded papers in the first phase are shown in
Table 1. In the second phase of publication
selection we studied the full text of the primary
selected papers and excluded irrelevant papers
from the primary list. As a result, we got 44
relevant papers. Finally we merged the papers of
previous SLR [61]with finally selected 44 papers
and got a list of (N=102) papers.

3.2.2. Data Extraction

We followed the guidelines provided by
Kitchenham [57] and successfully extracted 76
pratices/solutions for identified 08 risk factors
from (N=102) research papers.

3.2.3. Data Synthesis

At the end of the data extraction phase we got a
list of 161solutions/practices initially. After
detailed analysis of the identified 161 practices we
classified 76 practices for critical risk factors from
the sample of 102 papers. These identified 76

 Risks Mitigation Practices for Multi-Sourcing Vendors 77

Table 1. Search string (λ2) results.

S. No. Data sources Retrieved Phase 1 Phase 2

Included Excluded Included Excluded

1 Google Scholar 429 47 382 19 28

2 ACM 164 29 135 12 17

3 IEEE Xplore 114 20 94 04 16

4 Springer Link 149 23 126 06 17

5 Science Direct 16 04 12 03 01

6 Total 872 123 749 44 79

Table 2. Summary of software development companies and multi-sourcing professionals groups.

S. No. Name of Software Development companies/IT Board Date of request

1 Pakistan Software Export Board November 2015

2 Khyber Pakhtunkhwa Information Technology Board November 2015

3 Punjab IT Board November 2015

4 NetSol Technologies November 2015

5 System Pvt Ltd November 2015

6 NextBridge, Islamabad November 2015

7 IT Intellisense Peshawar, Pakistan November 2015

8 Xeeonix Pvt Ltd November 2015

9 parexons IT Solution November 2015

10 Innovathings Pvt Ltd November 2015

11 Relevant Professional Groups on Social networks November 2015

Table 3. List of critical risk factors.

S. No. Risk Factors Frequency % Practices

01 Lack of green RE practices 38 70 12

02 High power consumption (process, resources and the product itself) 37 68 16

03 High carbon emission throughout the software development 33 61 09

04 Poor software design (architectural, logical, physical and user
interface)

32 59 11

05 Lack of ICTs for coordination and communication 30 55 07

06 High resources requirements 27 50 09

07 Lack of coding standards 22 40 10

08 Lack of green software development knowledge 19 35 02

78 Muhammad Salam & Siffat Ullah Khan

practices are presented in the section 5 of this
study.

4. CONDUCATION OF INDUSTRIAL
SURVEY

As discussed in Section 3, that we initially
conducted SLR and have identified 76
solutions/practices for addressing the critical risk
factors in the development of green and
sustainable software in the context of multi-
sourcing. In order to address RQ2, we conducted
questionnaire survey in software multi-sourcing
industry to validate the findings of the SLR
(identified solutions/practices) and to find any new
solution/practice in addition to the SLR findings.
We developed the questionnaire based on the
inputs from the systematic literature review (SLR)
findings i.e. identified solutions/practices. The
piloting of the questionnaire was conducted
through fellow members of the software
engineering research group (SERG-UOM) and
required modifications were made to the
questionnaire accordingly. Throughout the
questionnaire development process, we considered
the input/feedback of fellow researchers and
existing literature [62-64] .There are two main
types of questionnaire format: Open format
questionnaire and closed format questionnaire
[65]. We have chosen a closed format
questionnaire as a tool to gather self-reported data.
However, in order to identify new factors from
software multi-sourcing industry professionals in
addition to the SLR findings, we also included
some open ended questions in the questionnaire. In
order to define the significance of identified
solutions/practices, the respondents were inquired

to note each practice’s relative value on a 7-point
Likert Scale (i.e. Extremely Satisfied, Moderately
Satisfied, Slightly Satisfied, Neither, Slightly
Dissatisfied, Moderately Dissatisfied, Strongly
Dissatisfied). We have used three distinct format
of the questionnaire for its distribution across the
target population. These include online version,
MS Word format (soft), and printed copy (hard
copy). However mainly we have used the online
survey because of many advantages of online
survey over the traditional survey methods as
discussed in [66]. Keeping in view all of the
mentioned advantages [66] of online survey, we
decided to go for online survey mostly. We have
used Google survey tool in this research study.

4.1. Data Sources

In order to approach the target population, we sent
an invitation letter for consent to various
professionals/groups and software development
companies as shown in Table 2. Apart from this
we also invited various software companies and
authors of industry papers to take part in the
questionnaire survey. A total of 160 professionals
from these mentioned groups showed their
willingness in response to the invitation.
Consequently we sent the questionnaire form (web
link) to the experts. Finally we received 120
responses (filled questionnaires). After the
filtration of 120 questionnaires through pre-
defined quality criteria, 12 questionnaires/
responses were discarded and finally got 108
questionnaires as our final sample size with the
response rate of 68% as shown in Figure 1.
Among the final 108 respondents 62 were from the
vicinity whereas 46 experts were from offshore
countries.

 Fig. 1. Survey response rate.

 Risks Mitigation Practices for Multi-Sourcing Vendors 79

4.2. Data Analysis

In order to analyse the collected data we have used
frequency analysis, as it is suitable method for the
management of qualitative data [67]. To find the
occurrences of each solution/practice, we have
used frequency as shown in Table 8 to Table 14.
Frequencies can be used for numeric as well as
ordinal/nominal data and are useful for comparing
across group of variables or within groups of
variables. Each solution/practice is analysed by
counting its existence in the filled questionnaires.
The relative significance of each solution/practice
is identified by comparing the existences of one
solution/practice against another solution/practice
in the development of green and sustainable
software in multi-sourced software projects.

5. RESULTS AND DISCUSSION

In this section we have presented the identified 76

practices/solutions for the eight critical risk factors
(CRFs). These CRFs are presented in Table 3,
while the practices for addressing these CRFs are
presented in Table 4 to Table 11.

5.1. Practices for addressing CRF-1: ‘Lack of
green RE practices’

The data presented in Table 3 indicate that ‘lack of
green RE practices’ is the first CRF (70%) in our
findings. We have identified 12 solutions for
addressing ‘Lack of green RE practices’ through
SLR process initially. We have validated the
identified solutions/practices from 108 experts in
software development multi-sourcing industry via
questionnaire survey as shown in Table 4.

5.2. Practices for Addressing CRF-2: ‘High
Power Consumption’

The data presented in Table 3 indicates that ‘lack
of green RE practices’ is the 2nd CRF (68%) in our

Table 4. Practices for addressing ‘Lack of green RE practices’.

S. No. Solutions/practices for addressing the Critical Risk factor
(CRF-1): ‘Lack of green RE practices’

SLR
%

Industrial Survey
Extremely
Satisfied %

CRF1-P-1 In order to meet the customer requirements green gap analysis
tool should be used.

11 34%

CRF2-P-2 Define the Shelf life for the Software to be built keeping in
view the current and future needs.

02 36%

CRF3-P-3 Update the members of the development team with current
market trends.

01 37%

CRF4-P-4 The hardware requirements are chosen such that they should
meet the requirements of the software.

01 43%

CRF5-P-5 Prepare proper documentation throughout the software
development.

03 42%

CRF6-P-6 Identify functional and non-functional requirements. 03 47%

CRF7-P-7 Use of environment friendly hardware during the software
development

01 39%

CRF8-P-8 Use of cloud infrastructure during requirement engineering
phase.

01 41%

CRF9-P-9 In case of using cloud by client, vendors should ask from the
client during the RE phase about the type of cloud (public,
private, hybrid) to be adopted keeping in view the security
issues.

04 43%

CRF10-P-10 Hold virtual meeting (online/video conferencing) with offshore
workers and customers.

01 39%

CRF11-P-11 Involve end user throughout the requirements gathering and
design.

01 45%

CRF12-P-12 Adopt the concept of green requirements engineering. 01 41%

80 Muhammad Salam & Siffat Ullah Khan

Table 5. Practices for addressing ‘High power consumption’.

S. No. Solutions/practices for addressing the Critical Risk factor (CRF-2):
‘High power consumption’

SLR
%

Industrial
Survey
Extremely
Satisfied %

CRF2-P-1 Install power management software to keep the computing devices on sleep
mode when idle such as Joulemeter, vEC, Span etc.

12 43%

CRF2-P-2 Use LCD screen instead of CRT screen to save considerable amount of
energy.

04 44%

CRF2-P-3 Use energy efficient programming paradigm. 03 43%

CRF2-P-4 Install latest computing equipment, if the budget permits. 02 42%

CRF2-P-5 Extend the shelf life of hardware through continuous upgradation. 02 29%

CRF2-P-6 Use of clean energy/green energy sources such as solar power. 04 38%

CRF2-P-7 Arrange online regular meetings throughout the software development in
order to minimize travelling between the sites.

03 42%

CRF2-P-8 Use of cloud computing. 05 46%

CRF2-P-9 Use the concept of virtualization. 03 40%

CRF2-P-10 Use of green compiler. 01 30%

CRF2-P-11 The use of power estimation tools. 10 31%

CRF2-P-12 Avoid the use of ad-blocking software which consumes more energy. 01 29%

CRF2-P-13 Keep minimum possible data on webpage. 02 32%

CRF2-P-14 The use of appropriate user devices for online reading such as e-Reader. 01 24%

CRF2-P-15 The use of code optimization techniques and data compressions strategies. 03 33%

CRF2-P-16 Use paperless communication and switch off the computing devices manually
when not under usage.

04 37%

Table 6. Practices for addressing ‘High carbon emission throughout the software development’.

S. No. Solutions/practices for addressing the Critical Risk factor (CRF-3): ‘High
carbon emission throughout the software development’

SLR
%

Industrial
Survey
Extremely
Satisfied %

CRF3-P-1 Use of carbon assessments tools throughout the software development such as
CF metric.

07 33%

CRF3-P-2 Arrange online regular meetings throughout the software development in order
to minimize travelling between the sites.

04 37%

CRF3-P-3 Use of carbon free energy/green energy sources such as solar power. 04 32%

CRF3-P-4 Use sensors and power management software 01 31%

CRF3-P-5 Use of green policies and framework such as code optimization. 05 33%

CRF3-P-6 Use low-powered and green labels hardware for software development. 03 33%

CRF3-P-7 Use of virtualization leads to lower carbon emission. 04 35%

CRF3-P-8 Use of cloud computing. 06 41%

CRF3-P-9 Use electronic mode of communication during the software development. 02 40%

 Risks Mitigation Practices for Multi-Sourcing Vendors 81

findings. We have identified 16 solutions for
addressing ‘High power consumption’ through
SLR process initially. We have validated the
identified solutions/practices from 108 experts in
software development multi-sourcing industry via
questionnaire survey as shown in Table 5.

5.3. Practices for Addressing CRF-2: ‘High
Carbon Emission throughout Software
Development’

The data presented in Table 3 indicates that ‘High
carbon emission throughout the software
development’ is the 3rd CRF (61%) in our findings.
We have identified 09 solutions for addressing
‘High carbon emission throughout the software
development’ through SLR process initially. We
have validated the identified solutions/practices
from 108 experts in software development multi-
sourcing industry via questionnaire survey as
shown in Table 6.

5.4. Practices for Addressing CRF-2: ‘Poor
Software Design (Architectural, Logical,
Physical and User Interface)’

The data in Table 3 indicates that ‘High carbon
emission throughout the software development’ is
the4th CRF (59%) in our findings. We have
identified 11 solutions for addressing ‘Poor
software design (architectural, logical, physical
and user interface)’ through SLR process initially.
We have validated the identified
solutions/practices from 108 experts in software
development multi-sourcing industry via
questionnaire survey as shown in Table 7.

5.5. Practices for Addressing CRF-2: ‘Lack of
ICTs for Coordination and
Communication’

The data in Table 3 indicates that ‘Lack of ICTs
for coordination and communication’’ is the 5th

CRF (55%) in our findings. We have identified 07
solutions for addressing ‘Lack of ICTs for
coordination and communication’ through SLR
process initially. We have validated the identified
solutions/practices from 108 experts in software
development multi-sourcing industry via
questionnaire survey as shown in Table 8.

5.6. Practices for Addressing CRF-6: ‘High
Resources Requirements’

The data in Table 3 indicates that ‘High resources
requirements’ is the 6th CRF (50%) in our

findings. We have identified 09 solutions for
addressing ‘High resources requirements’ through
SLR process initially. We have validated the
identified solutions/practices from 108 experts in
software development multi-sourcing industry via
questionnaire survey as shown in Table 9.

5.7. Practices for Addressing CRF-7: ‘Lack of
Coding Standards’

The data in Table 3 indicates that ‘Lack of coding
standards’ is the 7th CRF (40%) in our findings.
We have identified 10 solutions for addressing
‘Lack of coding standards’ through SLR process
initially. We have validated the identified
solutions/practices from 108 experts in software
development multi-sourcing industry via
questionnaire survey as shown in Table 10.

5.8. Practices for Addressing CRF-8: ‘Lack of
Green Software Development Knowledge’

The data in Table 3 indicates that ‘Lack of green
software development knowledge’ is the 8th CRF
(35%) in our findings. We have identified 02
solutions for addressing ‘Lack of green software
development knowledge’ through SLR process
initially. We have validated the identified
solutions/practices from 108 experts in software
development multi-sourcing industry via
questionnaire survey as shown in Table 11.

6. LIMITATIONS

In this study we have identified and presented 81
practices/solutions for addressing eight critical risk
factors (CRFs) in the development of green
software. We have extracted these practices from a
sample of (N=102) research papers successfully.
However, there are some limitations that need to
be documented in this study.

The first limitation is that, some of the authors
of selected papers have not reported the original
reasons why these practices were considered for
green software development. We cannot overcome
this threat on our own.

Similarly, another possible threat to validity is
that, most of the selected studies were self-reported
experiences, case studies, and empirical studies
which might be the cause of publication bias.

The third limitation is small sample size of the
study. We have selected 102 research papers for
data extraction, representing large community of

82 Muhammad Salam & Siffat Ullah Khan

Table 7. Practices for addressing ‘Poor software design (architectural, logical, physical and user
interface).

S.No Solutions/practices for addressing the Critical Risk factor (CRF-4): ‘Poor
software design (architectural, logical, physical and user interface)’

SLR
%

Industrial
Survey
Extremely
Satisfied

CRF1-P-1 Use simple and reusable design 17 45%

CRF4-P-2 Use of energy metrics as a tool to predict the energy consumption in segments at
the design stage.

16 25%

CRF4-P-3 Use of agile methods for efficient design and smart coding 16 33%

CRF4-P-4 Support the system architecture through
i. Compact design of data structures and efficient algorithms
ii. Design smart and efficient functionality that results in an efficient

algorithm and fewer lines of code during implementation
iii. Components should be reused if possible

16 34%

CRF4-P-5 The design should be flexible to accommodate the future changes easily. 16 34%

CRF4-P-6 Adopt ISO 14000 family of standards related to environmental management
which assists the vendor organizations to minimize how their operations
negatively affect regarding recyclability or disposal.

16 23%

CRF4-P-7 Use of efficient algorithm to reduce complexity and energy consumption. e.g.
encryption algorithm such as Advanced Encryption Standard (AES) consumes
less energy than Data Encryption Standard (DES).

05 31%

CRF4-P-8 Avoid repetitive change in design 01 36%

CRF4-P-9 Use of modularization strategies. 10 35%

CRF4-P-10 Use of low level programming languages and avoid use of byte code. 10 27%

CRF4-P-11 Improve usability of the user interface of the software by using simple interface. 03 45%

Table 8. Practices for addressing ‘Lack of ICTs for coordination and communication’.

S. No. Solutions/practices for addressing the Critical Risk factor (CRF-5): ‘Lack of
ICTs for coordination and communication’

SLR
%

Industrial
Survey
Extremely
Satisfied

CRF5-P-1 Use latest ICTs for communication such as email, Skype, Viber, IMO etc. 05 57%

CRF5-P-2 Prepare and maintain the software documents in electronic format (E-format). 05 47%

CRF5-P-3 Avoid frequent visits instead use modern communication tools. 01 35%

CRF5-P-4 Use of video conferencing for meetings with other co-workers during the software
development.

06 40%

CRF5-P-5 The use of E-reading devices such as e-Reader. 01

CRF5-P-6 Perform data management, data transmission, and data compilation in green and
sustainable fashion.

02 32%

CRF5-P-7 Establish paperless offices. 01 35%

 Risks Mitigation Practices for Multi-Sourcing Vendors 83

green software. A higher sample size could deliver
more accurate and robust results.

Similarly, another limitation of the study is:
we have designed the following two search strings
as shown below.

λ1: ("Green software" OR "sustainable
software") AND ("practices" OR "solutions" OR
"techniques") AND ("multi-sourcing")

λ2: Green software" OR "sustainable
software") AND ("practices" OR "solutions" OR
"techniques")

Where λ1 denotes search string to retrieve
empirical studies regarding the practices for the
development of green software multi-sourced
software projects, while λ2 denotes search string
to retrieve empirical studies regarding the
practices for the development of green software in
general context. The results of search string (λ1)
were very poor and almost negligible.
Consequently we decided, to implement search
string λ2 after detailed discussions with experts of
the software engineering research group
(SERG_UOM) at the university, to implement
search string λ2. The practices, identified through
the SLR (using search string λ2), have been
validated through empirical studies in multi-
sourcing software industry via questionnaire
survey. Lastly, our search strategy may have
missed out some relevant papers which are not a
systematic omission.

Secondly, we have conducted online
questionnaire survey in the software development
multi-sourcing industry to validate the findings of
the SLR and to find any new solution/practice
apart from the identified ones. Finally we got 108
questionnaires as the final sample with response
rate of 68%. Among the final 108 respondents 62
were from the vicinity whereas 46 experts were
from offshore countries. It would be better if we
should have involved more offshore professionals
instead of the local professionals but it was not
possible due to limited resources and time at this
stage. Due to limited number of responses from
foreign experts, one should be careful while
generalizing the results.

7. CONCLUSIONS

In this study we have presented the identified 76
practices/solutions for addressing the
aforementioned eight critical risk factors (CRFs).

The solutions/practices are extracted from sample
of (N=102) research papers via SLR process. We
have validated the identified solutions/practices
from 108 experts in the software development
multi-sourcing industry. The findings of this study
can help vendor organizations to address the CRFs
and to evaluate their readiness for the development
of green and sustainable software in multi-sourced
projects.

For CRF-1: ‘Lack of green RE practices’ we
have identified 12 practices as presented in Table
4, for CRF-2: ‘High power consumption’ we have
identified 16 practices as shown in Table 5, for
CRF-3: ‘High carbon emission throughout the
software development’ for this factors we
identified 09 practices as presented in Table 6, for
CRF-4: ‘Poor software design (architectural,
logical, physical and user interface)’, we have
identified 11 practices as shown in Table 7, for
CRF-5: ‘Lack of ICTs for coordination and
communication’ we have identified 07 practices as
presented in Table 8, for CRF-6: ‘High resources
requirements’, we have identified 09 practices as
shown in Table 9, and for CRF-7:‘Lack of coding
standards’, we have identified 10
practices/solutions as presented in Table 10 and
for CRF-8: ‘Lack of green software development
knowledge’, 02 solutions/practices have been
identified as shown in Table 11.

We have validated the identified 76
practices/solutions from 108 experts in software
development multi-sourcing industry via
questionnaire survey. The findings of this study
help vendor organizations to address the CRFs in
order to evaluate their readiness for the
development of green and sustainable software in
multi-sourced software projects.

However, we recommend more empirical
studies on green and sustainable software
development specific in the context of software
development multi-sourcing. This will increase
confidence in our findings and will support
software development multi-sourcing vendor
organizations to develop green software in multi-
soured projects.

The eventual goal of this study is to develop
‘Green Software Multi-Sourcing Readiness
Model’ from vendor’s perspective that will assist
software multi-sourcing vendor organizations in
developing green and sustainable software in
multi-sourced projects. This paper contributes only

84 Muhammad Salam & Siffat Ullah Khan

Table 9. Practices for addressing ‘High resources requirements’.

S. No. Solutions/practices for addressing the Critical Risk factor (CRF-6): ‘High
resources requirements’

SLR
%

Industrial
Survey
Extremely
Satisfied

CRF6-P-1 Deploy virtualization of server resources. 06 38%

CRF6-P-2 Utilize cloud services for both software and hardware. 04 37%

CRF6-P-3 Use of resource saving default configurations. 02 31%

CRF6-P-4 Sustainable use of the resources. 03 41%

CRF6-P-5 Use the concept of power aware computing. 02 38%

CRF6-P-6 Use of energy efficient/green resources. 01 44%

CRF6-P-7 Deploy mechanism for measurement of the energy consumed by the nodes. 01 32%

CRF6-P-8 Use of software engineering standards during the software development such as
CMMI etc.

01 43%

CRF6-P-9 Save resources through the use of teleconferencing, e-Reader device, paperless
communication, and use of power-saving devices.

05 40%

Table 10. Practices for addressing ‘Lack of coding standards’.

S. No. Solutions/practices for addressing the Critical Risk factor (CRF-7): ‘Lack
of coding standards’

SLR
%

Industrial
Survey
Extremely
Satisfied

CRF7-P-1 Follow professional coding conventions while programming in order to improve
the software maintainability.

02 35%

CRF7-P-2 Use of efficient software techniques in coding. i.e. multi-threading,
vectorization.

05 40%

CRF7-P-3 Avoid hardware-specific Programming Interface (API’s). 01 26%

CRF7-P-4 Avoid using ad-hoc programming approach. 04 23%

CRF7-P-5 Avoid bad smells in coding such as duplicate code, long methods, data clumps,
and shotgun surgery etc.

04 33%

CRF7-P-6 Use of automated tools such as automatic code generation tools and automatic
code review tools.

02 33%

CRF7-P-7 Establish energy efficient coding by writing clean code, documenting code, less
number of code and use of pair-programming.

10 30%

CRF7-P-8 Use of modularization strategies. 10 35%

CRF7-P-9 Use of energy aware compilers to analyse software programs at run time and
reshape software source code by applying several green aspects during code
transformation.

10 25%

CRF7-P-10 Use of low level programming languages and avoid use of byte code. 10 27%

Table 11. Practices for addressing ‘Lack of green software development knowledge’.

S. No. Solutions/practices for addressing the Critical Risk factor (CRF-8): ‘Lack of
green software development knowledge’

SLR
%

Industrial
Survey
Extremely
Satisfied

CRF8-P-1 Arrange special training for the development teams regarding green and sustainable
software development.

03 42%

CRF8-P-2 Update the members of the development team with current market trends. 01 37%

 Risks Mitigation Practices for Multi-Sourcing Vendors 85

one component to our proposed model [24]. We
have adopted a similar research design in our
previous work [68, 69].

8. REFERENCES

1. Dick, M., S. Naumann. & N. Kuhn. A model and
selected instances of green and sustainable
software. In: What Kind of Information Society?
Governance, Virtuality, Surveillance, Sustain-
ability Resilience. Springer, p. 248-259 (2010).

2. Naumann, S., M. Dick, E. Kern., & T. Johann. The
GREENSOFT Model: A reference model for green
and sustainable software and its engineering.
Sustainable Computing: Informatics and Systems
1: 294-304 (2011).

3. Mahmoud, S.S., & I. Ahmad. A green model for
sustainable software engineering. International
Journal of Software Engineering and Its
Applications 7: 55-74 (2013).

4. Naumann, S., E. Kern & M. Dick. Classifying
green software engineering - The GREENSOFT
model. In: Proceedings of the 2nd Workshop
Energy Aware Software-Engineering and
Development (EASED@ BUIS) 4:13-14 (2013).

5. Singh., V. Kumar, & D. Vander Meer. Estimating
the energy consumption of executing software
processes. In: Green Computing and
Communications (GreenCom), 2013 IEEE and
Internet of Things (iThings/CPSCom), IEEE
International Conference on and IEEE Cyber,
Physical and Social Computing, p. 94-101 (2013).

6. Shenoy, S. Sanath, & R. Eeratta. Green software
development model: An approach towards
sustainable software development. In: Annual
IEEE India Conference (INDICON), p. 1-6 (2011).

7. Sissa, G. Green software. UPGRADE. The
European Journal for the Informatics Professional
11: 53-63 (2010).

8. Lago, P., R.Kazman, N. Meyer, M. Morisio., H. A.
Müller, & F. Paulisch. Exploring initial challenges
for green software engineering: Summary of the
first GREENS workshop, at ICSE 2012. ACM
SIGSOFT Software Engineering Notes 38: 31-33
(2013).

9. Ray, S. Green software engineering process:
moving towards sustainable software product
design. Journal of Global Research in Computer
Science 4: 25-29 (2013).

10. Calero, C. & M. Piattini. Green in Software
Engineering. Springer (2015).

11. Samiksha, R.S. & M. Chavan. Green Computing:
An essential trend for secure future. In:
Proceedings of National Conference on Emerging
Trends: Innovations and Challenges in IT, p. 19:
20 (2013).

12. Cai, Y. Integrating sustainability into
undergraduate computing education. In:

Proceedings of 41st ACM Technical Symposium on
Computer Science Education, Wisconsin, USA, p.
524-528 (2010).

13. Harmon R. R., & N. Auseklis. Sustainable IT
services: Assessing the impact of green computing
practices. In: International Conference on
Management of Engineering & Technology,
PICMET, Portland, p.1707 - 1717 (2009).

14. Cai, S., X. Chen, & I. Bose. Exploring the role of IT
for environmental sustainability in China: An
empirical analysis. International Journal of
Production Economics 146: 491-500 (2013).

15. Lo, C.T.D., & K. Qian. Green computing methodology
for next generation computing scientists. In: IEEE
34th Annual Computer Software and Applications
Conference (COMPSAC) 250-251 (2010).

16. Tushi, B.T. An Archival Analysis of Green
Information Technology: The Current State and
Future Directions. Doctoral dissertation,
Queensland University of Technology,
Queensland, Australia (2015).

17. Erdelyi, K. Special factors of development of green
software supporting eco sustainability. In:
Intelligent Systems and Informatics (SISY), IEEE
11th International Symposium, Subotica, p. 337-
340 (2013).

18. Harmon, R., H. Demirkan, N. Auseklis, & M.
Reinoso. From green computing to sustainable IT:
developing a sustainable service orientation. In:
System Sciences (HICSS), 43rd Hawaii
International Conference, p.1-10 (2010).

19. Donnellan, B., C. Sheridan & E. Curry. A
capability maturity framework for sustainable
information and communication technology. IT
Professional 13: 33-40 (2011).

20. Babar, M.A., J.M. Verner, & P. Nguyen.
Establishing and maintaining trust in software
outsourcing relationships: An empirical
investigation. The Journal of Systems and Software
80: 1438–1449 (2007).

21. Qu, G., L. Shen & X. Bao. Vendors' team
performance in software outsourcing projects:
From the perspective of transactive memory
systems behavioral characteristics. Nankai
Business Review International 5: 290-308 (2014).

22. Power, M.J. The outsourcing handbook how to
implement a successful outsourcing process.
Kogan Page Publishers London, (2006)

23. Kehal, H. Outsourcing and Offshoring In: The 21st
Century: A Socio-Economic Perspective. Lgi
Global (2006).

24. Salam, M. & S.U. Khan. Green software multi-
sourcing readiness model (gsm-rm) from vendor’s
perspective. Science International (Lahore) 26:
1421-1424 (2014).

25. Khan, R.U. & S.U. Khan. Green IT-Outsourcing
Assurance Model. In: Global Software Engineering
Workshops (ICGSEW), IEEE 8th International
Conference, p. 84-87 (2013).

86 Muhammad Salam & Siffat Ullah Khan

26. Hijazi, H., S. Alqrain., H. Muaidi., & T. Khdour.
Risk factors in software development phases.
European Scientific Journal 10:3 (2014).

27. Patil, S. & R. Ade. A software project risk analysis
tool using software development goal modelling
approach. In: Information Systems Design and
Intelligent Applications, p. 767-777 (2015).

28. Persson, J.S. & B.R. Schlichter. Managing risk
areas in software development offshoring: A cmmi
level 5 case. Journal of Information Technology
Theory and Application 16: 5-24 (2015).

29. Hua, W. & Y. Longyong. Software risk assessment
method based on Fuzzy neural network. In:
International Conference on Computer Science and
Intelligent Communication, p. 159-162 (2015).

30. Elzamly, A. & B. Hussin. Classification and
identification of risk management techniques for
mitigating risks with factor analysis technique in
software risk management. Review of Computer
Engineering Research 2: 22-38 (2015).

31. Prikladnicki, R. & M.H. Yamaguti. Risk
management in global software development: A
position paper. In: Third International Workshop
on Global Software Development (2004).

32. Chou, D.C. Risk identification in green IT practice.
Computer Standards & Interfaces 35: 231-237
(2013).

33. Penzenstadler, B., A. Raturi., D. Richardson, C.
Calero, H. Femmer, & X. Franch. Systematic
mapping study on software engineering for
sustainability (SE4S). In: Proceedings of 18th
International Conference on Evaluation and
Assessment in Software Engineering ACM, UK, p.
1-14 (2014).

34. Becker, C., R. Chitchyan, L. Duboc, S.
Easterbrook, B. Penzenstadler, & N. Seyff, & C.C.
Venters. Sustainability design and software: The
karlskrona manifesto. In: Proceedings of the 37th
International Conference on Software
Engineering-Volume 2, IEEE Press, p. 467-476
(2015).

35. Weyns, D., M. Caporuscio, B. Vogel, & A. Kurti.
Design for sustainability = Runtime adaptation∪
evolution. In: Proceedings of 2015 European
Conference on Software Architecture Workshops,
ACM 62: 1-7 (2015).

36. Raturi, A., B. Penzenstadler, B. Tomlinson, & D.
Richardson. Developing a sustainability non-
functional requirements framework. In: Proceedings
of the 3rd International Workshop on Green and
Sustainable Software, ACM, p. 1-8 (2014).

37. Kern, E., S. Naumann, & M. Dick. Processes for
green and sustainable software engineering
processes for green and sustainable software
engineering. In: Green in Software Engineering,
Springer International Publishing, p. 61-81 (2015).

38. Bartenstein, T. W. & Y. D. Liu. Green streams for
data-intensive software. In: Proceedings of the
2013 International Conference on Software
Engineering, IEEE Press, p. 532-541 (2013).

39. Easterbrook, S.M. Climate change: a grand
software challenge. In: Proceedings of the
FSE/SDP Workshop on Future of Software
Engineering Research, ACM 99-104 (2010).

40. Moraga, M. A. & M.F. Bertoa. Green software
measurement. In: Green in Software Engineering,
Springer, p. 261-282. (2015).

41. Naumann, S., E. Kern., M. Dick., & T. Johann.
Sustainable software engineering: process and
quality models, life cycle, and social aspects. In:
ICT Innovations for Sustainability, Springer, p.
191-205 (2015).

42. Lago, P. Challenges and opportunities for
sustainable software. In: Proceedings of the Fifth
International Workshop on Product LinE
Approaches in Software Engineering, IEEE Press,
p. 1-2 (2015).

43. Arakelyan, A. & D. Lamas. Situating a design
space for sustainable software appropriation. In:
International Conference on Human-Computer
Interaction, Springe. p. 665-673 (2014).

44. Beghoura, M.A., A. Boubetra, & A. Boukerram.
Green software requirements and measurement:
random decision forests-based software energy
consumption profiling. Requirements Engineering
1-14 (2015).

45. de, G., I.G. Rodríguez, M. Piattini, & R.P. Castillo.
Green software maintenance. In: Green in Software
Engineering, Springe, p. 205-229 (2015).

46. Betz, S. & T. Caporale. Sustainable software
system engineering. In: IEEE Fourth International
Conference on, Big Data and Cloud Computing
(BdCloud), p. 612-619 (2014).

47. Curran, R., N. Wognum, & M. Borsato.
Transdisciplinary Lifecycle analysis of Systems.
In: Proceedings of 22nd ISPE International
Conference on Concurrent Engineering, IOS Press,
p. 20-23 (2015).

48. Li, F., S. Qanbari, M. Vögler, & S. Dustdar.
Constructing green software services: From service
models to cloud-based architecture. In: Green in
Software Engineering, Springer, p. 83-104 (2015).

49. Amri, R. & N.B.B. Saoud. Towards a Generic
Sustainable Software Model. In: Fourth International
Conference on Advances in Computing and
Communications (ICACC), p. 231-234 (2014).

50. Penzenstadler, B. Infusing Green: Requirements
engineering for green in and through software
systems. In: RE4SuSy@ RE, p. 44-53 (2014).

51. Kim, D.K., J. Ryoo, & S. Kim. Building
sustainable software by preemptive architectural
design using tactic-equipped patterns. In: Ninth
International Conference on Availability,
Reliability and Security (ARES), p. 484-489 (2014).

 Risks Mitigation Practices for Multi-Sourcing Vendors 87

52. Jetley, R. & A. Nair & P. Chandrasekaran, & A.
Dubey. Applying software engineering practices
for development of industrial automation
applications. In: 2013 11th IEEE International
Conference on Industrial Informatics (INDIN), p.
558-563 (2013).

53. Dick, M., J. Drangmeister, E. Kern, & S.
Naumann. Green software engineering with agile
methods. In: 2nd International Workshop on Green
and Sustainable Software (GREENS), p. 78-85
(2013).

54. Ardito, L. & M. Morisio. Green IT-Available data
and guidelines for reducing energy consumption in
IT systems. Sustainable Computing: Informatics
and Systems 4: 24-32 (2014).

55. Lami, G., F. Fabbrini., & M. Fusani. Software
sustainability from a process-centric perspective.
In: Systems, Software and Services Process
Improvement. Springer, p. 97-108 (2012).

56. Sun, Y., Y. Zhao, Y.Song, Y.Yang., H. Fang, H.
Zang, Y. Li, & Y. Gao. Green challenges to system
software in data centers. Frontiers of Computer
Science in China 5: 353-368 (2011).

57. Kitchenham, B. & C. Charters. Guidelines for
Performing Systematic Literature Reviews in
Software Engineering. Joint Report, Keele
University and Durham University (2007).

58. Kitchenham, B. Procedures for performing
systematic reviews. Keele, UK, Keele University
33: 1-26 (2004).

59. Korkala, M. & F. Maurer. Waste identification as
the means for improving communication in
globally distributed agile software development.
Journal of Systems and Software 95: 122-140
(2014).

60. Sriram, R. & S.K. Mathew. Global software
development using agile methodologies: A review
of literature. In: 2012 IEEE International
Conference on Management of Innovation and
Technology (ICMIT), p. 389-393 (2012).

61. Salam, M. & S.U. Khan. Systematic Literature

Review Protocol for Green Software Multi-
sourcing with Preliminary Results. Proceeding Of
The Pakistan Academy Of Sciences 52: 285–300
(2015).

62. Linaker, J., S.M. Sulaman, R. M. Mello, & H.
Martin. Guidelines for Conducting Surveys in
Software Engineering. https://lup.lub.lu.se/search/
publication/ 5366801 (2015).

63. Ahmad, A. & S.J. Kolla. Effective Distribution of
Roles and Responsibilities in Global Software
Development Teams. School of Computing
Blekinge Institute of Technology, Karlskrona
Sweden (2011).

64. Khan, S.U. & M.K. Niazi. A preliminary structure
of software outsourcing vendors’ readiness model.
In: Doctoral symposium at 11th International
Conference on Product Focused Software
Development and Process Improvement (PROFES
2010) Limerick, Ireland, ACM, p. 76-79 (2010).

65. Khan, S.U. & M.I. Azeem. Intercultural challenges
in offshore software development outsourcing
relationship: An Empirical study. Proceedings of
the Pakistan Academy of Sciences 53: 75-88
(2016).

66. Heiervang, E. & R. Goodman. Advantages and
limitations of web-based surveys: evidence from a
child mental health survey. Social Psychiatry and
Psychiatric Epidemiology 46: 69-76 (2011).

67. Ali, S. & S.U. Khan. Empirical investigation of
risk factors for establishing software outsourcing
partnership from vendor’s perspective.
Proceedings of the Pakistan Academy of Sciences
52: 315–328 (2015).

68. Ali, S. & S.U. Khan. Software Outsourcing
Partnership Model: An Evaluation Framework for
Vendor Organisations. The Journal of Systems &
Software 117: 402-425 (2016).

69. Khan, S.U. Software Outsourcing Vendors
Readiness Model (SOVRM). PhD thesis, Keele
University, UK (2011).

