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Abstract.  This paper narrates 𝑚𝑚-exponential convexity and log-convexity. For this investigation positive 
functionals are applied which associate with the refinement of Hermite Hadamard inequality (cited from 
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construct means with Stolarsky property, Lagrange and Cauchy type mean value theorems are also given. 
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1. PRELIMINARIES 

An important and useful inequality in literature is known as Hadamard inequality stated as follows: Let 
𝜓𝜓: 𝑆𝑆 = [𝛼𝛼,𝛽𝛽] → ℝ be a convex function, then  

         𝜓𝜓�𝛼𝛼+ 𝛽𝛽
2
� ≤ 1

𝛽𝛽−𝛼𝛼 ∫ 𝜓𝜓(𝑟𝑟) 𝑑𝑑𝑟𝑟𝛽𝛽
𝛼𝛼 ≤ 𝜓𝜓(𝛼𝛼) + 𝜓𝜓(𝛽𝛽)

2
.     

By considering 𝑟𝑟 = 𝛼𝛼+β
2

 with its two convex combinations, the refinement of Hadamard inequality is 
obtained in [1].  

Theorem 1.1. [1] Other notable literature about inequalities are [2-5]. Consider a closed real interval 
𝑆𝑆 = [𝛼𝛼, β],  𝛾𝛾, 𝛿𝛿 ∈  𝑆𝑆 and let   𝜓𝜓: 𝑆𝑆 → ℝ is a convex function. Suppose 

(1) 
𝑎𝑎 =

𝛾𝛾 − 𝛼𝛼
𝛽𝛽 − 𝛼𝛼

  , 𝑏𝑏 =
𝛽𝛽 − 𝛾𝛾
𝛽𝛽 − 𝛼𝛼

  , 𝑐𝑐 =
𝛿𝛿 − 𝛼𝛼
𝛽𝛽 − 𝛼𝛼

  , 𝑑𝑑 =
𝛽𝛽 − 𝛿𝛿
𝛽𝛽 − 𝛼𝛼

  . 
 

 

Then 

 

(2) 
𝜓𝜓�

𝛼𝛼 +  𝛽𝛽
2

� ≤ 𝑎𝑎𝜓𝜓 �
𝛼𝛼 + 𝛾𝛾

2
� + 𝑏𝑏𝜓𝜓 �

𝛾𝛾 +  𝛽𝛽
2

� 

                                                        ≤
1

𝛽𝛽 − 𝛼𝛼
� 𝜓𝜓(𝑟𝑟) 𝑑𝑑𝑟𝑟
𝛽𝛽

𝛼𝛼
≤

1
2

[𝑐𝑐𝜓𝜓(𝛼𝛼) + 𝑑𝑑𝜓𝜓(𝛽𝛽) + 𝜓𝜓(𝛿𝛿)] 

≤
𝜓𝜓(𝛼𝛼)  +  𝜓𝜓(𝛽𝛽)

2
 . 

 

Remark 1.2. The functional forms of above refinement are given as: 
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(3) 
Γ1(𝜓𝜓) = 𝑎𝑎 �

𝛼𝛼 + 𝛾𝛾
2

� + 𝑏𝑏𝜓𝜓�
𝛾𝛾 +  𝛽𝛽

2
� − 𝜓𝜓 �

𝛼𝛼 +  𝛽𝛽
2

� . 
 

   

(4) 
Γ2(𝜓𝜓) =

1
𝛽𝛽 − 𝛼𝛼

� 𝜓𝜓(𝑟𝑟) 𝑑𝑑𝑟𝑟
𝛽𝛽

𝛼𝛼
− 𝑎𝑎𝜓𝜓 �

𝛼𝛼 + 𝛾𝛾
2

� − 𝑏𝑏𝜓𝜓�
𝛾𝛾 + 𝛽𝛽

2
� . 

 

(5) 
Γ3(𝜓𝜓) =

1
2

[𝑐𝑐𝜓𝜓(𝛼𝛼) + 𝑑𝑑𝜓𝜓(𝛽𝛽) + 𝜓𝜓(𝛿𝛿)] −
1

𝛽𝛽 − 𝛼𝛼
� 𝜓𝜓(𝑟𝑟) 𝑑𝑑𝑟𝑟
𝛽𝛽

𝛼𝛼
 . 

 

(6) Γ4(𝜓𝜓) = (1 − 𝑐𝑐)𝜓𝜓(𝛼𝛼) + (1 − 𝑑𝑑)𝜓𝜓(𝛽𝛽) −𝜓𝜓(𝛿𝛿) .  

Then for 1 ≤ 𝑗𝑗 ≤ 4, Γ𝑗𝑗(𝜓𝜓) are positive.                    

J. Pečarić and J. Perić [6] introduced the notion of m-exponential convexity. We used an effective 
technique from [7] to construct m-exponentially convex functions. Some notable results related to 
exponential convexity are investigated in [8-20]. 

m-exponential convexity of the functions related with the refinement of Hermite Hadamard inequality 
(2) is examined in section 2. In addition, the results about exponential and log-convexity are deduced. To 
construct means with Stolarsky property, Lagrange and Cauchy type mean value theorems are also given. 

 

2. EXPONENTIAL CONVEXITY 

If a function 𝜓𝜓: 𝑆𝑆 → ℝ of real values is continuous and 𝑚𝑚-exponentially 𝐽𝐽-convex on 𝑆𝑆 then it is 𝑚𝑚-
exponentially convex; hence it is an exponentially convex function (details given in [6]). 

Remark 2.1. Let 𝜓𝜓: 𝑆𝑆 → ℝ is a positive function of real values. The function 𝜓𝜓 is log-𝐽𝐽-convex if and only 
if it is 2-exponentially 𝐽𝐽 - convex. If 𝜓𝜓 is continuous, then converse holds. 

Remark 2.2. The function 𝜓𝜓 is increasing on its domain if provided that for all 𝑠𝑠1, 𝑠𝑠2 in 𝑆𝑆 the divided 
difference [𝑠𝑠1, 𝑠𝑠2;𝜓𝜓] is non negative. 

A very basic and useful inequality for log-convex functions is given in the lemma mentioned below. 

Lemma 2.3. [13]: If for 𝑘𝑘, 𝑠𝑠, 𝑡𝑡 ∈  𝑆𝑆 with 𝑘𝑘 <  𝑠𝑠 <  𝑡𝑡 the function  𝜓𝜓: 𝐼𝐼 →  ℝ is log-convex, then, 

�𝜓𝜓(𝑠𝑠)�𝑡𝑡−𝑘𝑘  ≤  �𝜓𝜓(𝑘𝑘)�𝑡𝑡−𝑠𝑠 �𝜓𝜓(𝑡𝑡)�𝑠𝑠−𝑘𝑘 . 

Now we investigate 𝑚𝑚-exponential and exponential convexity by applying the functionals on a given 
family of functions. For the construction of exponentially convex functions, we apply the technique from 
[8]. 

Theorem 2.4. Consider a family of functions on 𝑆𝑆 ⊆  ℝ defined by Ξ = {ℎ𝑟𝑟|𝑟𝑟 ∈  𝐼𝐼 ⊂  ℝ}, such that for 
every three different points 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ∈  𝑆𝑆 the  function 𝑟𝑟 ↦ [𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3;  ℎ𝑟𝑟] on the interval 𝐼𝐼 is m-
exponentially 𝐽𝐽-convex. Take Γ1(𝜓𝜓) into account which is mentioned in Remark 1.2. Then the 𝑚𝑚-
exponential 𝐽𝐽-convexity of  𝑟𝑟 ↦ Γ1(ℎ𝑟𝑟) holds on 𝐼𝐼. The function 𝑟𝑟 ↦ Γ1(ℎ𝑟𝑟) is 𝑚𝑚-exponentially convex on 
𝐼𝐼 if it is continuous also. 

Proof. Suppose 𝑟𝑟𝑗𝑗 , 𝑟𝑟𝑘𝑘 be the elements of 𝐼𝐼,𝑟𝑟𝑗𝑗𝑘𝑘 = 𝑟𝑟𝑗𝑗+𝑟𝑟𝑘𝑘
2

 and 𝑐𝑐𝑗𝑗, 𝑐𝑐𝑘𝑘 are real numbers for 𝑗𝑗,𝑘𝑘 = 1,⋯ ,𝑚𝑚. 
Consider the function Ω on 𝑆𝑆 defined as 
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Ω(𝑠𝑠) = � 𝑐𝑐𝑗𝑗𝑐𝑐𝑘𝑘ℎ𝑟𝑟𝑗𝑗𝑘𝑘(𝑠𝑠)
𝑚𝑚

𝑗𝑗,𝑘𝑘=1

. 

Thus Ω is continuous, since it is the linear combination of continuous functions. According to the 
hypothesis of function 𝑟𝑟 ↦ [𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3;  ℎ𝑟𝑟] is 𝑚𝑚-exponentially 𝐽𝐽-convex, yields 

[𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3;Ω] = ∑ 𝑐𝑐𝑗𝑗𝑐𝑐𝑘𝑘 �𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3;ℎ𝑟𝑟𝑗𝑗𝑗𝑗� ≥ 0.𝑚𝑚
𝑗𝑗,𝑘𝑘=1                                               

This implies the convexity of Ω on 𝑆𝑆. Thus, we get Γ1(Ω) is non negative. By the linear property of Γ1 we 
have 

∑ 𝑐𝑐𝑗𝑗𝑐𝑐𝑘𝑘Γ1 �ℎ𝑟𝑟𝑗𝑗𝑘𝑘� ≥ 0𝑚𝑚
𝑗𝑗,𝑘𝑘=1 ,                                                                              

concluding the 𝑚𝑚-exponential  𝐽𝐽-convexity of function 𝑟𝑟 ↦ Γ1(ℎ𝑟𝑟) on 𝐼𝐼.                                                       

 

  The above model results the following outcomes. 

Corollary 2.5. Consider a family of functions on 𝑆𝑆 ⊆  ℝ defined by Ξ = {ℎ𝑟𝑟|𝑟𝑟 ∈  𝐼𝐼 ⊂  ℝ}, such that for 
every three different points 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ∈  𝑆𝑆 the  function 𝑟𝑟 ↦ [𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3;  ℎ𝑟𝑟] on the interval 𝐼𝐼 is 
exponentially 𝐽𝐽-convex. Take Γ1(𝜓𝜓) into account which is mentioned in Remark 1.2. Then the exponential 
𝐽𝐽-convexity of  𝑟𝑟 ↦ Γ1(ℎ𝑟𝑟) holds on 𝐼𝐼. The function 𝑟𝑟 ↦ Γ1(ℎ𝑟𝑟) is exponentially convex on 𝐼𝐼 if it is 
continuous also. 

Corollary 2.6. Consider a family of continuous functions on 𝑆𝑆 ⊆  ℝ defined by Ξ = {ℎ𝑟𝑟|𝑟𝑟 ∈  𝐼𝐼 ⊂  ℝ}, 
such that for every three different points 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ∈  𝑆𝑆 the  function 𝑟𝑟 ↦ [𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3;  ℎ𝑟𝑟] on the interval 𝐼𝐼 
is 2-exponentially 𝐽𝐽-convex. Take Γ1(𝜓𝜓) into account which is mentioned in Remark 1.2. Then below 
statements are true: 

i) Assuming the continuity of the function 𝑟𝑟 ↦ Γ1(ℎ𝑟𝑟) implies the 2-exponential convexity of 𝑟𝑟 ↦ Γ1(ℎ𝑟𝑟)  
on I, which concludes the log-convexity stated as: 

Γ1𝑡𝑡−𝑘𝑘(ℎ𝑠𝑠) ≤ Γ1𝑡𝑡−𝑠𝑠(ℎ𝑘𝑘) Γ1𝑠𝑠−𝑘𝑘(ℎ𝑡𝑡) 

for 𝑘𝑘, 𝑠𝑠, 𝑡𝑡 ∈  𝐼𝐼 with 𝑘𝑘 <  𝑠𝑠 <  𝑡𝑡. 

ii) Assume that the function  𝑟𝑟 ↦ Γ1(ℎ𝑟𝑟) on 𝐼𝐼 is strictly positive and its first order derivative also exists, 
then for 𝑗𝑗 ≤  𝑠𝑠 and 𝑘𝑘 ≤  𝑡𝑡,  (𝑗𝑗,𝑘𝑘, 𝑠𝑠, 𝑡𝑡 ∈  𝐼𝐼) yields 

𝜅𝜅 (𝑗𝑗,𝑘𝑘 ;Γ1)  ≤  𝜅𝜅 (𝑠𝑠, 𝑡𝑡 ;Γ1), 

where 

(7) 

𝜅𝜅 (𝑗𝑗,𝑘𝑘 ; Γ1) =

⎩
⎪⎪
⎨

⎪⎪
⎧

�
Γ1�ℎ𝑗𝑗�
Γ1(ℎ𝑘𝑘)�

1
𝑗𝑗−𝑘𝑘

, 𝑗𝑗 ≠ 𝑘𝑘;

exp�

𝑑𝑑
𝑑𝑑𝑗𝑗 �Γ1�ℎ𝑗𝑗��

Γ1�ℎ𝑗𝑗�
� ,  𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒.

 

 

 

Proof. i) It directly follows from Remark 2.1 and Theorem 2.4.  
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ii) (i) follows the log-convexity of function 𝑟𝑟 ↦ Γ1(ℎ𝑟𝑟) on 𝐼𝐼, which yields 𝑟𝑟 ↦ logΓ1 (ℎ𝑟𝑟) is  a convex 
function on 𝐼𝐼. Now for 𝑗𝑗 ≤ 𝑘𝑘 and 𝑠𝑠 ≤ 𝑡𝑡, applying [6, Proposition 3.2] we obtained 

(8) log Γ1�ℎ𝑗𝑗� − logΓ1(ℎ𝑘𝑘)
𝑗𝑗 − 𝑘𝑘

≤
logΓ1(ℎ𝑠𝑠) − logΓ1(ℎ𝑡𝑡)

𝑠𝑠 − 𝑡𝑡
. 

 

It yields 

𝜅𝜅 (𝑗𝑗,𝑘𝑘 ; Γ1) ≤  𝜅𝜅 (𝑠𝑠, 𝑡𝑡 ; Γ1). 

By applying limit on (8) follows the remaining cases.                                                                          ⎕ 

To examine exponential convexity various families of functions are used in the following result. 
The below lemma is helpful for the construction of exponentially convex functions. Here the proofs are 
omitted because this result is an easy outcome of remarks and basic examples from [7]. 

Lemma 2.7.   (i) Consider a self map 𝜂𝜂𝑟𝑟 on 𝑆𝑆 =  ℝ, for real positive values 𝑟𝑟, defined as 

𝜂𝜂𝑟𝑟(𝑠𝑠) =
exp( 𝑟𝑟𝑠𝑠)

𝑟𝑟2
. 

This implies the exponential convexity on (0,∞) of the function 𝑟𝑟 ↦ 𝑑𝑑2

𝑑𝑑𝑠𝑠2
𝜂𝜂𝑟𝑟(𝑠𝑠) for 

each 𝑠𝑠 in 𝑆𝑆. 

 (ii) Suppose 𝑆𝑆 is the set of positive real numbers and define a mapping 𝜁𝜁𝑟𝑟: 𝐽𝐽 → ℝ 
(𝑟𝑟 > 1) by  

𝜁𝜁𝑟𝑟(𝑠𝑠) =
𝑠𝑠𝑟𝑟

𝑟𝑟(𝑟𝑟 − 1)
. 

This implies the exponential convexity on (1,∞) of the function 𝑟𝑟 ↦ 𝑑𝑑2

𝑑𝑑𝑠𝑠2
𝜁𝜁𝑟𝑟(𝑠𝑠) for 

each 𝑠𝑠 in 𝑆𝑆. 

 (iii) Consider a self map 𝜉𝜉𝑟𝑟 on 𝑆𝑆 =  ℝ+, for real positive values 𝑟𝑟 > 1, defined as 

𝜉𝜉𝑟𝑟(𝑠𝑠) =
𝑟𝑟−𝑠𝑠

(log 𝑟𝑟)2. 

This implies the exponential convexity on (1,∞) of the function 𝑟𝑟 ↦ 𝑑𝑑2

𝑑𝑑𝑠𝑠2
𝜉𝜉𝑟𝑟(𝑠𝑠) for  

each 𝑠𝑠 in 𝑆𝑆.  

(iv) Consider a self map 𝜌𝜌𝑟𝑟 on 𝑆𝑆 =  ℝ+, for real positive values 𝑟𝑟, defined as 

𝜌𝜌𝑟𝑟(𝑠𝑠) = exp
−𝑠𝑠√𝑟𝑟
𝑟𝑟

. 

This implies the exponential convexity on (0,∞) of the function 𝑟𝑟 ↦ 𝑑𝑑2

𝑑𝑑𝑠𝑠2
𝜌𝜌𝑟𝑟(𝑠𝑠) for  

each 𝑠𝑠 in 𝑆𝑆.                  

Remark 2.8. In defining fundamental inequality of logarithmic convexity these described positive 
functionals are very useful.  

Γ1(𝜂𝜂𝑟𝑟) =
1
𝑟𝑟2
�𝑎𝑎 exp�

𝑟𝑟(𝛼𝛼 + 𝛾𝛾)
2 � + 𝑏𝑏 exp �

𝑟𝑟(𝛽𝛽 + 𝛾𝛾)
2 � − exp�

𝑟𝑟(𝛼𝛼 + 𝛽𝛽)
2 � �. 
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Γ1(𝜁𝜁𝑟𝑟) =
1

𝑟𝑟(𝑟𝑟 − 1)2𝑟𝑟
[𝑎𝑎(𝛼𝛼 + 𝛾𝛾)𝑟𝑟 + 𝑏𝑏(𝛾𝛾 + 𝛽𝛽)𝑟𝑟 − (𝛼𝛼 + 𝛽𝛽)𝑟𝑟]. 

Γ1(𝜉𝜉𝑟𝑟) =
1

2 log 𝑟𝑟 �
𝑎𝑎 𝑟𝑟−

1
2(𝛼𝛼+𝛾𝛾) + 𝑏𝑏 𝑟𝑟−

1
2(𝛽𝛽+𝛾𝛾) − 𝑟𝑟−

1
2(𝛼𝛼+𝛽𝛽)�. 

Γ1(𝜌𝜌𝑟𝑟) =
1
𝑟𝑟 �
𝑎𝑎 exp �−

1
2

(𝛼𝛼 + 𝛾𝛾)√𝑟𝑟� + 𝑏𝑏 exp �−
1
2

(𝛽𝛽 + 𝛾𝛾)√𝑟𝑟� − exp �−
1
2

(𝛼𝛼 + 𝛽𝛽)√𝑟𝑟��. 

 

Theorem 2.9. Consider the linear functional  Γ1(𝜓𝜓) stated in (3). Now for 𝑗𝑗 = 1, 4 and 𝑗𝑗 = 2, 3 let’s 
define  𝜃𝜃𝑗𝑗: (0,∞)  →  ℝ and  𝜃𝜃𝑗𝑗 ∶  (1,∞)  →  ℝ, respectively, as 

𝜃𝜃1 (𝑟𝑟) =  Γ1(𝜂𝜂𝑟𝑟), 𝜃𝜃2 (𝑟𝑟) =  Γ1(𝜁𝜁𝑟𝑟), 𝜃𝜃3 (𝑟𝑟) =  Γ1(𝜉𝜉𝑟𝑟), 𝜃𝜃4 (𝑟𝑟) =  Γ1(𝜌𝜌𝑟𝑟). 

We then have: 

(i) For 𝑗𝑗 = 1, 4 and 𝑗𝑗 = 2, 3, 𝜃𝜃𝑗𝑗 functions preserve continuity on (0,∞) and (1,∞), respectively. 

(ii) For natural number 𝑚𝑚, suppose 𝑟𝑟𝑗𝑗 ∈ (0,∞)  (1 ≤ 𝑗𝑗 ≤ 𝑚𝑚) and  𝑟𝑟𝑗𝑗 ∈ (1,∞)  (1 ≤ 𝑗𝑗 ≤ 𝑚𝑚) for 
𝑗𝑗 = 1, 4 and 𝑗𝑗 = 2, 3, respectively. This implies that the below matrices are positive 
semidefinite. 

�𝜃𝜃𝑗𝑗 �
𝑟𝑟𝑖𝑖 + 𝑟𝑟𝑘𝑘

2
� �

𝑘𝑘,𝑖𝑖=1

𝑚𝑚
. 

(iii) The exponential convexity holds for 𝜃𝜃𝑗𝑗 functions on (0,∞) and (1,∞) for 𝑗𝑗 =  1,4 and 𝑗𝑗 =  2,3, 
respectively. 

(iv) Suppose  𝑠𝑠, 𝑡𝑡,𝑢𝑢 ∈  (0,∞)  and 𝑠𝑠, 𝑡𝑡,𝑢𝑢 ∈  (1,∞)  for 𝑗𝑗 = 1, 4 and j =  2, 3, respectively. It yields 

�𝜃𝜃𝑗𝑗(𝑡𝑡)�
𝑢𝑢−𝑠𝑠

≤ �𝜃𝜃𝑗𝑗(𝑠𝑠)�
𝑢𝑢−𝑡𝑡

�𝜃𝜃𝑗𝑗(𝑢𝑢)�
𝑡𝑡−𝑠𝑠

. 

(v) Assume that 𝜃𝜃𝑗𝑗 functions are strictly positive and their first order derivative also exist on  (0,∞) 
and (1,∞) for 𝑗𝑗 = 1, 4 and 𝑗𝑗 =  2,3, respectively. Then for 𝑖𝑖 ≤  𝑠𝑠 and 𝑘𝑘 ≤  𝑡𝑡, where  
𝑖𝑖,𝑘𝑘, 𝑠𝑠, 𝑡𝑡 ∈ (0,∞) and 𝑖𝑖,𝑘𝑘, 𝑠𝑠, 𝑡𝑡 ∈ (1,∞) for 𝑗𝑗 =  1,4 and 𝑗𝑗 =  2, 3, respectively yield 

𝜅𝜅 �𝑖𝑖,𝑘𝑘 ; 𝜃𝜃𝑗𝑗� ≤  𝜅𝜅 �𝑠𝑠, 𝑡𝑡 ; 𝜃𝜃𝑗𝑗�, 

               with 

(9) 

𝜅𝜅 (𝑖𝑖, 𝑘𝑘 ;𝜃𝜃𝑗𝑗) =

⎩
⎪⎪
⎨

⎪⎪
⎧

�
𝜃𝜃𝑗𝑗(𝑖𝑖)
𝜃𝜃𝑗𝑗(𝑘𝑘)�

1
𝑖𝑖−𝑘𝑘

, 𝑖𝑖 ≠ 𝑘𝑘;

exp�
𝑑𝑑
𝑑𝑑𝑖𝑖 �𝜃𝜃𝑗𝑗(𝑖𝑖)�
𝜃𝜃𝑗𝑗(𝑖𝑖)

� ,  𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒.

 

 

 

Proof. (i) The functions 𝑟𝑟 ↦ 𝜃𝜃𝑗𝑗 (𝑟𝑟)  (1 ≤ 𝑗𝑗 ≤ 4) are obviously continuous. 

(ii) For natural number 𝑚𝑚 and 𝑐𝑐𝑘𝑘  , 𝑐𝑐𝑖𝑖 are real numbers for 𝑘𝑘, 𝑖𝑖 = 1,⋯ ,𝑚𝑚. Consider the function Υ1on the 
set 𝑆𝑆 =ℝ defined as  
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Υ1(𝑠𝑠) = � 𝑐𝑐𝑘𝑘𝑐𝑐𝑖𝑖𝜂𝜂𝑟𝑟𝑘𝑘+𝑟𝑟𝑖𝑖
2

(𝑠𝑠)
𝑚𝑚

𝑘𝑘,𝑖𝑖=1

. 

Now for 𝑠𝑠 ∈ 𝑆𝑆 Lemma 2.7 yields 

Υ1′′(𝑠𝑠) = ∑ 𝑐𝑐𝑘𝑘𝑐𝑐𝑖𝑖
𝑑𝑑2

𝑑𝑑𝑠𝑠2
𝜂𝜂𝑟𝑟𝑘𝑘+𝑟𝑟𝑖𝑖

2
(𝑠𝑠)𝑚𝑚

𝑘𝑘,𝑖𝑖=1 ≥ 0.  

This yields the convexity of Υ1. Theorem 1.1 results that Γ1(Υ1) is non negative. It implies that the 
following matrix is a positive semidefinite matrix 

�𝜃𝜃1 �
𝑟𝑟𝑖𝑖 + 𝑟𝑟𝑘𝑘

2
� �

𝑘𝑘,𝑖𝑖=1

𝑚𝑚
. 

 

is a positive semidefinite matrix. 

Analogously, the auxiliary functions Υj   (𝑗𝑗 ∈ {2, 3, 4}) may be defined that are helpful in proving rest 
of the positive semidefinite matrices.  

(i), (ii) and Lemma 2.3 simply yield (iii) and (iv). Part (iv) is simply used to prove (v).                               

 
3. MEAN VALUE THEOREMS 

Below lemma is important in proving our results. 

Lemma 3.1. [21] Consider 𝑆𝑆 = [𝛼𝛼,𝛽𝛽] ⊆  ℝ,   𝜓𝜓 ∈  𝐶𝐶2(𝑆𝑆). Suppose 𝜓𝜓 ∶  𝑆𝑆 →  𝑅𝑅, 𝜓𝜓″is bounded and let 
𝑑𝑑 = inf𝑠𝑠∈𝑆𝑆 𝜓𝜓′′(𝑠𝑠) ,𝐷𝐷 = sup𝑠𝑠∈𝑆𝑆 𝜓𝜓′′(𝑠𝑠). It implies the convexity of the real functions 𝜓𝜓1,𝜓𝜓2 defined over  
the set 𝑆𝑆 as 

(10) 𝜓𝜓1(𝑠𝑠) =
𝐷𝐷
2
𝑠𝑠2 − 𝜓𝜓(𝑠𝑠) 

𝜓𝜓2(𝑠𝑠) = 𝜓𝜓(𝑠𝑠)−
𝑑𝑑
2
𝑠𝑠2. 

 

Theorem 3.2. Suppose a compact set 𝑆𝑆 = [𝛼𝛼,𝛽𝛽](⊆ ℝ) and assume a real function 𝜓𝜓 on 𝑆𝑆, where 
𝜓𝜓 ∈  𝐶𝐶2(𝑆𝑆 ). Consider the points 𝛾𝛾, 𝛿𝛿 ∈  𝑆𝑆, and 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 are defined in (1). It implies the existence of 
point 𝜏𝜏 ∈ 𝑆𝑆 such that 

(11) 
𝑎𝑎𝜓𝜓 �

𝛼𝛼 + 𝛾𝛾
2

� + 𝑏𝑏𝜓𝜓�
𝛽𝛽 + 𝛾𝛾

2
� − 𝜓𝜓 �

𝛼𝛼 + 𝛽𝛽
2

� = 𝜀𝜀𝜓𝜓′′(𝜏𝜏), 
 

where 

                                         𝜀𝜀 = 1
2
�𝑎𝑎 �𝛼𝛼+𝛾𝛾

2
�
2

+ 𝑏𝑏 �𝛽𝛽+𝛾𝛾
2
�
2
− �𝛼𝛼+𝛽𝛽

2
�
2
�                                                       

Proof. Suppose 𝑑𝑑 = min𝑠𝑠∈𝑆𝑆 𝜓𝜓′′(𝑠𝑠) ,𝐷𝐷 = max𝑠𝑠∈𝑆𝑆 𝜓𝜓′′(𝑠𝑠). Lemma 3.1 follows the convexity of functions 
𝜓𝜓1,𝜓𝜓2:𝑆𝑆 →  ℝ; the continuity property also holds for 𝜓𝜓1 and 𝜓𝜓2. Now using the leftmost inequality of 
(2) yields 

𝑎𝑎𝜓𝜓 �
𝛼𝛼 + 𝛾𝛾

2
� + 𝑏𝑏𝜓𝜓�

𝛽𝛽 + 𝛾𝛾
2

� − 𝜓𝜓 �
𝛼𝛼 + 𝛽𝛽

2
� ≤ 𝜀𝜀𝐷𝐷, 
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and  

𝑎𝑎𝑎𝑎 �
𝛼𝛼 + 𝛾𝛾

2
� + 𝑏𝑏𝑎𝑎 �

𝛽𝛽 + 𝛾𝛾
2

� − 𝑎𝑎 �
𝛼𝛼 + 𝛽𝛽

2
� ≥ 𝜀𝜀𝜀𝜀. 

 

Joining the above two inequalities and using the fact that second order derivative of 𝑎𝑎 is continuous, 
results the existence of a point 𝜏𝜏 in 𝑆𝑆 with 𝜀𝜀 ≤ 𝑎𝑎″(𝜏𝜏) ≤  𝐷𝐷. This proves the required result.  

Theorem 3.3. Suppose a compact set 𝑆𝑆 = [𝛼𝛼,𝛽𝛽](⊆ ℝ) and assume two real functions 𝜒𝜒,𝑎𝑎 on 𝑆𝑆, where 
𝜒𝜒,𝑎𝑎 ∈  𝐶𝐶2(𝑆𝑆 ). Consider the points 𝛾𝛾, 𝛿𝛿 ∈  𝑆𝑆, and 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝜀𝜀 are defined in (1). It implies the existence of 
point 𝜏𝜏 ∈ 𝑆𝑆 such that  

(12) 
𝑎𝑎′′(𝜏𝜏) �𝑎𝑎𝜒𝜒 �

𝛼𝛼 + 𝛾𝛾
2

� + 𝑏𝑏𝜒𝜒 �
𝛽𝛽 + 𝛾𝛾

2
� − 𝜒𝜒 �

𝛼𝛼 + 𝛽𝛽
2

�� 

= 𝜒𝜒′′(𝜏𝜏) �𝑎𝑎𝑎𝑎 �
𝛼𝛼 + 𝛾𝛾

2
� + 𝑏𝑏𝑎𝑎 �

𝛽𝛽 + 𝛾𝛾
2

� − 𝑎𝑎 �
𝛼𝛼 + 𝛽𝛽

2
��. 

 

Proof. Define a function  𝜗𝜗 ∈ 𝐶𝐶2(𝑆𝑆)  by  𝜗𝜗 =  𝑒𝑒1𝜒𝜒 − 𝑒𝑒2𝑎𝑎, where  

(13) 
𝑒𝑒1 = 𝑎𝑎𝑎𝑎 �

𝛼𝛼 + 𝛾𝛾
2

� + 𝑏𝑏𝑎𝑎 �
𝛽𝛽 + 𝛾𝛾

2
� − 𝑎𝑎 �

𝛼𝛼 + 𝛽𝛽
2

� 
 

and 

(14) 
𝑒𝑒2 = 𝑎𝑎𝜒𝜒 �

𝛼𝛼 + 𝛾𝛾
2

� + 𝑏𝑏𝜒𝜒 �
𝛽𝛽 + 𝛾𝛾

2
� − 𝜒𝜒 �

𝛼𝛼 + 𝛽𝛽
2

�. 
 

As the function 𝜗𝜗 ∈  𝐶𝐶2(𝑆𝑆) and implementing this function to Theorem 3.2 implies the existence of a 
point 𝜏𝜏 ∈  𝑆𝑆 such as 

(15) 
𝑎𝑎𝜗𝜗 �

𝛼𝛼 + 𝛾𝛾
2

� + 𝑏𝑏𝜗𝜗 �
𝛽𝛽 + 𝛾𝛾

2
� − 𝜗𝜗 �

𝛼𝛼 + 𝛽𝛽
2

� = 𝜀𝜀𝜗𝜗′′(𝜏𝜏). 
 

The expression on right side of this equation is non zero, whereas the one on the left side is zero. Thus it 
follows, 𝜗𝜗′′(𝜏𝜏) = 0 concluding the required result.  

Remark 3.4. We may describe different types of means by applying (12) under the assumption that 𝜒𝜒″/𝑎𝑎″ 

is invertible. 

Such as, 

(16) 

 
𝜏𝜏 = �

𝜒𝜒′′

𝑎𝑎′′�
−1

�
Γ1(𝜒𝜒)
Γ1(𝑎𝑎)�. 

 

 

Applying mean value Theorem 3.3 (Cauchy kind) on 𝜒𝜒 = 𝜂𝜂𝑗𝑗  ,𝑎𝑎 = 𝜂𝜂𝑘𝑘 (given by Lemma 2.7). This implies 

𝑄𝑄(𝑗𝑗,𝑘𝑘;  Γ1) = log𝜅𝜅(𝑗𝑗,𝑘𝑘; Γ1) 

provide 

𝛼𝛼 ≤ 𝑄𝑄(𝑗𝑗,𝑘𝑘; Γ1) ≤ 𝛽𝛽. 

Thus  𝑄𝑄(𝑗𝑗,𝑘𝑘;  Γ1) is a mean. Now suppose 𝑗𝑗,𝑘𝑘, 𝑠𝑠 and 𝑡𝑡 are real numbers such as 𝑗𝑗 ≤ 𝑘𝑘, 𝑠𝑠 ≤ 𝑡𝑡 then 
Theorem 2.9 results that this mean is monotonic. 
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𝜅𝜅 (𝑗𝑗,𝑘𝑘 ; Γ1) =

⎩
⎪
⎨

⎪
⎧
�
Γ1�𝜂𝜂𝑗𝑗�
Γ1(𝜂𝜂𝑘𝑘)�

1
𝑗𝑗−𝑘𝑘

                                , 𝑗𝑗 ≠ 𝑘𝑘;

exp�
Γ1�𝑖𝑖𝑖𝑖 ⋅ 𝜂𝜂𝑗𝑗�
Γ1�𝜂𝜂𝑗𝑗�

� . exp �−
2
𝑗𝑗
� ,  𝑗𝑗 = 𝑘𝑘 ≠ 0.

 

Furthermore, applying mean value Theorem 3.3 (Cauchy kind) on 𝜒𝜒 = 𝜁𝜁𝑗𝑗 ,𝜓𝜓 = 𝜁𝜁𝑘𝑘 (given by Lemma 
2.7). This implies the existence of an element 𝜏𝜏 ∈ 𝑆𝑆 so that  

𝜏𝜏𝑗𝑗−𝑘𝑘 =
Γ1(𝜁𝜁𝑗𝑗)
Γ1(𝜁𝜁𝑘𝑘)

. 

For distinct points 𝑗𝑗,𝑘𝑘, we obtain 

𝛼𝛼 ≤ �
Γ1�𝜁𝜁𝑗𝑗�
Γ1(𝜁𝜁𝑘𝑘)�

1
𝑗𝑗−𝑘𝑘

≤ 𝛽𝛽 

provided that 𝜏𝜏 ↦ 𝜏𝜏𝑗𝑗−𝑘𝑘 is invertible. This provides 𝜅𝜅(𝑗𝑗,𝑘𝑘;Γ1) is a mean which is monotonic as well,           
where 

𝜅𝜅 (𝑗𝑗,𝑘𝑘 ; Γ1) =

⎩
⎪
⎨

⎪
⎧
�
Γ1�𝜂𝜂𝑗𝑗�
Γ1(𝜂𝜂𝑘𝑘)�

1
𝑗𝑗−𝑘𝑘

                                            , 𝑗𝑗 ≠ 𝑘𝑘;

exp�−
Γ1�𝜁𝜁0 ⋅ 𝜁𝜁𝑗𝑗�
Γ1�𝜁𝜁𝑗𝑗�

� . exp �
1 − 2𝑗𝑗
𝑗𝑗(𝑗𝑗 − 1)

� ,  𝑗𝑗 = 𝑘𝑘 ≠ 1.

 

Remark 3.5. Analogous result can also be constructed for Γ𝑗𝑗(𝜓𝜓), 𝑗𝑗 =  2,3,4 stated in Remark 1.2. 
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