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1. INTRODUCTION

Over 10000 hospitals worldwide use radioisotopes 
in medicine, and about 90% of the procedures are 
for diagnosis. The most common radioisotope used 
in diagnosis is 99mTc which is daughter isotope 
of 99Mo, with some 40,000,000 procedures to 
45,000,000 procedures per year (16700,000 in USA 
in 2012, 550,000 in Australia), accounting for 80 
% of all nuclear medicine procedures worldwide 
[1, 2]. Commonly, most 99Mo is produced using 
highly-enriched uranium placed in high-power 
nuclear research reactors. Recently there are eight 
medical isotopes producing reactors that provide 
over 90 % of the world’s 99Mo needs. These 
reactors are government-owned and -subsidized, 
and the respective governments control the funding, 
priorities, and operational schedule of these reactors. 
The unscheduled shutdown of two of these reactors 
in 2009 and 2010 (Canadian and Dutch reactors) 
caused worldwide shortages of 99Mo, leading to the 

delay or cancellation of many medical procedures 
[3, 4].

The medical community has been plagued by 
99Mo shortages due to aging reactors, such as the 
NRU (National Research Universal) reactor in 
Canada. There are currently no US producers of 
99Mo, and NRU is scheduled for shutdown in 2016, 
which means that another 99Mo shortage is imminent 
unless a potential domestic 99Mo producer fills the 
void [5]. Recent 99Mo production capacity of PT 
INUKI (Indonesian Nuclear Industry) is about 70 
Ci per week while the national need is about 100 
Ci per week, required by nuclear medical division 
in 13 hospitals (personal communication with 
Production Director of PT-INUKI). Whiles, the 99Mo 
production capability of Indonesian reactor (RSG-
GAS) can reach 300 Ci per batch (week) [6]. The 
99Mo producing system without a nuclear reactor 
and without using highly-enriched uranium is being 
implemented at our research center. Its production 
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process will use a subcritical assembly driven by an 
external neutron source from neutron generator or a 
particle accelerator and target that generate neutron 
in the core of subcritical assembly. Compact 
neutron generator (CNG) is a particle accelerator, 
as predicted that the accelerators will probably the 
best-known uses are for cancer therapy, medical 
isotope production, and food irradiation [5].

The objective of this work was to study the 
possibility of producing 99mTc in useful activities by 
using non-critical reactor based on an accelerator 
driven system. A non-critical reactor or subcritical 
aqueous homogeneous reactor fueled with uranyl 
nitrate, called subcritical assembly for 99Mo 
production (SAMOP) has been designed and will 
be developed further at the Center for Accelerator 
Science and Technology (CAST), National Nuclear 
Energy Agency (BATAN). The aim of the research 
included the determination of the criticality level, 
calculation of 99Mo specific activities, determination 
of optimal irradiation conditions and choice and 
estimation of technology for 99mTc separation from 
the irradiated uranyl nitrate. It is expected that the 
SAMOP system will reduce much less waste than 
current 99Mo production methods. The similar 
method is being developed by SHINE which plans 
to produce at least one-half of the U.S. need for 
99Mo by 2016 [7].

2. MATERIALS AND METHODS

The method used for this design analysis is modeling 
and calculation by using a MCNPX computer 
code for criticality analysis, and ORIGEN-2 
for calculation of 99Mo specific activities, and 
analytical calculation for thermal hydraulics 
analysis. Reference study is intended to choose and 
estimate the technology for 99Mo separation from 
the irradiated uranyl nitrate. MCNPX is a general-
purpose particle transport Monte Carlo code 
developed by the Los Alamos National Laboratory 
designed to track many particle types over broad 
ranges of energies [8]. ORIGEN2 is a computer 
code designed to calculate the composition and 
characteristics of nuclear materials as a function of 
decay time and the changes the materials undergo 
during various fuel cycle operations [9].

2.1. Brief Description of SAMOP

The schematic diagram of Subcritical Assembly for 
Molybdenum Production (SAMOP) is depicted in 
Fig. 1. The SAMOP system consists of a 26 L-core 
tank surrounded by graphite reflectors, filled with 
23 L of uranyl nitrate solution. The entire system 
is placed in a tank filled with water for cooling 
purposes. The critical uranium concentration 
depends on factors as the thickness of the reflector 
and the placement of the reactor in the cooling 
tank, but has a minimum value of 300 g 19.75 % 

Fig. 1. Schematic diagram of SAMOP.
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enriched uranium per liter. After irradiation, the 
fuel is first stored for some time in the delay tank. 
Subsequently, the molybdenum is extracted in the 
extraction column. In the reconditioning facility, 
the remainder of the solution is reconditioned and 

prepared to be reinserted in the reactor.

The choice of uranyl nitrate for SAMOP fuel 
is due to the fact that 99Mo is more easily extracted 
from a uranyl nitrate solution than from uranyl 

Fig. 2. Criticality analysis result: critical diameter as function of uranium concentration and neutron 
multiplication (kef) as function of tank height.

Fig. 3.  99Mo production as a function of neutron flux.

Fig. 4. Axial temperature distribution of SAMOP water coolant tank.
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sulfate. This is because competition for adsorption 
sites between molybdenum and sulfate is stronger 
than that between molybdenum and nitrate [5, 12]. 
Similarly, uranyl nitrate was used as a fuel in the 
HYPO and SUPO reactors [12].

3. RESULTS AND DISCUSSION

The criticality analysis results using MCNPX 
are depicted in Fig. 2. It is shown that the critical 
dimension is a function uranium concentration. 
The lowest critical diameter was found for 300 g 
L–1 uranium concentration, it means this number is 
the optimum concentration. Therefore, this value 
is used for the determination of tank diameter 
of SAMOP core. The SAMOP reactor core 
tank diameter is fixed 30 cm, then the height is 
optimized. The correlation between the neutron 
multiplication (kef) and tank height is depicted in 

Fig. 2. It is shown that the higher the tank height, 
and the higher kef the diameter will be, and this 
result is in accordance with the similar work done 
by other researchers [13 14, 15].

The calculation result of 99Mo production as 
a function of neutron flux using ORIGEN-2 is 
described in Fig. 3. Based on this calculation the 
99Mo production can be predicted between 111 to 
185 GBq (3 000 mCi to 5 000 mCi) per batch for 
neutron flux of 109 n cm–2 s–1 to 1010 n cm–2 s–1.

Fig. 4 shows the axial temperature distribution 
of SAMOP water coolant tank calculated for 
average total power generation of 600 W and 1 kW 
power generated in SAMOP core. The maximum 
coolant temperature in steady state condition is 
33 °C which is almost the same with ambient 
temperature.

Fig. 5. Experimental result of molybdenum 
separation from U-nitrate solution, and schematic 
diagram of 99Mo separation process.

Table 1. Technical design specification of SAMOP.

Parameter Material/Value/Dimension
Fuel solution
Uranium enrichment
Uranium concentration
Core volume
U235 total
Core height
Core diameter
Reflector thickness
Radiation shielding
Neutron multiplication factor
Average neutron flux
Max. fuel temperature
Thermal power
Mo99 Production

U-nitrate UO2(NO3)2
19.75 w/o U235 enrichment
300 g U/L
23 L
3.8 kg
35 cm
30.7 cm
20 cm, graphite
60 cm, heavy concrete
0.98 – 0.99
1010 n Cm-2 s-1

55 oC
600 W
111 GBq/batch per week (3000 mCi/batch)
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Whiles, the result of preliminary experiment 
of molybdenum separation from U-nitrate solution 
containing 300 mg L-1 of molybdenum in 10 mL of 
100 g L–1 uranium is described in Fig. 5. It is shown 
that Mo appears at fourth eluate while uranium 
at 7th eluate, this shows that separation already 
existed with separation factor of 7.5.

The 99Mo purification process will be done by 
using HZO resin from (NH4)2MoO4 solution at pH 
2 to 7. This process will be carried out together 
with the modified Cintichem process. The 99Mo 
separation and purification processes are depicted 
in Fig. 6.

In summary, the SAMOP system using low 
enriched uranyl nitrate of 300 gram U L–1 with 
total volume of 23 L and uranium content of 3.8 
kg may produce 111 GBq/batch (3,000 mCi/batch) 
of Mo99. For the preliminary experiment in 2017, it 
will be used neutron source from the radial beam 
port of Kartini research reactor instead of using 
CNG (compact neutron generator). The design 
analysis result is summarized in Table 1.

4. CONCLUSIONS

The SAMOP system using low enriched uranyl 
nitrate of 300 g U L–1 with total volume of 23 L 
and uranium content of 3.8 kg has been being 
designed to produce 111 GBq/batch per week or 
3000 mCi/batch of 99Mo. Smaller dimension of 
SAMOP core, less than 30 cm in diameter is safer 
to avoid criticality. The future work, a preliminary 
experimental SAMOP facility by using neutron 
beam from Kartini research reactor, is being 
prepared.
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