On Strongly *-Graphs

Mohamed Abdel-Azim Seoud1,*, Eliwa Mohamed Roshdy2, and Mohamed Saied AboShady3

1Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
2Department of Basic & Applied Sciences, Arab Academy of Science, Technology and Maritime Transport, Cairo, Egypt
3Department of Engineering Physics and Mathematics, Faculty of Engineering, Ain Shams University, Cairo, Egypt

Abstract: A graph \(G = (V, E)\) is said to be strongly *-graph if there exists a bijection \(f : V \rightarrow \{1, 2, ..., n\}\) in such a way that when an edge, whose vertices are labeled \(i\) and \(j\), is labeled with the value \(i + j + ij\), all edge labels are distinct. In this paper we get an upper bound for the number of edges of any graph with \(n\) vertices to be strongly* - graph, and we make an algorithm to check any graph if it is a strongly*- graph or not. Also, we study some new families to be strongly*- graphs.

Keywords: Strongly *-graph / labeling, C++ programming Language

Classification Code: 05C78

1. INTRODUCTION

By a graph \(G\) we mean a finite, undirected, connected graph without loops or multiple edges. We denote by \(n\) and \(m\) the order and size of the graph \(G\) respectively. Terms not defined here are used in the sense of Harary [1]. A variation of strong multiplicity of graphs is a strongly *-graph. A graph of order \(n\) is said to be a strongly *-graph if its vertices can be assigned the values \(1, 2, ..., n\) in such a way that, when an edge is labeled with the value \(i + j + ij\), where \(i\) and \(j\) are the labels of its vertices, all edge labels are distinct [2]. Adiga and Somashekara [3] gave a strongly *-labeling for all trees, cycles, and grids. They further consider the problem of determining the maximum number of edges in any strongly *-graph of a given order and relate it to the corresponding problem for strongly multiplicative graphs. Seoud and Mahran [4-5] give some technical necessary conditions for a graph to be strongly*-graph.

Babujee and Vishnupriya [6] have proved the following families to be strongly *-graphs: \(C_n \times P_2\); \((P_2 \cup K_m) + K_2\), windmills \(K_2^{(n)}\), and jelly fish graphs \(f(m,n)\) obtained from a 4-cycle \(v_1, v_2, v_3, v_4\) by joining \(v_1\) and \(v_3\) with an edge and appending \(m\) pendent edges to \(v_2\) and \(n\) pendent edges to \(v_4\). Babujee and Beaula [7] gave a strongly *-labelings for \(C_n\) and \(K_{n,m}\). Babujee, Kannan, and Vishnupriya [8] gave a strongly *-labelings for \(W_n\), \(P_n\), fans, crowns, \((P_2 \cup mK_1) + K_2\), and umbrellas. An example for a strongly *-graph with \(p = 6, q = 11\) is shown in Fig. 1 while \(K_6\) is not a strongly *-graph as shown in Fig. 2.

2. NEW GENERAL RESULTS

In this section we make an algorithm which find all possible edge labels; under the condition of strongly *-labeling; for any graph of order \(n\) and print out the edge labels which are repeated and their corresponding adjacent vertices in case this graph is a complete graph. An example is shown in the Fig. 3. Then counting these repeated edges and subtracting them from the number of edges of a complete graph gives an upper bound for the number of edges of any graph of order \(n\) to be strongly *-graph.

Received, December 2016; Accepted, May 2017
*Corresponding author: Email: M.A.Seoud@hotmail.com
Mohamed Abdel-Azim Seoud et al

Fig. 1

Fig. 2

Fig. 3

Fig. 4
Table 1 shows the upper bound of the number of edges of a graph of order \(n \) to be strongly *-graph up to \(n = 70 \).

Table 1. An upper bound for the number of edges of a graph with a given order to be strongly *-graph.

<table>
<thead>
<tr>
<th>order</th>
<th>repetitions in edges labels</th>
<th>Upper bound for the no. of edges</th>
<th>order</th>
<th>repetitions in edges labels</th>
<th>Upper bound for the no. of edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>37</td>
<td>223</td>
<td>443</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>6</td>
<td>38</td>
<td>240</td>
<td>463</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>9</td>
<td>39</td>
<td>263</td>
<td>478</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>14</td>
<td>40</td>
<td>263</td>
<td>517</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>19</td>
<td>41</td>
<td>287</td>
<td>533</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>25</td>
<td>42</td>
<td>287</td>
<td>574</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>30</td>
<td>43</td>
<td>309</td>
<td>594</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>39</td>
<td>44</td>
<td>332</td>
<td>614</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>44</td>
<td>45</td>
<td>353</td>
<td>637</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>55</td>
<td>46</td>
<td>353</td>
<td>682</td>
</tr>
<tr>
<td>13</td>
<td>16</td>
<td>62</td>
<td>47</td>
<td>382</td>
<td>699</td>
</tr>
<tr>
<td>14</td>
<td>21</td>
<td>70</td>
<td>48</td>
<td>395</td>
<td>733</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
<td>79</td>
<td>49</td>
<td>421</td>
<td>755</td>
</tr>
<tr>
<td>16</td>
<td>26</td>
<td>94</td>
<td>50</td>
<td>444</td>
<td>781</td>
</tr>
<tr>
<td>17</td>
<td>34</td>
<td>102</td>
<td>51</td>
<td>471</td>
<td>804</td>
</tr>
<tr>
<td>18</td>
<td>34</td>
<td>119</td>
<td>52</td>
<td>471</td>
<td>855</td>
</tr>
<tr>
<td>19</td>
<td>42</td>
<td>129</td>
<td>53</td>
<td>502</td>
<td>876</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>140</td>
<td>54</td>
<td>525</td>
<td>906</td>
</tr>
<tr>
<td>21</td>
<td>59</td>
<td>151</td>
<td>55</td>
<td>558</td>
<td>927</td>
</tr>
<tr>
<td>22</td>
<td>59</td>
<td>172</td>
<td>56</td>
<td>584</td>
<td>956</td>
</tr>
<tr>
<td>23</td>
<td>72</td>
<td>181</td>
<td>57</td>
<td>611</td>
<td>985</td>
</tr>
<tr>
<td>24</td>
<td>78</td>
<td>198</td>
<td>58</td>
<td>611</td>
<td>1042</td>
</tr>
<tr>
<td>25</td>
<td>89</td>
<td>211</td>
<td>59</td>
<td>651</td>
<td>1060</td>
</tr>
<tr>
<td>26</td>
<td>98</td>
<td>227</td>
<td>60</td>
<td>651</td>
<td>1119</td>
</tr>
<tr>
<td>27</td>
<td>111</td>
<td>240</td>
<td>61</td>
<td>680</td>
<td>1150</td>
</tr>
<tr>
<td>28</td>
<td>111</td>
<td>267</td>
<td>62</td>
<td>714</td>
<td>1177</td>
</tr>
<tr>
<td>29</td>
<td>128</td>
<td>278</td>
<td>63</td>
<td>748</td>
<td>1205</td>
</tr>
<tr>
<td>30</td>
<td>128</td>
<td>307</td>
<td>64</td>
<td>776</td>
<td>1240</td>
</tr>
<tr>
<td>31</td>
<td>142</td>
<td>323</td>
<td>65</td>
<td>815</td>
<td>1265</td>
</tr>
<tr>
<td>32</td>
<td>156</td>
<td>340</td>
<td>66</td>
<td>815</td>
<td>1330</td>
</tr>
<tr>
<td>33</td>
<td>171</td>
<td>357</td>
<td>67</td>
<td>851</td>
<td>1360</td>
</tr>
<tr>
<td>34</td>
<td>185</td>
<td>376</td>
<td>68</td>
<td>883</td>
<td>1395</td>
</tr>
<tr>
<td>35</td>
<td>206</td>
<td>389</td>
<td>69</td>
<td>926</td>
<td>1420</td>
</tr>
<tr>
<td>36</td>
<td>206</td>
<td>424</td>
<td>70</td>
<td>926</td>
<td>1489</td>
</tr>
</tbody>
</table>
Remark: It’s clear that all complete graphs \(K_n, n \geq 5 \) are not strongly *-graphs for the same reason in case of \(K_6 \).

From this upper bound we find that all graphs of order \(\leq 6 \) are strongly *-graphs except \(K_5 \) and \(K_6 \), and this can be easily proved as the two edges joining the vertices 2,3 and 1,5 in both graphs \(K_5 \) and \(K_6 \) have the same edge label which is equal 11, then this make the graphs \(K_5 \) and \(K_6 \) non-strongly *-graph.

So for any graph of order \(\leq 6 \) either join the two vertices labeled 1 and 5 or 2 and 3 but not both regardless for the number of edges in this graph. Moreover, we give an algorithm to check any \((n, m)\) graph whether it is strongly *-graph or not, and also give all possible labelings for this graph using the labeling function \(f: V(G) \to \{1, 2, \ldots, n\} \) as follows:

Given the number of vertices \(n \), the number of edges \(m \) and the vertices adjacent to each edge:

INPUT: The number of vertices \(n \), the number of edges \(m \) of the graph.

OUTPUT: State whether the graph is strongly *-graph or not and display the vertex labelings if it is strongly *-graph.

Step 1: Set \(v \); (array with length \(n \) stores the labels of the vertices)

\[\text{adj1}; \text{array with length} \ m \text{ stores the labels of the first vertex adjacent to each edge} \]

\[\text{adj2}; \text{array with length} \ m \text{ stores the labels of the second vertex adjacent to each edge} \]

\[\text{edgelabel}; \text{array with length} \ m \text{ stores the calculated labels of all edges} \]

Step 2: Enter the adjacent vertices to each edge (adj1 and adj2);

Step 3: Initialize \(v = [1 \ 2 \ \ldots \ n] \);

\(x = 0; \) (used to count the number of possible labelings of all the permutations of the vector \(v \))

Step 4: Initialize FLAG = 0; (used to decide whether to display \(v \) or not)

Step 5: Calculate the label of each edge : \(\text{edgelabel} = v[\text{adj1}] + v[\text{adj2}] + v[\text{adj1}] \times v[\text{adj2}] \);

Step 6: FOR index \(i = 1: m - 1 \) (check whether the graph is strongly *-graph or not)

Step 7: FOR index \(j = i + 1: m \)

Step 8: If \(\text{edgelabel} [i] = \text{edgelabel} [j] \) then

Set \(\text{FLAG} = 1 \);

Permute \(v \); (make another permutation of the vector \(v \))

Go to step 4

Step 9: If \(\text{FLAG} = 0 \) then

OUTPUT (\(v \)); (display the labels of the vertices)

\(x = x + 1; \)

Step 10: permute \(v \); (make another permutation of the vector \(v \))

Step 11: Go to step 4

Step 12: If \(x = 0 \) then

OUTPUT (No Strongly *-Labelings for this Graph);

Step 13: STOP;

We implement this algorithm using C++ programming language.

An example for a graph with \(n = 9 \) and \(m = 20 \) is shown in Fig. 4 and Fig. 5 (we use the 1st labeling given by the program).
Enter the number of vertices = 9
Enter number of edges = 20
Enter the adjacent vertices to edge no. 1 : 1 2
Enter the adjacent vertices to edge no. 2 : 2 3
Enter the adjacent vertices to edge no. 3 : 3 4
Enter the adjacent vertices to edge no. 4 : 4 5
Enter the adjacent vertices to edge no. 5 : 5 6
Enter the adjacent vertices to edge no. 6 : 6 7
Enter the adjacent vertices to edge no. 7 : 7 8
Enter the adjacent vertices to edge no. 8 : 8 9
Enter the adjacent vertices to edge no. 9 : 9 1
Enter the adjacent vertices to edge no. 10 : 1 3
Enter the adjacent vertices to edge no. 11 : 1 4
Enter the adjacent vertices to edge no. 12 : 1 5
Enter the adjacent vertices to edge no. 13 : 1 6
Enter the adjacent vertices to edge no. 14 : 1 7
Enter the adjacent vertices to edge no. 15 : 1 8
Enter the adjacent vertices to edge no. 16 : 2 5
Enter the adjacent vertices to edge no. 17 : 2 7
Enter the adjacent vertices to edge no. 18 : 2 9
Enter the adjacent vertices to edge no. 19 : 4 8
Enter the adjacent vertices to edge no. 20 : 5 7

Strongly *-Labelings are:
<1 2 4 5 6 3 7 9 8>

Fig. 5

Fig. 6
3. SOME NEW FAMILIES OF GRAPHS THAT ARE STRONGLY *-GRAPHS

In this section we introduce some new families that are found to be strongly *-graphs such as the one point union of \(m \) copies of the complete bipartite graph \(K_{2,n}^{(m)} \) , \(C_n \circ K_{1,m} \), the graph obtained from \(F_n \) by inserting one vertex between every two consecutive vertices of \(P_n \), \(P_n \circ \overline{K}_m \), the triangular snake \(T_n \), \(T_n \circ K_1 \), The Sun Flower \(SF(n), S_m \cup S_n, B_{m,n}, P_n \times C_4 \) and \(P_n \wedge P_m \).

Theorem 3.1: The one point union of \(m \) copies of the complete bipartite graph \(K_{2,n}^{(m)} \) is strongly *-graph.

Proof: The graph \(K_{2,n}^{(m)} \) has \(|V| = nm + m + 1 \) vertices and \(|E| = 2nm \) edges. Let the set of vertices be as follow: \(\{v_0; v_1, v_1^1, v_2, \ldots, v_n^1; v_2, v_2^2, \ldots, v_n^2; \ldots; v_m, v_m^m, \ldots, v_n^m\} \) as described in Fig. 6.

We define the labeling function \(f : V \rightarrow \{1,2,\ldots, nm + m + 1\} \) as follows:

\[
\begin{align*}
 f(v_0) &= 1 \\
 f(v_j) &= mn + j + 1 ; & 1 \leq j \leq m, \\
 f(v_j^i) &= (j-1)n + i + 1 ; & 1 \leq i \leq n, 1 \leq j \leq m.
\end{align*}
\]

Example 3.1: \(K_{2,4}^{(3)} \) is a strongly *-graph as shown in Fig. 7.

Theorem 3.2: The graph \(C_n \circ K_{1,m} \) (obtained by identifying a vertex of \(C_n \) with the centre of \(K_{1,m} \)) is a strongly *-graph.

Proof: The graph \(C_n \circ K_{1,m} \) has \(|V| = n + m \) vertices and \(|E| = n + m \) edges. Let the set of vertices be as follow: \(V(C_n \circ K_{1,m}) = \{u_1, u_2, \ldots, u_m; v_1, v_2, \ldots, v_n\} \) as described in Fig. 8.

Since \(\forall n, m, k, s \in \mathbb{N} , if \ nm + n + m = ks + k + s : n < k \) then \(n < k < s < m \).

Example 3.2: for \(n = 1, m = 5, k = 2, s = 3 \Rightarrow nm = ks = 11 \).

Then we define the labeling function \(f : V \rightarrow \{1,2,\ldots, n + m\} \) as follows:

\[
\begin{align*}
 f(v_i) &= \begin{cases}
 n - 2i + 2, & 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\
 2i - n - 1, & \left\lfloor \frac{n}{2} \right\rfloor + 1 \leq i \leq n
\end{cases} \\
 f(u_j) &= j + n; & 1 \leq j \leq m.
\end{align*}
\]

Note that \(f(u_j) > f(v_1) > f(v_i), \forall i, j \), then all the edges’ labels must be distinct.

Example 3.3: \(C_7 \circ K_{1,4} \) and \(C_8 \circ K_{1,4} \) are a strongly *-graphs as shown in Fig. 9(a) and Fig. 9(b) respectively.

Theorem 3.3: The graph obtained from \(F_n \) by inserting one vertex between every two consecutive vertices of \(P_n \) is a strongly *-graph.

Proof: This graph has \(|V| = 2n \) vertices and \(|E| = 3n - 2 \) edges. Let the set of vertices be as follow: \(\{u_0, v_1, v_2, \ldots, v_{2n-1}\} \) as described in Fig. 10.

We define the following function to label this graph

\[
\begin{align*}
 f(u_0) &= 2n, \\
 f(v_{2i}) &= i, & 1 \leq i \leq n - 1, \\
 f(v_{2i-1}) &= n + i - 1, & 1 \leq i \leq n.
\end{align*}
\]

Using this labeling function, the edge labels are all distinct and in an ascending order.

Example 3.4: The graph obtained by inserting in \(F_5 \) one vertex between every two consecutive vertices of \(P_5 \) is a strongly *-graph as shown in Fig. 11.
Theorem 3.4: The corona $P_n \odot K_m$ is a strongly *-graph.

Proof: This graph has the set of vertices $V(P_n) = \{v_1, v_2, ..., v_n\}$ and $V(K_m) = \{v_1^1, v_1^2, ..., v_1^m; v_2^1, v_2^2, ..., v_2^m; ..., v_n^1, v_n^2, ..., v_n^m\}$ with total number of vertices $|V| = n(m + 1)$ and total number of edges $|E| = nm + (n - 1)$ as shown in Fig. 12.

We will use the following labeling function:

\[f(v_i) = (i - 1)(m + 1) + 1, \quad 1 \leq i \leq n, \]

\[f(v_i^j) = f(v_i) + j, \quad 1 \leq j \leq m. \]

Using this labeling function, the edge labels are all distinct and in an ascending order.

Example 3.5: The corona $P_4 \odot K_4$ is a strongly *-graph as shown in Fig. 13.

Definition: The triangular snake T_n is the graph which is obtained from a path P_n with vertices \{v_1, v_2, ..., v_n\} by joining the vertices v_i and v_{i+1} to a new vertex u_i for $i = 1, 2, ..., n - 1$ as shown in Fig. 14.

Theorem 3.5: The triangular snake T_n is a strongly *-graph.

Proof: This graph has the set of vertices $V = \{v_1, v_2, ..., v_n, u_1, u_2, ..., u_{n-1}\}$ with total number of vertices $|V| = 2n - 1$ and total number of edges $|E| = 3(n - 1)$.

We will use the following labeling function:

\[f(v_i) = 2i - 1, \quad 1 \leq i \leq n, \]

\[f(u_i) = 2j, \quad 1 \leq j \leq n - 1. \]

Using this labeling function, the edge labels are all distinct and in an ascending order.

Example 3.6: The triangular snake T_6 is a strongly *-graph as shown in Fig. 15.

Theorem 3.6: The corona $T_n \odot K_1$ is a strongly *-graph.

Proof: This graph has the set of vertices \{v_1, v_2, ..., v_n; u_1, u_2, ..., u_{n-1}; a_1, a_2, ..., a_n; b_1, b_2, ..., b_{n-1}\} as shown in Fig. 16 with total number of vertices $|V| = 4n - 2$ and total number of edges $|E| = 5n - 4$.

We will use the following labeling function:

\[f(v_i) = 2, \quad f(a_i) = 4(i - 1) + 1, \quad 1 \leq i \leq n, \]

\[f(u_i) = 4(i - 1) - 1, \quad 2 \leq i \leq n, \quad f(b_j) = 4j + 2, \quad 1 \leq j \leq n - 1. \]

Using this labeling function, edge labels are all distinct and in an ascending order.

Example 3.7: The corona $T_5 \odot K_1$ is a strongly *-graph as shown in Fig. 18.

Definition: The Sun Flower $SF(n)$ was defined by Lee and Seah [9] as the graph obtained from the cycle C_n with vertices \{v_1, v_2, ..., v_n\} and new vertices \{u_1, u_2, ..., u_{n-1}\} such that $u_i, i = 1, 2, ..., n - 1,$ is connected to v_i and v_{i+1}, and u_n is connected to v_n and v_1 as shown in Fig. 19.

Theorem 3.7: The Sun Flower $SF(n)$ is a strongly *-graph.
Fig. 14

Fig. 15

Fig. 16

Fig. 17
On Strongly *-Graphs

Fig. 18

Fig. 19

Fig. 20
Proof: This graph has $2n$ vertices and $3n$ edges, the set of vertices are $\{v_1, v_2, ..., v_n; u_1, u_2, ..., u_n\}$.

The labeling function $f : V(SF(n)) \to \{1, 2, ..., n\}$ is defined as follows:

$$f(v_i) = \begin{cases} 4i, & 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\ 4(n - i) + 1, & \left\lfloor \frac{n}{2} \right\rfloor + 1 \leq i \leq n \end{cases}$$

$$f(u_i) = \begin{cases} 4i - 2, & 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\ 4(n - i) + 3, & \left\lfloor \frac{n}{2} \right\rfloor + 1 \leq i \leq n \end{cases}$$

Note that if v_i and u_j are adjacent, then $|f(v_i) - f(u_j)| \leq 2$ and if v_i and v_j are adjacent, then $|f(v_i) - f(v_j)| \leq 4$. Then there will exist 2 cases as follows:

Case I: The vertices v_i and u_i are adjacent and the vertices v_{n-i+1} and v_{n-i} are adjacent, such that $f(v_{n-i+1}) < f(u_i) < f(v_i) < f(v_{n-i})$, $1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor - 1$, so the labels of these two edges may be equal as shown in Fig. 20.

Now, assume $f(u_i) = x \Rightarrow f(v_i) = x + 2, f(v_{n-i}) = x + 3$ and $f(v_{n-i+1}) = x - 1$, then the labels of these two edges will be equal if and only if $x + (x + 2) + x * (x + 2) = (x - 1) + (x + 3) + (x - 1) * (x + 3)$, i.e. $0 = -3$ which gives a contradiction.

Case II: The vertices v_{n-i} and u_{n-i} are adjacent and the vertices v_i and v_{i+1} are adjacent, such that $f(v_i) < f(v_{n-i}) < f(u_{n-i}) < f(v_{i+1})$, $1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor - 1$, so the labels of these two edges may be equal as shown in Fig. 21.

Now, assume $f(v_{n-i}) = x \Rightarrow f(u_{n-i}) = x + 2, f(v_{i+1}) = x + 3$ and $f(v_i) = x - 1$, then the labels of these two edges will be equal if and only if $x + (x + 2) + x * (x + 2) = (x - 1) + (x + 3) + (x - 1) * (x + 3)$, i.e. $0 = -3$ which gives a contradiction.

Example 3.8: $SF(7)$ and $SF(8)$ are strongly *-graphs as shown in Fig. 22.

Theorem 3.8: The Union $S_m \cup S_n$ is a strongly *-graph.

Proof: The stars S_m and S_n has the set of vertices $V(S_m) = \{w_1, v_1, v_2, ..., v_m\}$ and $V(S_n) = \{w_2, u_1, u_2, ..., u_n\}$ where w_1 and w_2 are the centers of S_m and S_n respectively as shown in Fig. 23 with total number of vertices $|V| = m + n + 2$ and total number of edges $|E| = m + n$.

We define the following labeling function:

$$f(v_i) = i, \quad 1 \leq i \leq m,$$

$$f(w_2) = m + n + 2,$$

$$f(u_j) = m + j, \quad 1 \leq j \leq n,$$

$$f(w_1) = m + n + 1,$$

Example 3.9: The Union $S_9 \cup S_{10}$ is a strongly *-graphs as shown in Fig. 24.

Theorem 3.9: The Bistar $B_{m,n}$, the graph obtained by joining the centers of two stars with an edge, is a strongly *-graph.

Proof: Let the stars be S_m and S_n. Then this graph has the set of vertices $V(S_m) = \{w_1, v_1, v_2, ..., v_m\}$ and $V(S_n) = \{w_2, u_1, u_2, ..., u_n\}$ where w_1 and w_2 are the centers of S_m and S_n respectively as shown in Fig. 25 with total number of vertices $|V| = m + n + 2$ and total number of edges $|E| = m + n + 1$.
We define the following labeling function:

\[f(v_i) = i, \quad 1 \leq i \leq m, \quad f(w_2) = m + n + 2. \]

\[f(u_j) = m + j, \quad 1 \leq j \leq n, \]

\[f(w_1) = m + n + 1, \]

Example 3.10: \(B_{9,10} \) is a strongly *-graphs as shown in Fig. 26.

Theorem 3.10: The Cartesian Product \(P_n \times C_4 \) is a strongly *-graph.

Proof: This graph has \(|V(G)| = 4n\) vertices and \(|E(G)| = 4(2n - 1)\) edges. Let the set of vertices \(V(P_n \times C_4) = \{v_i^j : 1 \leq i \leq n, 1 \leq j \leq 4\} \) as shown in Fig. 27.

We define the following labeling function:

\[f(v_i^j) = i + 4(j - 1), \quad 1 \leq i \leq 4, 1 \leq j \leq n. \]

Using this labeling we note that for any two adjacent vertices \(v_i^j \) and \(v_i^z \) \(|f(v_i^j) - f(v_i^z)| \leq 4. \) We will find three different cases at which there exist two adjacent vertices with labels \(x \) and \(y \) and another two adjacent vertices with labels \(z \) and \(w \) such that \(x \leq z \leq w \leq y \), so we will assume these four labels as follows:

Case I: The vertices labeled \(x \) and \(x + 4 \) are adjacent and the vertices labeled \(x + 1 \) and \(x + 3 \) are adjacent as shown in Fig. 28(a), these two edges will have equal labels if and only if \(x + x + 4 + x(x + 4) = x + 1 + x + 3 + (x + 1)(x + 3) \), i.e \(x = 3 \Rightarrow \) contradiction.

Case II: The vertices labeled \(x \) and \(x + 4 \) are adjacent and the vertices labeled \(x + 2 \) and \(x + 3 \) are adjacent as shown in Fig. 28(b), these two edges will have equal labels if and only if \(x + x + 4 + x(x + 4) = x + 2 + x + 3 + (x + 2)(x + 3) \), i.e \(x = -7 \Rightarrow \) contradiction.

Case III: The vertices labeled \(x \) and \(x + 4 \) are adjacent and the vertices labeled \(x + 1 \) and \(x + 2 \) are adjacent as shown in Fig. 28(c), these two edges will have equal labels if and only if \(x + x + 4 + x(x + 4) = x + 1 + x + 2 + (x + 1)(x + 2) \), i.e \(x = 1 \), but the vertices labeled 2 and 3 are not adjacent \(\Rightarrow \) contradiction.

Example 3.11: \(P_4 \times C_4 \) is a strongly *-graphs as shown in Fig. 29.

Theorem 3.11: The conjunction \(P_n \land P_m \) is a strongly *-graph.

Proof: This graph has the set of vertices \(V(G) = \{v_1^1, v_1^2, \ldots, v_1^m; v_2^1, v_2^2, \ldots, v_2^m; \ldots; v_n^1, v_n^2, \ldots, v_n^m\} \) with total number of vertices \(|V(G)| = nm\) and total number of edges \(|E(G)| = 2(n - 1)(m - 1)\) as shown in Fig. 30.

Using the labeling function \(f: V(G) \rightarrow \{1,2,3,\ldots,n\} \) as follows:

\[f(v_{2j-1}^{2i-1}) = j + m(i - 1), \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor, \quad 1 \leq j \leq \left\lfloor \frac{m}{2} \right\rfloor \]

\[f(v_{2j}^{2i}) = \left\lfloor \frac{m}{2} \right\rfloor + j + m(i - 1), \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor, \quad 1 \leq j \leq \left\lfloor \frac{m}{2} \right\rfloor \]

\[f(v_{2j-1}^{2i}) = \left\lfloor \frac{nm}{2} \right\rfloor + j + m(i - 1), \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor, \quad 1 \leq j \leq \left\lfloor \frac{m}{2} \right\rfloor \]

\[f(v_{2j}^{2i-1}) = \left\lfloor \frac{nm}{2} \right\rfloor + \left\lfloor \frac{m}{2} \right\rfloor + j + m(i - 1), \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor, \quad 1 \leq j \leq \left\lfloor \frac{m}{2} \right\rfloor \]

We notice that this labeling function makes all the edge labels distinct.

Example 3.12: \(P_4 \land P_5 \) and \(P_5 \land P_6 \) are strongly *-graphs as shown in Fig. 31, respectively.
4. REFERENCES
