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1. INTRODUCTION 

In this paper, we consider third-order nonlinear differential equations of the form 

( ) ( ) ( ) ( , , , ),x f x x g x h x p t x x x+ + + =           (1) 

where : ,f  ℜ → ℜ : ,g  ℜ → ℜ :h  ℜ → ℜ and :f  +ℜ ×ℜ×ℜ×ℜ → ℜ are continuous functions, 

( , ),ℜ = −∞ ∞  [0, ),+ℜ = ∞ and p  is a T -  periodic function, that is, 

( , , , ) ( , , , ),p t T x x x p t x x x+ =    0,T > .T ∈ ℜ  

We investigate here the existence of periodic solutions of Eq. (1). 

In 1974, Reisisg et al. [6] considered the following non-linear differential equations of third order 

( ) ( ),x ax bx h x p t+ + + =    (2) 

( ) ( )x ax g x cx p t+ + + =    (3) 

and 

( ) ( ),x f x bx cx p t+ + + =    (4) 

where ,a b and c  are  real constants. 

Reissig et al. [6] discussed the existence of periodic solutions to Eq. (2) – Eq. (4) by using the Leray-
Schauder degree theory. 

Then, in 1991, Andres and Vlček [2] investigated the existence of periodic solutions of the following 
triad differential equations of third order  
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( , ) ( ),x L t x a x+ =   

( , ) ( )x L t x b x+ =   

and 

( , ) ( ),x L t x c x+ =   

where 

( , ) ( ) ( ) ( ) ( ) ( , , , ).L t x f t x g t x h x p t q t x x x= + + + +     

They benefited from the standard Leray-Schauder alternative method to perform the proofs of the results 
of [2]. 

Then, in 1996, Andres [3]) investigated the existence of periodic solutions to Eq. (2)–Eq. (4).The 
results of [3] have been proved by means of the Lyapunov’s second method. 

Later, in 1999, Huang [5] generalized the results of [1–3] and [6] to nonlinear differential equation of 
third order 

( ) ( ) ( ) ( )x f x g x h x p t+ + + =                                (5) 

by help of Leray-Schauder degree theory. 

Further, Tunç [8] studied the existence of periodic solutions to the following nonlinear differential 
equation of third order 

2 1( ) ( ) ( , ) ( , , , )x c t x c t x f t x p t x x x+ + + =      

by using the Leray-Schauder degree theory. 

For some the other works related to the existence of the periodic solutions of certain non-linear 
differential equations of third order, we refer the readers to various papers of [4, 7, 9, 10], [11]. 

It is worth mentioning to state some results of [1–3, 6]. 

Theorem A.  Eq. (2), Eq. (3) or Eq. (4) has at least one T-periodic solution if they satisfy the following 
assumptions, ( 1),A ( 2)A  and ( 3),A respectively: 

( 1)A
2

2

4 ,b
T
π<  

and there is a constant 0R > such that 
[ ( ) ] 0h x p x− <  

or 
[ ( ) ] 0,h x p x− >  

for ,x R>  where 
0

1 ( ) ,
T

p p t dt
T

= ∫  

( 2)A 0,ac <  

( 3)A
2

2

4 ,b
T
π< 0.c ≠  

We now consider the following linear and non-homogeneous differential equation of third order with 
constant coefficients ,a b  and :c  

( ).x ax bx cx p t+ + + =                                                        (6) 

It is well known from the relevant literature that the sufficient condition to guarantee the existence of 
T-periodic solutions for Eq. (6) is that the corresponding linear homogeneous equation 
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0x ax bx cx+ + + =                                            (7) 

does not have non-trivial T-periodic solution.  

The characteristic equation of Eq. (7) is 
3 2 0.a b cλ λ λ+ + + =                 (8) 

The basic assumption for Eq. (6) does not have a non-trivial T -periodic solution is   

 

2 ,k i
T
πλ ≠  

where k  is an integer number.  

From 
2k i

T
πλ = and Eq. (8), we know that  

2 2

2

4c k
a T

π=  

and 
2 2

2

4 .kb
T

π=  

Hence, we can say that if one of the following conditions 

( 1)H
2 2

2

4c k
a T

π≠  

or 

( 2)H
2 2

2

4kb
T

π≠  

holds, then Eq. (7) does not have a non-trivial T-periodic solution. Therefore, these conditions guarantee 
the existence of T-periodic solutions of Eq. (6). 

 

In order to perform the main problems of this paper, we apply the following standard the Leray-
Schauder ‘s theorem (Reisisg et al. [6], Theorem 1.38). 

 

Theorem B.  Let  

( , ) ( ) ( ) ( ) ( ) ( , , , ).L t x f t x g t x h x p t q t x x x= + + + +     

If all ω − periodic solutions of the one parametric family of equations  

( , ) (1 ) ( , , ),x L t x ex w x x xµ µ µ+ + − =   (0,1),µ ∈  

where  ( , , )w x x x   denotes ( )a x  or ( )b x  or ( )c x  and  e  is a suitable non-zero real,  are uniformly priori 
bounded together with their first, second derivatives, independently of (0,1),µ ∈  and the linear equation, 
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resulting from the former differential equation for 0,µ =  has no non-trivial ω − periodic solution, then 
the equation obtained from the former equation for 1µ =  admits a harmonic. 

 

Proof. See [6, Theorem 1.38]. 

The aim of this paper is to study the existence of T-periodic solutions of Eq. (1). We benefit from the 
Leray-Schauder degree theory to obtain sufficient conditions which guarantee the existence of T-periodic 
solutions for Eq. (1).  

It is worth mentioning that when we compare Eq. (6) with Eq. (1), it can be seen that Eq. (1) is a 
non-linear generalization of Eq. (6). In fact, it is natural to expect that the assumptions to be established 
here for the existence of T-periodic solutions of Eq. (1) can be a non-linear generalization of assumptions
( 1)H  or ( 2).H  

In addition, it follows that Eq. (1) includes and improves Eq.(2)-Eq. (3) and Eq. (4)-Eq. (5) when 
( ) .f x x=   

Further, Eq. (1) is a different model from those discussed in the literature. This is the novelty and 
newness of the problem considered here. 

Eq. (1) can be rewritten as 

( ) ( )( ) ( , , , ),g x h xx f x x x x p t x x x
x x

+ + + =


     



                       (9) 

where 0x ≠  and 0.x ≠  

Then, the following question might be expected. Namely, if we take, respectively, ( ),f x ( ) ,g x
x




( )h x
x

 

as ,a ,b c of Eq. (6), and satisfy the similar conditions to ( 1),H 2( )H ,  can we conclude that Eq.(1) has 
the T-periodic solutions? The answer is no. However, when Eq. (1) satisfies similar conditions to ( 1)H  or 
( 2)H  and additional limited conditions, it can be proved the existence of T-periodic solutions of Eq. (1). 

The motivation of this paper comes from the results established by Huang [5], the related ones in the 
mentioned books, the papers mentioned and that found in theirs references. The main purpose of this 
paper is to investigate the existence of periodic solutions of Eq. (1) by using the Leray-Schauder degree 
theory. By this paper, we extend and improve the results of Huang [5] for Eq. (1).This paper has also a 
contribution to the subject, and it may be useful for researchers working on the qualitative properties of 
solutions of differential equations of third order. In view of all the mentioned information, it can be 
checked the novelty and originality of the present paper. 

 

2.  EXISTENCE OF PERIODIC SOLUTIONS  

The following lemma is needed in the proof of the main result.  

Lemma 1. Let 1( ) Ctξ ∈ , 2( ) [0, ]t L Tξ ∈ and 1M   and 2M be some positive constants. If 

2
10

( )
T

t dt Mξ ≤∫ ,
2

20
( ) ,

T
t dt Mξ ≤∫   (10)  

then there exists  a constant M >0  (only relative to 1M  , 2M ) such that ( )t Mξ ≤ for [0, ].t T∈  
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Proof. Let 1 2max{ , }L M M= and 2 1(2 ) .M T L−= +  Hence, we have ( ) .t Mξ ≤  If the former 

estimate is not true, then there may be 0 [0, ]t T∈  such that 2 2
0( ) .t Mξ >  In view of the estimates given 

by (10), it follows that there  is 1 [0, ]t T∈ such that 2
1( ) .Lt

T
ξ ≤  Hence, it is notable that  

0

1

2 2
0 12 [ ( ) ( )] 2 ( ) ( )

t

t

L t t t t dtξ ξ ξ ξ ′< − = ∫  

0

2 ( ) ( )
T

t  t dtξ ξ ′≤ ∫  

1 1
2 22 2

0 0

2 ( ) ( ) 2 ,
T T

t  dt t  dt Lξ ξ
   

′≤ ≤   
   
∫ ∫  

which is a contradiction. Thus, this completes the proof of Lemma 1. 

Lemma 2. Let 2( ) Ctξ ∈  be the periodic function of period .T Then 

2
2 2

20 0
( ( )) ( ( )) .

4
T TTt dt t dtξ ξ

π
≤∫ ∫   (11) 

Proof. Inequality (11) is a result of Wirtinger's inequality. Therefore, we leave its proof. 

 

The following theorem is our first main result on the existence of T-periodic solutions of Eq. (1). 

 

Theorem 1. We assume that there exist constants , ,a  c ( 0, 0),a  c≠ ≠ ( 0),m > and M >0 

such that the following conditions hold: 

( 1) ( ) ,A cx h x M− ≤  

( 2) ( ( )) 0,A a a f y− ≤  

2

2

4( 3) ,cA
a T

π<  

( 4)A ( , , , ) ( ) ,p t t mξ ξ ξ θ≤ ≤   

where ( )tθ is a continuous function for all [0, ].t T∈ Then, Eq.(1) has at least one T-periodic solution. 

Proof. Eq. (1) can be rewritten as 

1 1 1( , , , ) ( ) ( ) ( ) ,x ax cx p t x x x f x x g x h x+ + = + + +                                    (12) 

where 

1 ( ) ( ),f x a f x= −   

1 ( ) ( ),g x g x= −   

1 ( ) ( ).h x cx h x= −  
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Consider the following differential equation 

1 1 1[ ( , , , ) ( ) ( ) ( )],x ax cx p t x x x f x x g x h xλ+ + = + + +        (13) 

where (0,1)λ ∈ . 

For 1,λ = Eq. (13) becomes equal to Eq. (1) and when 0,λ =  becomes equal to differential equation 

 0,x ax cx+ + =   

 

which has only one trivial T-periodic solution.  

Regarding to the Leray-Schauder degree theory (see Theorem B, that is, [6, Theorem 1.38]), it is 
only needed to prove that all the T-periodic solutions ( )tξ  and ( ),tξ ( )tξ of Eq. (13) are uniformly 
bounded for all [0,1].λ ∈  

Let ( )tξ  be the T-periodic solution of Eq. (13). Multiplying Eq. (13) with 
( )t
a

ξ
 and then 

integrating from 0 to T, we have 

2

0 0 0

1 ( ) ( ) ( ( )) ( ) ( )
T T Tct t dt t dt t t dt

a a
ξ ξ ξ ξ ξ+ +∫ ∫ ∫     

1 1 10
( )[ ( , ( ), ( ), ( )) ( ( )) ( ) ( ( )) ( ( ))] .

T
t p t t t t f t t g t h t dt

a
λ ξ ξ ξ ξ ξ ξ ξ ξ= + + +∫        

Applying integration by parts, we obtain  

2 2

0 0 0
( ( )) ( ( )) ( ) ( , ( ), ( ), ( ))

T T Tct dt t dt t p t t t t dt
a a

λξ ξ ξ ξ ξ ξ− = ∫ ∫ ∫      

2
1 10 0

( ( )) ( ( )) ( ) ( ( )) .
T T

t f t dt t h t dtξ ξ ξ ξ + + ∫ ∫                  (14)  

It is well known from Lemma 2 that if 2( ) Ctξ ∈  is a periodic function of period ,T then 

2
2 2

20 0
( ( )) ( ( )) .

4
T TTt dt t dtξ ξ

π
≤∫ ∫   

When we use this inequality in (14), we obtain 

2

0
( ( ))

T
t dtξ∫ 

2

0 0
( ( )) ( ) ( , ( ), ( ), ( ))

T Tc t dt t p t t t t dt
a a

λξ ξ ξ ξ ξ= +∫ ∫     

2
1 10 0

1 1( ( )) ( ( )) ( ) ( ( ))
T T

t f t dt t h t dt
a a

ξ ξ ξ ξ+ +∫ ∫    

2
2

2 0
( ( ))

4
TcT t dt

a
ξ

π
≤ ∫ 

0

1 ( ) ( , ( ), ( ), ( ))
T

t p t t t t dt
a

ξ ξ ξ ξ+ ∫     

By re-arranging the former inequality, we have  
2

2 2
20 0

( ( )) ( ( ))
4

T TcTt dt t dt
a

ξ ξ
π

−∫ ∫   

212 Cemil Tunç & Sultan Erdur



2
120 0

1 1( ) ( , ( ), ( ), ( )) ( ( ))( ( ))
T T

t p t t t t dt a f t t dt
a a

ξ ξ ξ ξ ξ ξ≤ +∫ ∫      

10

1 ( ) ( ( ))
T

t h t dt
a

ξ ξ+ ∫   

Then, it follows from condition ( 2)A  of Theorem 1 that 

2
2

12 0 0 0

1 11 ( ( )) ( ) ( , ( ), ( ), ( )) ( ) ( ( ))
4

T T TcT t dt t p t t t t dt t h t dt
a a a

ξ ξ ξ ξ ξ ξ ξ
π

 
− ≤ + 

 
∫ ∫ ∫      

so that 
2 2

12 0 0 0

11 ( ) ( ) ( , ( ), ( ), ( )) ( ) ( ( )) .
4

T T TcT t dt t p t t t t dt t h t dt
a a

ξ ξ ξ ξ ξ ξ ξ
π

   − ≤ +     
∫ ∫ ∫      

By Lemma 2 and the conditions of Theorem 1, we have 

( ) ( )
12 2 2 2

2 0 0 0
1 ( ) ( ) ( ) .

4
T T TcT m M m Mt dt t dt T t dt

a a a
ξ ξ ξ

π
  + +− ≤ ≤ 
 

∫ ∫ ∫    

That is, 

( )
1 122 2

20
( ) 1 .

4
T cT m Mt dt T

a a
ξ

π

−
  +≤ − 
 

∫   

Let 
212

121 .
4
cT m M T M
a aπ

−   + − =    
 

Then 
2

10
( ) ,

T
t dt Mξ ≤∫   

where 1 0M >  is independent of .λ  

Also, in view of the last inequality, it follows from Lemma 2 that there exists a constant 2 0M > such 
that  

2

20
( )

T
t dt Mξ ≤∫  . 

From Lemma 1, it follows that there exists 3 0M >  such that 

3( ) .t Mξ ≤  

Multiplying Eq. (13) with ( )tξ  and then integrating from 0 to T, we have 

2

0 0 0
( ( )) ( ) ( ) ( ) ( )

T T T
t dt a t t dt c t t dtξ ξ ξ ξ ξ+ +∫ ∫ ∫     
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1 1 10
( )[ ( , ( ), ( ), ( )) ( ( )) ( ) ( ( )) ( ( ))] .

T
t p t t t t f t t g t h t dtλ ξ ξ ξ ξ ξ ξ ξ ξ= + + +∫        

Applying integration by parts, we obtain 
2

1 1 10 0
( ) ( )[ ( , ( ), ( ), ( )) ( ( )) ( ) ( ( )) ( ( ))] .

T T
t dt t p t t t t f t t g t h t dtξ λ ξ ξ ξ ξ ξ ξ ξ ξ= + + +∫ ∫        

Hence, it follows that 
2

0 0
( ) ( ) ( , ( ), ( ), ( ))

T T
t dt t p t t t t dtξ ξ ξ ξ ξ≤∫ ∫     

1 1 10 0 0
( ( )) ( ) ( ) ( ( )) ( ) ( ( )) ( ) .

T T T
f t t t dt g t t dt h t t dtξ ξ ξ ξ ξ ξ ξ+ + +∫ ∫ ∫       

For 3( ) ,t Mξ ≤ it is clear that there exist constants 4 5, 0M M >  such that 

1 4g ( ) Mξ ≤ , 

1 5( ) ( )f a f Mξ ξ= − ≤ 

.
 

And also we know from Theorem 1 that 

1 ( ) ( ) .h x cx h x M= − ≤  

 Then, we have 

( )
1

2 2 2
4 40 0 0

( ) ( ) ( ) ( ) ( ) .
T T T

t dt m M M t dt m M M T t dtξ ξ ξ≤ + + ≤ + +∫ ∫ ∫    

Therefore, there exists 6 0M >  such that 

2

60
( ) .

T
t dt Mξ ≤∫   

By Lemma 1, it follows that there exists a constant 7 0M >  such that 7( ) .t Mξ ≤ Multiplying Eq. (13) 

with ( )tξ and then integrating from 0 to T, we have 

 

2

0 0 0
( ) ( ) ( ) ( ) ( ( ))

T T T
t t dt a t t dt c t dtξ ξ ξ ξ ξ+ +∫ ∫ ∫   

1 1 10
( )[ ( , ( ), ( ), ( )) ( ( )) ( ) ( ( )) ( ( ))] .

T
t p t t t t f t t g t h t dtλ ξ ξ ξ ξ ξ ξ ξ ξ= + + +∫       

Applying integrating by parts, we obtain 

2 2

0 0
( ( )) ( ( ))

T T
a t dt c t dtξ ξ− +∫ ∫

1 1 10
( )[ ( , ( ), ( ), ( )) ( ( )) ( ) ( ( )) ( ( ))] .

T
t p t t t t f t t g t h t dtλ ξ ξ ξ ξ ξ ξ ξ ξ= + + +∫       

Hence, it can be followed that  

2

0 0

1( ) ( , ( ), ( ), ( )) ( )
T T

t dt p t t t t t dt
c

ξ ξ ξ ξ ξ≤ ∫ ∫  

10
( ( )) ( ) ( )

T
f t t t dtξ ξ ξ+∫    
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1 10 0 0
( ( )) ( ) ( ( )) ( ) ( ) .

T T Ta
g t t dt h t t dt t dt

c
ξ ξ ξ ξ ξ+ + +∫ ∫ ∫   

By noting the assumptions of Theorem 1, we get  

22 54

0 0 0

( )
( ) ( ) ( )

T T TM am M M
t dt t dt t dt

c c
ξ ξ ξ

++ +
≤ +∫ ∫ ∫   

( )
1

22 2 54

0 0

( )
( ) ( ) .

T TM am M M
T t dt t dt

c c
ξ ξ

++ +
≤ +∫ ∫   

Then, in view of the assumptions of Lemma 2, it is obvious that  
1

2 22 22 54
20 0 0

( )
( ) ( ) ( ) .

4
T T TM am M M Tt dt T t dt t dt

c c
ξ ξ ξ

π
+ + +

≤ + 
 

∫ ∫ ∫   

Since 
2

20
( ) ,

T
t dt Mξ ≤∫   

then right hand side of the former inequality is bounded and there exists 8 0M >  such that 

2
80

( ) .
T

t dt Mξ ≤∫  

Furthermore, we conclude from Lemma 1 that there exists a constant  9 0M >  such that 

9( ) .t Mξ ≤  

Since , ( 1, 2,....,9),iM i =  are independent of ,λ  we know ( ) ,  ( )t tξ ξ  and ( )tξ  are uniformly 

bounded to .λ Then,  Eq.(1) has at least one T-periodic solution. This completes the proof of Theorem 1.  

 

Our second main result is the following theorem on the existence of T-periodic solutions of Eq. (1). 

 

Theorem 2. In addition to assumptions ( 1)A and ( 4)A  of Theorem 1, (except assumptions ( 2)A and 
( 3)A ), we assume there exist constants ,  ( 0)b c c ≠  and ,  ,  0Mα β >  such that the following 
conditions hold:  

( 1) ( ) ,B by g y yα β− ≤ +  

2

2

4( 2) .B b
T
π<  

Then, there exists a constant 0 0,α > when 0 ,α α< Eq.(1) has at least one T-periodic solution. 

Proof. It is clear from Eq. (1) that 

1 1 1( , , , ) ( ) g ( ) ( ),x bx cx p t x x x f x x x h x+ + = + + +        

where 
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1 ( ) ( ),f x f x= −   

1 ( ) ( ),g x bx g x= −    

1 ( ) ( ).h x cx h x= −  

We now consider the following differential equation 

1 1 1[ ( , , , ) ( ) g ( ) ( )] ,x bx cx p t x x x f x x x h xλ+ + = + + +        (15)  

where [0,1].λ ∈  

Similar to Theorem 1, we have only to prove that all the T-periodic solutions ( ),  ( )t tξ ξ  and ( )tξ of 
Eq. (15) are uniformly bounded for all [0,1].λ ∈  

Let ( )tξ be T-periodic solution of Eq. (15), that is, 

( ) ( ) ( )t b t c tξ ξ ξ+ +    

1 1 1[ ( , ( ), ( ), ( )) ( ( )) ( ) g ( ( )) ( ( ))] .p t t t t f t t t h tλ ξ ξ ξ ξ ξ ξ ξ= + + +                   (16) 

Multiplying Eq. (16) by ( )tξ and then integrating from 0 to T, we have 

2 2

0 0
( ( )) ( ( ))

T T
t dt b t dtξ ξ−∫ ∫   

1 1 10
( )[ ( , ( ), ( ), ( )) ( ( )) ( ) ( ( )) ( ( ))] .

T
t p t t t t f t t g t h t dtλ ξ ξ ξ ξ ξ ξ ξ ξ= + + +∫        

Thus, by the assumptions of Theorem 2 and Lemma 2, we can easily obtain  
22 2

20 0 0 0
( ) ( ) ( ) ( ) ( ) ( )

4
T T T TTt dt b t dt m M t dt t t dt Tξ ξ ξ α ξ ξ β

π
≤ + + + +∫ ∫ ∫ ∫      

( )
12 2 2 2

2 0 0
( ) ( ) ( )

4
T TTb t dt m M T t dtξ ξ

π
≤ + +∫ ∫   

( ) ( )
1 1

2 22 2

0 0
( ) ( )

T T
t dt t dt Tα ξ ξ β+ +∫ ∫   

( )
12

2 2 2
2 0 0

( )
( ) ( ) ( ) .

4
T Tb T

t dt m M T t dt T
α

ξ ξ β
π

 +
≤ + + +   

∫ ∫   

Hence, it follows that there exist constants 0 0,α > 1 0,M >  when 0 ,α α<  such that 

2

10
( ) ,

T
t dt Mξ ≤∫     

where 1M  independent of .λ  

The rest of the proof can be completed by following a similar way as shown in the proof of Theorem 1. 
Therefore, we omit the details. 

Example. We consider the following third order nonlinear differential equation 

 
2 2

(2 ) sin (2 ) sin 2 ,x xx e x x x e t− −+ + + + − =

    (17) 
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which is a special case of Eq. (1). 
 
When we compare the former equation, Eq. (17), with Eq. (1), it follows that  

2

( ) 2 ,xf x e−= + 

  
( ) sin ,g x x=   

2

( ) 2 ,xh x x e−= −  
( , , , ) sin 2 .p t x x x t=   

 
Then, Eq.  (17) can be rewritten as 

1 1 12 sin 2 ( ) ( ) ( ) ,x x x t f x x g x h x+ + = + + +      
where 

1,a = 2,c =  
2 2

1 ( ) ( ) 1 (2 ) (1 ),x xf x a f x e e− −= − = − + = − + 

   

1 ( ) ( ) sin ,g x g x x= − = −    
2 2

1 ( ) ( ) 2 (2 ) .x xh x cx h x x x e e− −= − = − − =  
 
Therefore, we can see that  

2 2

2 sin 2 (1 ) sin .x xx x x t e x x e− −+ + = − + − +

     
 
Hence, it is clear that  

2

( ) 1 , 0,xcx h x e M M−− ≤ ≤ = >  
2

( ( )) (1 ) 0,ya a f y e−− = − + ≤  
2

2

42 ,c
a T

π= <  

where .T π=  

Thus, all the assumptions of Theorem 1 hold. Thus, we can conclude that Eq. (17) has at least one T -
periodic solution. 

 

3. CONCLUSIONS  

We consider a specific non-linear differential equation of third order. We describe certain sufficient 
conditions guaranteeing the existence of at the least one periodic solution for the equation considered. We 
prove two new theorems on the subject by the help of Leray-Schauder degree theory. The results obtained 
essentially complement, extend and improve some well-known results in the literature to a more general 
non-linear case.  
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