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Abstract: Nowadays, numerical models have great importance in every field of science, especially for solving the
nonlinear differential equations, partial differential equations, biochemical reactions, etc. In this article, we
familiarize fractional-order into a model of Michaelis-Menten. We learned the influence of the changing of different
values of fractional order. We display that the model familiarize in this article has nonnegative elucidations. We
have checked the stability of the system. Numerical replications are also offered to confirm the attained results.
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1. INTRODUCTION

The enzyme kinetics model is a chemical model which includes a nonlinear reaction. The model consists
of the binding/unbinding of enzyme and substrate, and production of the product. The model mechanism
is described as follows:

k
E+S21 ESSE+P (1)

where E, S, ES and P denote enzyme, substrate, enzyme-substrate complex and product, respectively, and
kq, k_41 and k, denote the rates of reactions. If we denote the concentrations of E, S, ES, P by y;, ¥2, ¥3,
Va4, respectively, and y = (¥4, V2, V3, y4)T we write the governing equation as
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We assume a typical initial condition (yy, ¥, V3, V4) = (€p,Sg,0,0). Since the substrate is exhausted
and it produces the product P at the equilibrium, the equilibrium of the model can be founded easily as
V1, Y2, ¥3,V4) = (€9, 0,0,54). Since the conserved quantities for the model are y; + y; +y, = s, and
y, + y3 = eg, one can reduce the above system (2) into

d
% = —kieoyr + k1y1ys + k_1y3

d
ﬁ kieoy: — k1y1ys — (k—1 + k3)ys 3)

with the initial condition (y;, y3) = (S, 0).

As in [1], to obtain the system of the non-dimensional variables from the above system (3) we define
the following variables.
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Then the system of (3) can be represented in dimensionless form as follows:

du _ _ P
ol (1+0)u+auv+1+pv

6%=(1+U)u—auv—v 5

subject to the initial condition u(0) = 1 and v(0) = 0 determined by (4).

2. OPENINGS AND CYPHERS

In this section, some elementary descriptions and things of the fractional calculus theory and nonstandard
discretization are discussed.

2.1 Essentials of Fractional-order

Fractional differential equations (FDEs) have gained the considerable prominence owing to their
submissions in various sciences, like mechanics, physics, engineering and chemistry [13]. In current
years, the dynamic comportments of fractional-order differential systems have established increasing
consideration. Although the concept of the fractional calculus was discussed in the same time interval of
integer-order calculus, the complexity and the lack of applications postponed its progress till a few
decades ago. Recently most of the dynamical systems based on the integer-order calculus have been
modified into the fractional order domain due to the extra degrees of freedom and the flexibility which
can be used to precisely fit the experimental data much better than the integer order modeling.

2.2 Grunwald-Letnikov (GL) Technique

The GL technique of guesstimate for the 1-D fractional derivative is as follows [13].

DF x(t) = f(t,x(r)), x(0) = xg, T € [0, 7], (6)

r
DBx(t) = limp_oh~F z[:(l(—ni (3) x(t — ih),

J i
where 0 < 8 < 1, D? denotes the fractional derivative, h is the step size and [%f] represents the integer

part of %f Therefore, Eq. (4) is discretized in the next form,
?=0 C]ﬁ xn_j = f(TTL' xn)a n= 1I2I3l
where 7,, =n h and C jﬁ are the GL coefficients demarcated as

cf =(1-2B)ct,  cf=n", i=123..

L i
The Micken’s paper [15] provides a common route for determining y(h) for the ODEs.

A case of the NSFD discretization procedure is its submission to the decay equation

X'=-£X
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where £ is constant. The discretization scheme [15] is

Xn+1_Xn__ —
= K (R E) =

Let us take another application given by

1-e~¢h
¢

X’ = /11 X - Az XZ
where the NSFD scheme is
Xp1 — X
% = 51 Xn — fZXan+1

f1h_1

Y(h &) ="
CLT g

It ought to be noted that the NSFD schemes for both ODEs are exact in the logic that X,, = X(t,,) for
every pertinent values of h > 0.

3. FRACTIONAL ORDER CHEMICAL MODEL

The fractional order above said chemical model can be written as

dY1X _ p

CE=—(1+0)X+ (—1+p) Y + oXY, (7)
avzy 1
PR (Q+0)X—-Y —0XY), (8

with initial conditions

X(0) = 1,Y(0) = 0and0<y; <1,i=1.2.

Theorem 1. [14] Consider the fractional order system given below:
DPU®) =FU), U(0)="Uy ©)

where 0 < f <1 and u € R™. Equilibrium points of system (9) should be determined by cracking the
equation F(U) = 0. These points will be locally asymptotically steady if all eigenvalues  matrix of the

jacobian | = Z—Z evaluated at the equilibrium point satisfy:
larg(p)| > £%.
The jacobian matrix J system Equtions (7) and (8) of the equilibrium point E = (X*,Y™)

—1—-0+0oY" L+0X*
1+

" p
JE) =1y oX* -1
E(1+O'+O'Y*)

€

The existence and local stability conditions of this equilibrium point E is as follows. Suppose that H(P)
denotes the discriminant of a polynomial P

P =n*+byn+by,=0
where by = —trace (J), b, = det(J).
H(P) =b? —4b, <0 or b? <4b,

and |tan~}(\/=b + 4b;)/ by| > £~
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In simple words, stability holds if and only if by > 0 and b, > 0.

Now we evaluate the equilibrium points of the system (7) and (8).

3.1 Equilibrium Point
Equate (7) and (8) equal to zero i.e.

—(1+ )X + (li;p) Y + 0XY=0 (10)
“((1+0)X — Y —0XY) =0 (11)

we obtain (X*,Y™) = (0,0), that is the equilibrium point.
The Jacobian matrix J of system (7) and (8) at the equilibrium point E(X*,Y*) = (0,0) we have

p
_1_ -

_ ° T+

'= Lat 1
E( O-) €

1 1+0
by = —tace(J) = =(-1-0-2) >0, by =det(J) = (e(1+p)) > 0.

Since by > 0 and b, > 0, so stability holds.

3.2 Numerical Experiments
Numerical experiments are performed using values of parameters given in Table 1.

Table 1. Different parameters & values.

Parameters Value
€ 1
p 0.1
o 0.1

4. NSFD DISCRETIZATION

In this section we shall construct Non Standard Finite Difference Scheme proposed by Mickens [6, 7], for
the equations (7) and (8) and swapping the step size h by a function 1(h) and using GL discretization
technique, it can be seen that

SO X" = gXmY + (lfr;p) Y™ — (14 )X (12)
Z;l:(i)l CJ}’Z Yn+1—j — %((1 + O')Xn _ Yn+1 _ O.Xn+1yn+1) (13)
oxXMy (L ynogntl e xni-y
n+1 _ 1+p J=1 7
12) = X = (ir1v0) (14)
Mxnﬂ_zr_l:rl cY2 yn+1-j
(13) = ynt+l = ¢ = ] (15)

Y 1
Co 2 +Z(1+oX™+1)

(14+0)h 71 1, RE
. Y1 _ (€ -1 y2 _ [ ee -1
with C —( i) ) , €y = <—1 )

€
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4.1 Numerical Experiments

Analytical studies permanently remain unfinished without numerical authentication of the outcomes. In
this unit, we present numerical simulation to exemplify the outcomes attained in previous sections. Now
we solve the fractional-order Michaelis-Menten biochemical reaction model in two cases. The guestimate
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elucidations are revealed in Fig. 1-4, for various values of 0 <y; < 1,i = 1,2.
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Fig 1. The concentration of Substrate at N = 200 with step size h = 1.1.
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Fig. 1. In zoom.
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Fig. 2. The concentration of Complex at N = 200 with step size h = 1.1.
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Zain Ul Abadin Zafar et al
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Fig. 2. In Zoom.
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Fig. 3. The concentration of Substrate at N = 200 with step size h = 2.4.
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Fig. 3. In Zoom
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Fig. 4. The concentration of Complex at N = 200 with step size h = 2.4.
X 10-5 Complex
T T T T T T T T ‘
0.000108 = =1
"™
10 0.0001011
—yl=0.9,~{2=0.8, y3=0.7
s yl=0.66,72=0.65,y3=0.63 H
= —yl=0.58,yz=0.55,73=0.52
> 6+ _ _ _ H
% 5.2390.005 —y]—0.50,72—0.48,73—0.45
§ 4 .
o
2 _
4.147¢-006
0 1.901e-058 —
1 1 1 1 1 1 1 1 1 1

199.9996 199.9997 199.9998  199.9999 200 200.0001 200.0002 200.0003 200.0004 200.0005
Time

Fig. 4. In Zoom.

5. RESULTS AND DISCUSSION

The Fractional order modelling of well-known Michaelis-Menten non-linear reaction system has been
analysed in this paper. An unconditionally convergent non-standard finite difference numerical model
with inserting the GL Method, has been constructed for fractional order Michaelis-Menten model.
Numerical experiments are performed for different values of fractions.

6. CONCLUSIONS

The present analysis revealed the applicability of the non-standard finite difference technique to crack
systems of DEs of fractional order. The work accentuated our faith that the technique is a steadfast
method to handle linear and nonlinear fractional order DEs. The goal for considering a fractional order
system instead of its integer order counterpart is that fractional order DEs are generalization of integer
order differential equations. Also, using fractional order DEs can help us to condense the errors arising
from the neglecting parameters in modeling real life phenomenon. The proposed scheme is easy to
implement and numerically stable.
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