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Abstract: Nowadays, numerical models have great importance in every field of science, especially for solving the
nonlinear differential equations, partial differential equations, biochemical reactions, etc. In this article, we
familiarize fractional-order into a model of Michaelis-Menten. We learned the influence of the changing of different
values of fractional order.  We display that the model familiarize in this article has nonnegative elucidations. We
have checked the stability of the system. Numerical replications are also offered to confirm the attained results. 
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1. INTRODUCTION 

The enzyme kinetics model is a chemical model which includes a nonlinear reaction. The model consists
of the binding/unbinding of enzyme and substrate, and production of the product. The model mechanism
is described as follows: 

                                                                 𝐸𝐸 + 𝑆𝑆 ⇌𝑘𝑘−1
𝑘𝑘1 𝐸𝐸𝑆𝑆

𝑘𝑘2→  𝐸𝐸 + 𝑃𝑃                                                          (1) 

where 𝐸𝐸, 𝑆𝑆, 𝐸𝐸𝑆𝑆 and 𝑃𝑃 denote enzyme, substrate, enzyme-substrate complex and product, respectively, and 
𝑘𝑘1, 𝑘𝑘−1 and 𝑘𝑘2 denote the rates of reactions. If we denote the concentrations of 𝐸𝐸, 𝑆𝑆, 𝐸𝐸𝑆𝑆, 𝑃𝑃 by 𝑦𝑦1, 𝑦𝑦2, 𝑦𝑦3, 
𝑦𝑦4, respectively, and 𝒚𝒚 =  (𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑦𝑦4)𝑇𝑇 , we write the governing equation as 

                                        𝑑𝑑𝒚𝒚
𝑑𝑑𝑑𝑑

= �
−1 1 1
−1 1 0
1
0

−1
0

−1
1

� �
𝑘𝑘1𝑦𝑦1𝑦𝑦2
𝑘𝑘−1𝑦𝑦3
𝑘𝑘2𝑦𝑦3

� = �

−𝑘𝑘1𝑦𝑦1𝑦𝑦2 + 𝑘𝑘−1𝑦𝑦3 + 𝑘𝑘2𝑦𝑦3
−𝑘𝑘1𝑦𝑦1𝑦𝑦2 + 𝑘𝑘−1𝑦𝑦3

𝑘𝑘1𝑦𝑦1𝑦𝑦2 − 𝑘𝑘−1𝑦𝑦3 − 𝑘𝑘2𝑦𝑦3
𝑘𝑘2𝑦𝑦3

�,                      (2) 

We assume a typical initial condition (𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑦𝑦4) = (𝑒𝑒0, 𝑠𝑠0, 0,0). Since the substrate is exhausted 
and it produces the product 𝑃𝑃 at the equilibrium, the equilibrium of the model can be founded easily as 
(𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑦𝑦4) = (𝑒𝑒0, 0,0, 𝑠𝑠0). Since the conserved quantities for the model are 𝑦𝑦1 + 𝑦𝑦3 + 𝑦𝑦4 = 𝑠𝑠0 and 
𝑦𝑦2 + 𝑦𝑦3 = 𝑒𝑒0, one can reduce the above system (2) into 

𝑑𝑑𝑦𝑦1
𝑑𝑑𝑑𝑑

= −𝑘𝑘1𝑒𝑒0𝑦𝑦1 + 𝑘𝑘1𝑦𝑦1𝑦𝑦3 + 𝑘𝑘−1𝑦𝑦3

                                                        𝑑𝑑𝑦𝑦3
𝑑𝑑𝑑𝑑

= 𝑘𝑘1𝑒𝑒0𝑦𝑦1 − 𝑘𝑘1𝑦𝑦1𝑦𝑦3 − (𝑘𝑘−1 + 𝑘𝑘2)𝑦𝑦3                                           (3) 

with the initial condition (𝑦𝑦1,𝑦𝑦3) = (𝑠𝑠0, 0). 

As in [1], to obtain the system of the non-dimensional variables from the above system (3) we define
the following variables. 
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𝑢𝑢(𝜏𝜏) = 𝑦𝑦1(𝑡𝑡)
𝑠𝑠0

, 𝑣𝑣(𝜏𝜏) = (𝑠𝑠0+𝐾𝐾𝑚𝑚)𝑦𝑦3(𝑡𝑡)
𝑠𝑠0𝑒𝑒0 

, 𝜏𝜏 = 𝑘𝑘1(𝑠𝑠0 + 𝐾𝐾𝑚𝑚)𝑡𝑡, 

                                                 𝐾𝐾𝑚𝑚 = (𝑘𝑘−1+𝑘𝑘2)
𝑘𝑘1

, 𝜌𝜌 = 𝑘𝑘−1
𝑘𝑘2

, 𝜖𝜖 = 𝑒𝑒0 
𝑠𝑠0+𝐾𝐾𝑚𝑚

, 𝜎𝜎 = 𝑠𝑠0
𝐾𝐾𝑚𝑚

                                             (4) 

And  

𝑇𝑇 = 𝜖𝜖(1 + 𝜌𝜌)𝑘𝑘2𝑡𝑡 =
𝜖𝜖(1 + 𝜌𝜌)𝑘𝑘2
𝑘𝑘1(𝑠𝑠0 + 𝐾𝐾𝑚𝑚) 𝜏𝜏 

Then the system of (3) can be represented in dimensionless form as follows: 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −(1 + 𝜎𝜎)𝑢𝑢 + 𝜎𝜎𝑢𝑢𝑣𝑣 + 𝜌𝜌
1+𝜌𝜌

𝑣𝑣  

                                                             𝜖𝜖 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= (1 + 𝜎𝜎)𝑢𝑢 − 𝜎𝜎𝑢𝑢𝑣𝑣 − 𝑣𝑣                                                         (5) 

subject to the initial condition 𝑢𝑢(0) = 1 and 𝑣𝑣(0) = 0 determined by (4). 

 

2. OPENINGS AND CYPHERS 

In this section, some elementary descriptions and things of the fractional calculus theory and nonstandard 
discretization are discussed. 

2.1 Essentials of Fractional-order 

Fractional differential equations (FDEs) have gained the considerable prominence owing to their 
submissions in various sciences, like mechanics, physics, engineering and chemistry [13]. In current 
years, the dynamic comportments of fractional-order differential systems have established increasing 
consideration. Although the concept of the fractional calculus was discussed in the same time interval of 
integer-order calculus, the complexity and the lack of applications postponed its progress till a few 
decades ago. Recently most of the dynamical systems based on the integer-order calculus have been 
modified into the fractional order domain due to the extra degrees of freedom and the flexibility which 
can be used to precisely fit the experimental data much better than the integer order modeling. 

2.2 Grunwald-Letnikov (GL) Technique 

The GL technique of guesstimate for the 1-D fractional derivative is as follows [13].  

                                     𝐷𝐷𝛽𝛽 𝑥𝑥(𝑡𝑡) = 𝑓𝑓�𝑡𝑡, 𝑥𝑥(𝜏𝜏)�,   𝑥𝑥(0) = 𝑥𝑥0,  𝜏𝜏 ∈ [0, 𝜏𝜏𝑓𝑓],                                             (6) 

𝐷𝐷𝛽𝛽𝑥𝑥(𝑡𝑡) = limℎ→0 ℎ−𝛽𝛽  ∑ (−1)𝑖𝑖 �𝛽𝛽𝑖𝑖 �
�
𝜏𝜏𝑓𝑓
𝒉𝒉 �
𝒋𝒋=𝟎𝟎  𝑥𝑥(𝜏𝜏 − 𝑖𝑖ℎ), 

where 0 < 𝛽𝛽 < 1, 𝐷𝐷𝛽𝛽 denotes the fractional derivative, ℎ is the step size and �𝜏𝜏𝑓𝑓
𝒉𝒉
� represents the integer 

part of 𝜏𝜏𝑓𝑓
𝒉𝒉

. Therefore, Eq. (4) is discretized in the next form,  

∑ 𝐶𝐶𝑗𝑗
𝛽𝛽𝑛𝑛

𝑖𝑖=0  𝑥𝑥𝑛𝑛−𝑗𝑗 = 𝑓𝑓(𝜏𝜏𝑛𝑛,𝑥𝑥𝑛𝑛),              𝑛𝑛 = 1,2,3, … 

where 𝜏𝜏𝑛𝑛 = 𝑛𝑛 ℎ  and 𝐶𝐶𝑗𝑗
𝛽𝛽 are the GL coefficients demarcated as 

                                         𝐶𝐶𝑖𝑖
𝛽𝛽 = �1 − 1+𝛽𝛽

𝑖𝑖
� 𝐶𝐶𝑖𝑖−1

𝛽𝛽 ,          𝐶𝐶0
𝛽𝛽 = ℎ−𝛽𝛽,            𝑖𝑖 = 1,2,3 … 

The Micken’s paper [15] provides a common route for determining 𝜓𝜓(ℎ) for the ODEs.  

A case of the NSFD discretization procedure is its submission to the decay equation 

𝑋𝑋′ = −𝜉𝜉 𝑋𝑋 

298 Zain Ul Abadin Zafar et al



where 𝜉𝜉 is constant. The discretization scheme [15] is  

                                       𝑋𝑋𝑛𝑛+1−𝑋𝑋𝑛𝑛
𝜓𝜓

= −𝜉𝜉 𝑋𝑋𝑛𝑛,         𝜓𝜓(ℎ, 𝜉𝜉 ) = 1−𝑒𝑒−𝜉𝜉 ℎ

𝜉𝜉
 

Let us take another application given by 

𝑋𝑋′ = 𝜆𝜆1 𝑋𝑋 − 𝜆𝜆2 𝑋𝑋2 

where the NSFD scheme is  
𝑋𝑋𝑛𝑛+1 − 𝑋𝑋𝑛𝑛

𝜓𝜓
= 𝜉𝜉1 𝑋𝑋𝑛𝑛 − 𝜉𝜉2𝑋𝑋𝑛𝑛𝑋𝑋𝑛𝑛+1 

𝜓𝜓(ℎ, 𝜉𝜉1 ) =
𝑒𝑒𝜉𝜉1 ℎ − 1

𝜉𝜉1
 

It ought to be noted that the NSFD schemes for both ODEs are exact in the logic that 𝑋𝑋𝑛𝑛 = 𝑋𝑋(𝜏𝜏𝑛𝑛)  for 
every pertinent values of ℎ > 0.  

 

3. FRACTIONAL ORDER CHEMICAL MODEL 

The fractional order above said chemical model can be written as 

                                       𝑑𝑑
𝛾𝛾1𝑋𝑋
𝑑𝑑𝑡𝑡𝛾𝛾1

= −(1 + 𝜎𝜎)𝑋𝑋 + � 𝜌𝜌
1+𝜌𝜌

�𝑌𝑌 + 𝜎𝜎𝑋𝑋𝑌𝑌,                                                   (7) 

                                           𝑑𝑑
𝛾𝛾2𝑌𝑌
𝑑𝑑𝑡𝑡𝛾𝛾2

= 1
𝜖𝜖

((1 + 𝜎𝜎)𝑋𝑋 −  𝑌𝑌 − 𝜎𝜎𝑋𝑋𝑌𝑌),                                                      (8) 

with initial conditions   

𝑋𝑋(0)  =  1 , 𝑌𝑌(0)  =  0 and 0 < 𝛾𝛾𝑖𝑖 ≤ 1, i=1,2. 

 
Theorem 1. [14] Consider the fractional order system given below: 

                                                     𝐷𝐷𝛽𝛽 𝑈𝑈(𝑡𝑡) = 𝐹𝐹(𝑈𝑈),   𝑈𝑈(0) = 𝑈𝑈0                                                              (9) 

where 0 < 𝛽𝛽 ≤ 1  and 𝑢𝑢 ∈ 𝑅𝑅𝑛𝑛 . Equilibrium points of system (9) should be determined by cracking the 
equation  𝐹𝐹(𝑈𝑈) = 0. These points will be locally asymptotically steady if all eigenvalues 𝜂𝜂  matrix of the 
jacobian 𝐽𝐽 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 evaluated at the equilibrium point satisfy: 

                                                                     |arg (𝜂𝜂)| > 𝛽𝛽 𝜋𝜋
2

. 

The jacobian matrix 𝐽𝐽 system Equtions (7) and (8) of the equilibrium point 𝐸𝐸 = (𝑋𝑋∗,𝑌𝑌∗) 

𝐽𝐽(𝐹𝐹∗) = �
−1 − 𝜎𝜎 + 𝜎𝜎𝑌𝑌∗

𝜌𝜌
1 + 𝜌𝜌

+ 𝜎𝜎𝑋𝑋∗

1
𝜖𝜖

(1 + 𝜎𝜎 + 𝜎𝜎𝑌𝑌∗)
𝜎𝜎𝑋𝑋∗ − 1

𝜖𝜖

� 

The existence and local stability conditions of this equilibrium point 𝐸𝐸 is as follows. Suppose that 𝐻𝐻(𝑃𝑃) 
denotes the discriminant of a polynomial 𝑃𝑃 

𝑃𝑃(𝜂𝜂) = 𝜂𝜂2 + 𝑏𝑏1 𝜂𝜂 + 𝑏𝑏2 = 0 

where 𝑏𝑏1 = −𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 (𝐽𝐽), 𝑏𝑏2 = 𝑑𝑑𝑒𝑒𝑡𝑡 (𝐽𝐽).  

                                              𝐻𝐻(𝑃𝑃) = 𝑏𝑏12 − 4𝑏𝑏2 < 0      or      𝑏𝑏12 < 4𝑏𝑏2 

and     �tan−1(�−𝑏𝑏12 + 4𝑏𝑏2)/ 𝑏𝑏1� > 𝛽𝛽 𝜋𝜋
2
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In simple words, stability holds if and only if     𝑏𝑏1 > 0  and 𝑏𝑏2 > 0. 

Now we evaluate the equilibrium points of the system (7) and (8). 

3.1 Equilibrium Point 

Equate (7) and (8) equal to zero i.e. 

                                           −(1 + 𝜎𝜎)𝑋𝑋 + � 𝜌𝜌
1+𝜌𝜌

�𝑌𝑌 + 𝜎𝜎𝑋𝑋𝑌𝑌=0                                                                    (10)               

                                              1
𝜖𝜖

((1 + 𝜎𝜎)𝑋𝑋 −  𝑌𝑌 − 𝜎𝜎𝑋𝑋𝑌𝑌) = 0                                                                    (11) 

we obtain (𝑋𝑋∗,𝑌𝑌∗) = (0,0), that is the equilibrium point. 

 The Jacobian matrix 𝐽𝐽 of system (7) and (8) at the equilibrium point  𝐸𝐸(𝑋𝑋∗,𝑌𝑌∗) = (0,0) we have 

𝐽𝐽 = �
−1− 𝜎𝜎

𝜌𝜌
1 + 𝜌𝜌

1
𝜖𝜖

(1 + 𝜎𝜎)
−1
𝜖𝜖

� 

𝑏𝑏1 = −𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐽𝐽) = −(−1− 𝜎𝜎 − 1
𝜖𝜖
) > 0 ,    𝑏𝑏2 = 𝑑𝑑𝑡𝑡𝑡𝑡(𝐽𝐽) = � 1+𝜎𝜎

𝜖𝜖(1+𝜌𝜌)
� > 0. 

Since 𝑏𝑏1 > 0 and 𝑏𝑏2 > 0, so stability holds.  

3.2 Numerical Experiments 
Numerical experiments are performed using values of parameters given in Table 1. 
 
                                Table 1. Different parameters & values. 

 
        
 
 

 

4. NSFD DISCRETIZATION 

In this section we shall construct Non Standard Finite Difference Scheme proposed by Mickens [6, 7], for 
the equations (7) and (8) and swapping the step size ℎ by a function 𝜓𝜓(ℎ) and using GL discretization 
technique, it can be seen that 

                               ∑ 𝐶𝐶𝑗𝑗
𝛾𝛾1  𝑋𝑋𝑛𝑛+1−𝑗𝑗𝑛𝑛+1

𝑗𝑗=0 = 𝜎𝜎𝑋𝑋𝑛𝑛𝑌𝑌𝑛𝑛 + � 𝜌𝜌
1+𝜌𝜌

�𝑌𝑌𝑛𝑛 − (1 + 𝜎𝜎)𝑋𝑋𝑛𝑛+1                                         (12) 

                             ∑ 𝐶𝐶𝑗𝑗
𝛾𝛾2  𝑌𝑌𝑛𝑛+1−𝑗𝑗𝑛𝑛+1

𝑗𝑗=0 = 1
𝜖𝜖

((1 + 𝜎𝜎)𝑋𝑋𝑛𝑛 −  𝑌𝑌𝑛𝑛+1 − 𝜎𝜎𝑋𝑋𝑛𝑛+1𝑌𝑌𝑛𝑛+1)                                       (13) 

(12)  ⟹                                  𝑋𝑋𝑛𝑛+1 =
𝜎𝜎𝑋𝑋𝑛𝑛𝑌𝑌𝑛𝑛+� 𝜌𝜌

1+𝜌𝜌�𝑌𝑌
𝑛𝑛−∑ 𝐶𝐶𝑗𝑗

𝛾𝛾1  𝑋𝑋𝑛𝑛+1−𝑗𝑗𝑛𝑛+1
𝑗𝑗=1

(𝐶𝐶0
𝛾𝛾1+1+𝜎𝜎)

                                                    (14) 

(13)  ⟹                                          𝑌𝑌𝑛𝑛+1 =
(1+𝜎𝜎)
𝜖𝜖 𝑋𝑋𝑛𝑛+1−∑ 𝐶𝐶𝑗𝑗

𝛾𝛾2  𝑌𝑌𝑛𝑛+1−𝑗𝑗𝑛𝑛+1
𝑗𝑗=1

𝐶𝐶0
𝛾𝛾2+1𝜖𝜖(1+𝜎𝜎𝑋𝑋𝑛𝑛+1)

                                                      (15) 

with  𝑪𝑪𝟎𝟎
𝜸𝜸𝟏𝟏 = �𝒆𝒆

(𝟏𝟏+𝝈𝝈)𝒉𝒉−𝟏𝟏
(𝟏𝟏+𝝈𝝈)

�
−𝜸𝜸𝟏𝟏

 ,  𝑪𝑪𝟎𝟎
𝜸𝜸𝟐𝟐 = �𝒆𝒆

𝟏𝟏
𝝐𝝐𝒉𝒉−𝟏𝟏
𝟏𝟏
𝝐𝝐

�
−𝜸𝜸𝟐𝟐

 

Parameters Value 
𝜖𝜖 1 
𝜌𝜌 0.1 
𝜎𝜎 0.1 
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4.1 Numerical Experiments 

Analytical studies permanently remain unfinished without numerical authentication of the outcomes. In 
this unit, we present numerical simulation to exemplify the outcomes attained in previous sections. Now 
we solve the fractional-order Michaelis-Menten biochemical reaction model in two cases. The guestimate 
elucidations are revealed in Fig. 1-4, for various values of 0 < 𝛾𝛾𝑖𝑖 ≤ 1, 𝑖𝑖 = 1,2. 

 
Fig 1. The concentration of Substrate at 𝑁𝑁 = 200 with step size ℎ = 1.1. 

 

 
Fig. 1. In zoom. 
 

 
      Fig. 2. The concentration of Complex at 𝑁𝑁 = 200 with step size ℎ = 1.1. 
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Fig. 2. In Zoom. 
 
 
 

 
      Fig. 3. The concentration of Substrate at 𝑁𝑁 = 200 with step size ℎ = 2.4. 
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        Fig. 4. The concentration of Complex at 𝑁𝑁 = 200 with step size ℎ = 2.4. 

 

 

 
Fig. 4. In Zoom. 

 

 

5. RESULTS AND DISCUSSION 

The Fractional order modelling of well-known Michaelis-Menten non-linear reaction system has been 
analysed in this paper. An unconditionally convergent non-standard finite difference numerical model 
with inserting the GL Method, has been constructed for fractional order Michaelis-Menten model. 
Numerical experiments are performed for different values of fractions. 

 

6. CONCLUSIONS 

The present analysis revealed the applicability of the non-standard finite difference technique to crack 
systems of DEs of fractional order. The work accentuated our faith that the technique is a steadfast 
method to handle linear and nonlinear fractional order DEs. The goal for considering a fractional order 
system instead of its integer order counterpart is that fractional order DEs are generalization of integer 
order differential equations. Also, using fractional order DEs can help us to condense the errors arising 
from the neglecting parameters in modeling real life phenomenon. The proposed scheme is easy to 
implement and numerically stable. 
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