
Research Article

Proceedings of the Pakistan Academy of Sciences:  Pakistan Academy of Sciences
A. Physical and Computational Sciences 55 (2): 55–67 (2018)
Copyright © Pakistan Academy of Sciences
ISSN: 2518-4245 (print), 2518-4253 (online)

————————————————
Received, January 2017; Accepted, June 2018
* Corresponding Author: Muhammad Shumail Naveed; mshumailn@gmail.com

Didactic Strategy for Learning Theory of Automata & Formal 
Languages

Muhammad Shumail Naveed1*, and Muhammad Sarim2

1Department of Computer Science, University of Balochistan, Quetta,  Pakistan
2Department of Computer Science, Federal Urdu University of Arts, Science & Technology, 

Karachi, Pakistan

Abstract: Formal languages and automata theory have a strong association with the core of information in the area of 
computer science. However, the courses on formal languages and automata theory is a challenging task and students 
generally do not find these courses very attractive and experience intricacy and impediment in learning the concepts. 
These intricacies stem from the difficult and unusual abstract concepts and the essential mathematical background. 
This paper presents a didactic strategy to simplify the hardness of the courses on formal languages and automata 
theory and aids to increase the interest and commitment of students in these courses. The proposed strategy supports 
a more imperative learning of the topics in formal languages and automata theory in an effective and fruitful way. The 
strategy initially evaluated and primary results are quite encouraging.

Keywords: Learning formal languages and automata theory, theory of computing, students’ disappointment, simulation 
tools, pair programming, education.

1. INTRODUCTION

The formal languages and automata theory (FLAT) 
is a core of computer science curriculum [1, 2], and 
usually offered at undergraduate level. FLAT has 
a significant role in different areas, particularly in 
the theory of computation, artificial intelligence and 
compiler construction. However, many students 
usually find these courses tedious and complex [3, 4, 
5]. Students usually find FLAT courses to be archaic 
and cannot associate their topics to other courses 
in the computer science curriculum or computer 
applications [6], and therefore students taking a 
course on FLAT be likely to be unenthusiastic 
and are unmotivated. Verma [7] argues that this 
frequently leads to student disappointment and high 
dropout rate in FLAT courses than other courses.

 The FLAT courses are mostly introduced 
without the use of computers and generally do not 
include any programming [8]. A very few FLAT 
courses comprised of practical project such as the 
development of lexical analyser for a compiler. In 

fact, the induction of practical aspects of the FLAT 
courses is infrequent and typically embraced in 
courses that include further topics like parsing.

 Normally the conventional approaches are used 
to introduce the FLAT courses, which are generally 
based on the integration of lectures with tutorials. 
Conventional chalk-and-board approaches are 
followed to teach students the different concepts 
of FLAT courses. With tutorials the students study 
the FLAT concepts by working through exercises 
which are presented for assessment.

 It has been observed that a large majority of 
students is less motivated in understanding the 
concepts of FLAT courses. The lack of interest 
is not only due to the difficulties of the topics 
themselves but also due to the facts that the 
orientation and method of teaching many of the 
topics in FLAT courses are not towards computer 
science but biased towards mathematics. In most 
of the computer science undergraduate curriculum 
a Discrete Mathematics is a perquisite of FLAT 



courses.

In order to increase the learning of students in 
FLAT courses, this paper presents a didactic strategy 
based on an amalgamation of existing techniques 
with some new concepts. The central aim of the 
proposed strategy is to overcome the complexity 
and abstractness of topics by turning the FLAT 
course more computer-oriented and interesting.

 The paper is organized as follows. In section 2 
the related work conducted in the support of FLAT 
courses is discussed. The main facets of a proposed 
strategy are described in section 3. The results of 
the initial evaluation and discussion of a proposed 
strategy are illustrated in section 4. Finally, section 
5 describes the conclusion.

2. RELATED WORK

A lot of work has been conducted to increase the 
learning of FLAT courses. In [9], a strategy based 
on constructivist approach is defined by integrating 
different teaching approaches to increase the 
interest of students and the initial results of its 
application are quite satisfactory. In [10], D’antoni 
et al. elucidate automatic feedback in the learning 
of deterministic finite automata constructions 
by analyzing the binary and counterexample-
based feedback. The initial response of automatic 
feedback is quite encouraging.

Moura and Dias [11] introduced L-FLAT, a 
Logtalk Toolkit for teaching formal languages and 
automata theory. It supports regular expressions, 
finite state automata, context-free grammar, 
pushdown automata and Turing machines. L-FLAT 
units are defined using object-oriented aspects of 
Logtalk. The significance of L-FLAT in pedagogical 
environment is increased by bracing Mooshak, a 
web-oriented application which supports automatic 
ranking of presented programs.

 The FSM is described to present students with 
the prospect to work and verify the designs by using 
regular expressions, state machines and grammars 
[12]. In [13], the use of pen-based computing to 
promote the learning in formal languages and 
automata theory is proposed. Dol [14] suggests the 
use of Think-Pair-Share, which is a cooperative 
learning strategy to increase the students learning 
about the course.

Educational software tools are used to augment 
teaching strategies and particularly software 
simulators present association between theory and 
practice. Several educational software tools have 
been designed to support the simple and interactive 
learning of formal languages and automata theory. 
SELFA (Software for Learning Formal languages 
and Automata theory) is an educational simulation 
tool, developed to improve the standard of teaching 
in formal language and theory of automata courses 
[15]. The endeavour of SELFA tool is to make it 
simple to teach the concepts of the subject, whose 
level of abstraction make the process complex.

 Thoth is technique which helps in teaching 
FLAT courses [16]. It  can simulate push-down 
automata, Turing machines and other classical 
concepts like regular expressions, finite automata 
and context-free grammars. The tool is specially 
designed to allow easy interaction with different 
concepts of FLAT courses and allows students 
to easily experiment with different designs and 
observe the step-by-step evaluation of algorithms. 
Thoth has a simple and friendly user interface 
which allows the easy and rapid design of the 
automata. The interface of Thoth is available in 
English, German, French and Spanish.

FLUTE (Formal Languages and aUTomata 
Environment) is one of an important effort made 
to simplify the learning of formal languages and 
automata [17]. Basically FLUTE is an intelligent 
tutoring system that helps students in learning 
individually about FLAT.

Nóbrega et al. [18] described to use a Semantic 
Wiki as a tool to help FLAT course by associating 
tools like JFLAP. Its main objective is to increase 
the engagement of students in FLAT course.

JFLAP is one of an educational tools used in 
FLAT courses. Several studies [19, 20, 21] have 
been conducted on the use of JFLAP in FLAT 
courses and reported significant improvement in 
controlling the hardness of these courses.  Jarvis and 
Lucas [22] have modified JFLAP through which it 
is possible to develop Java programs that change 
the actual automaton itself and found it very useful 
in increasing the student’s capability to understand 
fundamental concepts like Church-Turing thesis 
and the undecidability.

56 Muhammad Shumail Naveed & Muhmmad Sarim



Automata Tutor is an online tool that aids 
students to comprehend essential notions in the 
theory of computation, such as regular expressions 
and finite automata. It also provides feedback when 
students define wrong solutions, and also supports 
instructors in organizing large classes by grading 
homework assignments. The tool has been used 
in several universities by many students.  The 
Automata Tutor is analyzed and it has been reported 
that students were more engaged with the course 
content by interacting with the tool [23]. Similarly, 
the use of a tool increased average grade on the 
assignments of homework and teachers enjoyed the 
tool.

de Souza et al. [24] introduced a teaching-
learning methodology to aid the formalism model 
construction about FLAT. According to that 
methodology, for every topic of FLAT, the instructor 
must recommend a simulator development as 
classwork or homework to help the student in 
formalism learning. A simulator based Multi-
Formalism Modeling is developed and include 
icon-based interface and the initial results of the 
proposed methodology are quite positive.

A Combined Methodology based on simulator 
development is introduced to provide the knowledge 
required in the theoretical computer science 
area during the classes of FLAT, compilers and 
computer science theory [25]. The methodology 
was statistically analysed and found very effective. 
Neeman described the use of software testing 
techniques to elucidate some concepts of the theory 
of automata. The method utilizes equivalence 
partitioning and provides a guide for the various 
concepts of automata theory [26].

3. DESIGN & METHOD

The topical research on FLAT courses including 
the studies referred in the previous sections 
demonstrate that the abstract nature of concepts and 
notations involved in the course, hard background 
of mathematics, conventional style of teaching 
and student’s perception on the irrelevancy of a 
FLAT course with the computer science are the 
contributing factors behind the hardness of FLAT 
course.

 The contemporary solutions for FLAT courses 
usually addressed the single or a few issues whereas 

the didactic strategy presented in this paper aims 
to overcome the intrinsic complexity of FLAT by 
considering the multiple issues involved in the 
learning of formal languages and theory of automata 
and perhaps this is a main novelty of the proposed 
didactic strategy. Principally, the proposed strategy 
is based on five principles.

3.1 Illustration of the Course in Linking with 
Computer Science History

Adding the details of the historical development 
of the theory of computing in conjunction with 
the topics of the formal language and automata 
theory has recognized very useful and encouraging 
for students [9], and therefore it is a first principle 
of the proposed strategy. The course on FLAT 
is not based on history of computer science; but 
it can be augmented by adding details related 
to the historical background in which the topic 
appeared as a new discipline. Including historical 
information would help the students in discovering 
how several concepts developed over time, and 
how research works and contribute to the expansion 
of a new field. For example, when introducing the 
concept of procedure and Turing-Church thesis it 
is useful to describe significant essentials about 
Alonzo Church and Alan Mathison Turing. So, the 
students come to know that both Alan Mathison 
Turing and Stephen Cole Kleene did their doctorate 
under the direction of Alonzo Church and therefore 
their research dimensions were following similar 
targets. Avram Noam Chomsky initiated the area of 
formal language theory in 1950s to define formal 
description of the structure of natural languages 
[27], so during introducing the types of grammar 
and particularly the context-free grammar it is 
fruitful to describe some pertinent work and 
development made by Noam Chomsky in the area 
of linguistics. Different methods like biographical 
notes, conventional lectures and videos may be used 
to describe the historical development; however, it 
is important to consider the cognitive load while 
including these details.

3.2 Pair Programming

Students usually encounter anxiety when they 
begin to learn a course on FLAT and therefore 
students are motivated and encouraged to work in 
a pair. Working in a pair is a second principle of 
the proposed strategy. Pair programming has been 

 Didactic Strategy for Learning Automata   57



largely utilized in computer science education 
because of the benefits it provides to students [28].

Pair programming is an active research 
discipline and one of a useful area of Extreme 
Programming.  In this method, two programmers 
work together at one computer on the same task. A 
person who holds the keyword is called the driver 
and the person who sits alongside the driver is 
called navigator. The basic duty of a driver is to 
develop the code. The navigator reviews the code 
and looks for possible errors that a driver leaves the 
code by mistake.

During FLAT course, the students are motivated 
to work in a pair as it is favourable for students 
and increased their confidence and performance. 
During problem solving, the driver develops the 
logic and solves the problem; while the other, the 
navigator analysed the logic. The students switch 
roles frequently.

3.3 Induction of Software Tools for Active 
Learning

The conventional chalk-and-board education 
style used to teach the concepts in FLAT courses 
is hard for students to learn the different concepts 
and proofs [29, 30], and therefore the pedagogy 
of FLAT courses is shifting from pencil and paper 
environment to a technological environment which 
use educational software to work with different 
concepts in the course [19]. Morazan and Antunez 
in [12] described that FLAT courses should be 
taught by using tools to define computation. In 
many areas of computer science, the visualization 
tools, simulators and other educational software 
are productively used to illustrate and visualize the 
abstract concepts. The third principle of a proposed 
strategy is to use different software tools to teach 
the FLAT courses. The use of suitable software 
would allow the students of FLAT courses to work 
and experiment the concepts that would be hard 
and complex to do on paper, and to get immediate 
response to the problem solving. Chudá and Rodina 
in [31] reported that the use of software tools like 
simulators in FLAT courses can significantly affect 
the pedagogical process.

Large varieties of tools have been developed 
to stimulate students’ interest and help them in 
comprehending the FLAT concepts. These tools 
help students to easily learn and experiment the 

concepts which are usually tedious to do on a 
paper. Many visualization tools allow animation of 
different constructs and proofs and most of these 
tools are freely and widely available. Simulation 
of automata for educational purposes is itself a 
significant area in computer science education 
research [32]. Chesñevar et al. [1], discussed the 
main aspects of different educational software used 
for teaching FLAT and categorized these tools into 
multi-purpose tools and single-purpose tools. The 
multi-purpose tools and single-purpose tools are 
both helpful in the active learning of FLAT courses.

 RegeXeX (Regular expression exercises) is one 
of a useful tool that can be used in active learning 
of regular expressions [33]. It provides a collection 
of exercises controlled by a system and provides 
advice to students on the precision of solutions. 
RegeXeX is also very useful during lectures to 
describe how the regular expression is generated.

CAVE (Constructive Algorithm Visualization 
Environment) is a pedagogical help to support 
instructors to describe the construction of 
deterministic finite automata and combining DFAs 
using different operators [1]. FSME (Finite State 
Machine Explorer) provides an environment that 
allows the students to construct finite state machines 
and verify them on different inputs. It also provides 
the conversion between equivalent classes of finite 
state machines.

MACH0 is a graphical simulation tool of 
deterministic finite state automata. It accepts 
the definition of deterministic finite automaton 
and displays its transition diagram and simulate 
the working of any input string. It uses colourful  
animation to increase learning and could be used to 
enhance the learning of FLAT courses.

Mealy and Moore machines are the essential 
components of FLAT courses and these machines 
can be introduced with TAGS (Transducer 
Automata Graphical Simulator) which allows 
defining and running these machines [34]. It also 
allows the rewinding of simulation. The tool also 
allows stepwise or continuous simulation.

The FSA Simulator is a program developed to 
enable students to work with finite state automata 
[35]. It also allows comparing the languages of 
two automata. FSA simulator is one of a popular 
tool and could be used in FLAT courses. Proof 

58 Muhammad Shumail Naveed & Muhmmad Sarim



Turing machines.

Turing Building Block is a tool developed by 
Luce and Rodger to design and simulate Turing 
machines [42]. It also supports modular design. The 
tool includes a graphical editor for interactive and 
visual designing of a machine.

Interactive Pushdown Automata Animation is 
a tool developed by McDonald to design and 
simulate pushdown automata [43]. The tool 
allows instantaneous and stepwise simulation. 
It also supports high graphics and very effective 
for learning. Finite State Automata Simulator 
is another tool to design the deterministic and 
nondeterministic finite state automata [44]. The 
tool allows instantaneous and stepwise simulation.

Finite State Machine Simulator [45] is a tool 
developed to design and simulates deterministic 
and nondeterministic finite automata in a visual 
manner. It also supports the conversions of a 
nondeterministic finite state automaton to an 
equivalent deterministic finite state automaton 
and also supports the minimizing of a finite state 
automaton.

Java Finite Automata Simulation Tool is a 
very helpful tool to design and simulate finite state 
automata, pushdown automata, Turing machines 
and other forms of automata [46]. The tool also 
supports nondeterministic and deterministic 
machines. SimStudio is a simulation tool developed 
for finite state automata, pushdown automata and 
Turing machines [31]. The tool also supports 
nondeterministic and deterministic machines.

Apart from the above tools, there are other 
tools like FAdo, IPAA (Interaction Pushdown 
Automata Animation), Visual Turing, Minerva, 
DEM, JCT and A to CC which are highly amenable 
for comprehending the FLAT courses. Though 
there are several tools for learning FLAT courses 
and it’s possible to use multiple tools to introduce 
the concepts; however it is recommended to use 
a single or minimum tools to cover the topics in 
a course otherwise it would increase the learning 
load.

3.4 Computational View of a Course

The mathematical nature of FLAT makes the 
courses more abstract and difficult for students 

Checker is a graphical environment that allows 
students to generate deterministic finite automaton 
and verify its correctness [36]. Proof Checker is an 
elegant tool that may be used to aid the students in 
comprehending the FLAT courses.

Formal Language and Automata Package 
(FLAP) is a simulation tool to design and 
simulate finite automata, pushdown automata and 
Turing machines [37]. It also supports numerous 
deterministic and nondeterministic dialects of 
these automata. The tool allows the simple and 
easy generation of automata by simply clicking 
and dragging of a mouse. JFLAP is free and 
interactive educational software to learn the topics 
in formal languages and automata theory. It is used 
to support the FLAT contents, including regular 
languages, context free languages, unrestricted 
grammars, pumping lemmas and Turing machines 
and recognized as a useful tool to reduce the gap 
between students and FLAT contents [5].

The Abstract Machine Simulator is another 
tool designed to help student to comprehend finite 
state automata and transducers [38]. It accepts 
the description of an automaton in tabular form. 
Text based and graphical simulation modules are 
available in the system.

Language Emulator is another powerful tool 
for the simulation of finite state automata, Mealy 
machine and Moore machines [39]. The tool is 
available in English and Portuguese. It accepts 
the description of the automaton and simulates its 
behaviour. It also allows the conversion of NFA 
to DFA, minimization of finite automaton and 
conversion between Mealy machine and a Moore 
Machine.

The Turing Machine Simulator is a tool for 
the simulation of Turing machine [40]. It allows 
the stepwise simulation of the Turing machine 
with descriptive comments.  Turing Machine 
Simulator was originally developed by McFall 
and Dershem to design and simulate finite state 
automata and Turing machines [41]. The tool 
allows both nondeterministic and deterministic 
automaton. It also permits the use of sub-machines 
in the definition of an automaton. Turing’s world 
is another tool developed to design and simulates 
Turing machine and very effective for pedagogical 
purpose. It also supports sub-machine for complex 

 Didactic Strategy for Learning Automata   59



[7, 39]. The students of computer science 
undergraduate programs usually have no strong 
background of mathematics and consequently they 
have little interest and motivation in FLAT courses. 
However, it is possible to increase the interest of 
students and reduce the hardness by introducing 
the FLAT courses in the context and application of 
computer science and this is the central theme of 
a fourth principle of a proposed didactic strategy.   
Devedzic et al. [47],  argued that interest of students 
can be increased by illustrating them where they 
can implement the knowledge they have acquired. 
The applications helpful in the realization of the 
fourth principle of a proposed didactic strategy 
include formal verification and logic programming 
[7], programming languages, query languages, 
data definition languages, regular expressions-
based text searches and communication protocols 
[48]. Finite state automata and regular expression 
can be introduced to describe the lexical analyser, 
nondeterministic finite automaton can be used to 
model a critical processing with a binary semaphore 
[49]; finite automaton may be used in user interface 
design; grammar can be used in the definition of 
word processors and programming languages; 
pushdown automaton can be used to describe 
the syntax analyser and halting problem can be 
introduced in connection with antivirus problems.

Model-based testing is a central element of 
contemporary test automation. In this technique a 
software is evaluated by  analysing the run time 
behaviour against predications defined by a proper 
specification. The well-established techniques use 
finite state machines as a foundation to select test 
inputs [50].

Partial order reduction is a technique used 
for concurrent asynchronous systems and use 
model checking [51]. Model checking is a 
technique to verify sequential circuit diagrams 
and communication protocols. In this system, 
proportional temporal logic is conventionally 
used to define the specifications, and the system is 
modelled as a state-transition graph.

3.5 Use of Heuristics in Problem Solving

Construction of different machines and logics in 
FLAT courses are usually non-trivial for beginners 
because there is no mathematical formula or well-
defined recipe for their construction, and every 

problem has its own requirement and entails a 
different approach for its solution and consequently 
it is usually very hard for beginners to apply the 
knowledge of one problem in the direct solution of 
other problems. However, it is possible to define 
some heuristics as shortcuts to ease the construction 
of automata and other problems. Use of heuristics 
in FLAT courses is a fifth principle of the proposed 
strategy. These heuristics work as an educated 
guess or a rule of thumb to understand and define 
solutions more quickly.

The heuristics can be easily identified with 
experience, observation and judgment and every 
course instructor needs to establish his own heuristics 
for FLAT courses and therefore the paper does not 
define any exhaustive list of heuristics. However, 
the authors have established and experienced the 
following heuristics for FLAT courses.

1. Although the finite state automaton can be 
constructed in any arbitrary fashion; however, 
it is better to construct the automaton in top-
down and left-right manner as shown in the 
example illustrated in Fig. 1.

This heuristic not only increased the 
understandability of a finite automaton, but 
also helps students in tracing the strings.

2. Any language defined by a finite automaton 
can be constructed with the regular expression, 
and the regular expressions always generate 
the regular languages. Therefore, the shape of 
transition graph of an automaton should follow 
some regular or symmetrical pattern. Although 
the structure of transition graph solely depends 
on the structure of an underlying language, yet 
it is better to construct the transition graph in a 
form of rectangle, square, pyramid, diamond, 

Fig. 1. Sample finite automaton for heuristic 1 [52]

60 Muhammad Shumail Naveed & Muhmmad Sarim



oval or their combination. As an example, 
consider a finite automaton shown in Fig. 2.

Above automaton only accepts the strings a, 
aab, and bab and it is apparent that it follows 
one of a prescribed shape.

3. If an empty string is a part of a regular language, 
then the initial state of its deterministic finite 
automaton should be a final state or one of a 
final state of a machine. As an example, consider 
an FA (shown in Fig. 3) developed over the 
alphabet Σ = {0, 1}, accepting all strings with 
an even number of 0’s and even number of 1’s:

 
 

In this example, the empty string is a valid string 
in a language; therefore, the initial state is also 
a final state of a machine. The same heuristic 
can be used in a definition of a pushdown 
automaton. If a context-free language includes 
empty string, then its respective pushdown 
automaton usually contains an empty move 
from the first input state which may check the 

stack and switch to the acceptance of a string. 
As an example, consider the Fig. 4.

This pushdown recognized a language anbn. 
The language includes an empty string and the 
first input state of the pushdown automaton 
check the ε-input and accepts it after verifying 
the stack.

4. If a regular language is finite, then its’ respective 
regular expression never contains a closure and 
similarly the equivalent finite automaton never 
contains a loop. Conversely, if a language is 
infinite, then its respective regular expression 
and its equivalent finite automaton should 
contain the loop(s) which could either be a 
direct or indirect.

Consider a language {aa, aabb}*{b}. The 
language is infinite and therefore its regular 
expression (i.e., (aa+aab)*b)) contains a closure 
and the respective finite automaton contains a 
loop as shown in Fig. 5.

Fig. 2. Sample automaton for heuristic 2 [53] 

Fig. 3. Sample finite automaton for heuristic 3 [54] 

Fig. 5. Finite automaton involving indirect loop [55]

Fig. 4. Sample pushdown automaton for heuristic 3 [53]

 Didactic Strategy for Learning Automata   61



In the definition and use of heuristics, it is important 
to realize that heuristic is simply an educated guess, 
but not a firm rule so the exceptions are always 
possible.

4.  PRELIMINARY EVALUATION AND 
DISCUSSION

A small study is conducted to determine whether 
the proposed solution is justifiable and fruitful to 
reduce the complexity of FLAT course and increase 
the interest of students. The study comprised of 
two parts. In the first part, an online survey was 
conducted in which the undergraduate computer 
science students of Pakistan who have taken a 
course on FLAT were asked the following question:

“Formal language and automata is one of a useful 
and influential subject/course of computer science”

The respondent can reply with 5-item Likert 
Scale. During the survey, 183 responses are 
received from the different regions of Pakistan. 
The number of respondents participated from the 
different regions of Pakistan and shown in Fig. 6.

During online survey, 23% response is received 
from Balochistan, 33% from Sindh, 19% from 
Punjab, 9% from Khyber Pakhtunkhwa and 3% 
from Azad Jammu & Kashmir.

The region wise responses received from the 
partcipants are shown in Fig. 7.

It can be seen that a large majority of students 
do not recognize the FLAT course, as a useful and 
influential subject of computer science and the large 

majority of students disagree with the usefulness of 
FLAT course. The same information can be better 
understood with the Fig. 8.

The feedback received from the students 
indicates that 24% of students strongly disagreed 
and 39% are disagreed with the useful and influence 
of FLAT course, whereas 20% agreed, 4% strongly 
agreed and 13% neither agreed nor disagreed with 
the significance of FLAT courses.

The overall response received from the survey 
suggest that undergraduate computer science 
students of Pakistan do not recognize the FLAT as 
a useful and persuasive course which implied the 
need of a didactic strategy that could increase the 
performance and motivation of students. Therefore, 
as a second part of an evaluation a small study is 
conducted.  During the study, 64 students in the 
undergraduate computer science program who 
have already studied different subjects including: 
introduction to computing, programming 

Fig. 6. Geographical locations of respondents Fig. 8. Percent wise illustration of feedback

Fig. 7. Region wise response of participants

62 Muhammad Shumail Naveed & Muhmmad Sarim



fundamentals, object-oriented programming 
and discrete structures in previous semesters are 
selected and randomly divided into a control group 
and treatment group. A same instructor to both 
group of studies offers a course on formal language 
and automata theory of three credit hours.

During the study, a conventional approach is 
followed for the control group, while the proposed 
strategy described in the previous section is 
utilized in a treatment group. For the realization of 
first principle, the historical notes outlined in the 
previous section and many other historical notes 
are followed to introduce the course. Traditional 
lectures with multimedia-oriented lectures are 
delivered to link the FLAT course with the computer 
science history.

During problem solving and class activities, 
the students were motivated to work in a pair. It is 
suggested that different concepts in FLAT courses 
can be introduced in the context of a particular 
programming language and it is also widely 
recognized that automata play a significant role in 
the design of the compiler [9,54] . So, during the 
evaluation of proposed strategy the FLAT course is 
introduced in the context of programming language 
and compiler construction. A small grammar 
of C-type language is developed to introduce 
the context-free grammar and its recognition is 
described by introducing pushdown automaton and 
parsing. Similarly, the lexical aspects of a designed 
programming language are described by the use of 
finite automata and regular expressions.

JFLAP is mainly used to introduce the FLAT 
course to treatment group; however a slight concept 
of RegeXeX is also introduced to the students of 
treatment group. During the course, students of 
treatment group are introduced with different 
heuristics which help them to understand the 
problems and generate their solutions.

After the completion of course, the control and 
treatment groups are internally evaluated in this  

study. Table 1 shows the summary of the results.

The pass rate in the control group is 53.13 whereas 
62.5 in the treatment group. Fig. 9 illustrates the 

box plots of marks obtained by both groups.

 The quartiles of the box plots show that the 
performance of students in the treatment group is 
much better than the students of a control group.

The significance of a proposed didactic strategy 
is analysed by applying the independent sample 
t-test on the marks secured by the students, and the 
calculated t-value is 1.76, and p-value is .042, so 
the result is statistically significant at p < .05.

Maintaining the interest of students is one of 
a main challenge in FLAT courses. So, in order 
to identify whether the proposed didactic strategy 
increased the interest and motivation of students, 
the following question has been asked before the 
exams to the both groups of students:

“I am enthusiastic about this course”

The students can reply on Likert scale ranging from 
1 (strongly disagree) to 5 (strongly agree). The 
feedback received from the students is shown in 
Fig. 10.

Fig. 9. Box plots of marks

Table 1. Results of evaluation

S. No. Group Students Pass Fail Mean Std. Deviation Std. Error

1 Control 32 17 15 50.09 20.31 3.59

2 Treatment 32 20 12 58.81 19.30 3.41

 Didactic Strategy for Learning Automata   63



 Fig. 10 shows that interest and motivation level 
of students in the treatment group is much higher 
than the control group.

Overall, the results acquired from the initial 
evaluation suggest that the proposed didactic 
strategy is useful to simplify the hardness of the 
course on formal languages and automata theory 
and useful to increase the interest of students. The 
results of evaluation naturally implied that the 
abstract nature of the notions involved in the FLAT 
course, traditional style of teaching and student’s 

perception on the irrelevancy of a FLAT course 
with the computer science are the major factors 
behind the hardness of FLAT course.

The results obtained from the initial evaluation 
of the proposed strategy are quite encouraging. The 
comparison of a proposed didactic strategy and the 
other strategies is shown in Table 2.

 The results shown in Table 2 indicate that the 
proposed study is quite fruitful and supportive in 
increasing the performance of students in FLAT 
courses and thereby comparable to the other 
didactic strategies.

5. CONCLUSION

The courses on formal languages and theory of 
automata present various issues for the instructors. 
Top among these is the student disappointment and 
high dropout due to the abstract nature of a course 
and material, students’ perception on the irrelevancy 
of FLAT course in computer science and the firm 
background in mathematics. This paper presents a 
didactics strategy and reports on its initial evaluation. 
In its current state, the strategy is based on five 

Fig. 10. Students interest in FLAT course

Table 2. Comparison of didactic strategies

S. No. Study Method Results

1 Pillay [2] No practical study is 
reported

Proposed model was judged on observation and on 
projected benefits

2 Chesnevar et al. [9] No practical study is 
reported

Proposed model was analyzed on observation and 
on projected benefits

3 D’antoni et al. [10] Detailed study is 
conducted Statistically significant, p < 0.005

4 Moura, P. & A.M. Dias 
[11] No study is reported Proposed model was analyzed on observation and 

on projected benefits
5 Morazan and Antunez 

[12] No study is reported Proposed model was analyzed on observation and 
on projected benefits

6 Castro-Schez et al. [15] Two studies are 
conducted Average pass rate of students in two studies is 61%

7 Nóbrega, G., F. Lima & 
D. Freire [18] No study is reported Proposed model was analyzed on observation and 

on projected benefits
8 Neeman [26] Survey based questions 60% students understood the major concepts of 

FLAT.
9 Singh and Isah [27] No study is reported Proposed model was analyzed on observation and 

on projected benefits
10 Brown and Hardisty 

[33] Classroom experience Mean score of control group is 30. T-test was 
statistically significant with a p-value of 0.034

11 Proposed Strategy Practical study is 
conducted

Average pass rate of students is 62.5 and results 
are statistically significant with a p-value of 0.42

64 Muhammad Shumail Naveed & Muhmmad Sarim



rational principles. The proposed strategy initially 
applied to a small group of students and the results 
are quite satisfactory. The initial results suggest 
that illustration of FLAT course in linking with 
computer science history, motivating the students to 
work in a pair, use of software tools during lectures, 
introducing the computational view of a course 
and the use of heuristics for problem solving can 
overcome the intrinsic hardness of FLAT courses 
and may increase the interest of students. Further 
study is underway in four dimensions i) definition 
of viable methods for the pairing of students ii) 
comparative analysis of FLAT tools iii) analysing 
the significance of constructivism in FLAT courses 
iv) evaluation of proposed didactic strategy on a 
large group of students.

6. ACKNOWLEDGMENTS

The authors are grateful to the Department of Computer 
for the support. The authors would also like to thank all 
the students who participated in the study.

7. REFERENCES

1. Chesñevar, C.I., M.L. Cobo. & W. Yurcik. Using 
theoretical computer simulators for formal languages 
and automata theory. ACM SIGCSE Bulletin 35: 33-
37 (2003).

2. Pillay, N. Teaching the theory of formal languages 
and automata in the computer science undergraduate 
curriculum. South African Computer Journal 12: 
87-94 (2008).

3. Pillay, N. Learning difficulties experienced by 
students in a course on formal languages and 
automata theory. ACM SIGCSE Bulletin 41: 48-52 
(2010).

4. Lakshmi. & R. Sukumaran. Use of ICT in learning 
theory of computation: An experimental study. 
In: IEEE International Conference in MOOC 
Innovation and Technology in Education, Jaipur, 
India. p. 109-113 (2013).

5. Paul, J. Using jFlap to engage students and improve 
learning of computer science theory: tutorial 
presentation. Journal of Computing Sciences in 
Colleges 31: 145-148 (2015).

6. Korte, L., S. Anderson, H. Pain. & J. Good . Learning 
by game-building: a novel approach to theoretical 
computer science education. ACM SIGCSE Bulletin 
39: 53-57 (2007).

7. Verma, R. M. A visual and interactive automata 
theory course emphasizing breadth of automata. 
ACM SIGCSE Bulletin 37: 325-329 (2005).

8. Moreira, N. & R. Reis. Interactive manipulation of 
regular objects with fado. ACM SIGCSE Bulletin 

37: 335-339 (2005).
9. Chesnevar, C.I., M.P. Gonzalez. & A.G. Maguitman. 

Didactic strategies for promoting significant 
learning in formal languages and automata theory. 
ACM SIGCSE Bulletin 36: 7-11 (2004).

10. D’antoni, L., D. Kini, R. Alur, S. Gulwani, M. 
Viswanathan. & B. Hartmann. How can automatic 
feedback help students construct automata?, ACM 
Transactions on Computer-Human Interaction 22:  
(2015).

11. Moura, P. & A.M. Dias. L-flat: Logtalk toolkit 
for formal languages and automata theory. In: 
Proceedings of the 11th International Colloquium on 
Implementation of Constraint Logic Programming 
Systems, Kentucky, USA, (2011).

12. Morazan, M.T. & R. Antunez. Functional automata 
formal languages for computer science students. In: 
Proceedings of Trends in Functional Programming 
in Education, Soesterberg, The Netherlands, 19-32 
(2014).

13. Berque, D., D.K. Johnson. & L. Jovanovic. Teaching 
theory of computation using pen-based computers 
and an electronic whiteboard. ACM SIGCSE 
Bulletin 33: 169-172 (2001).

14. Dol, S.M. Tps (think-pair-share): An active learning 
strategy to teach theory of computation course. 
International Journal of Educational Research and 
Technology  5: 62-67 (2014).

15. Castro-Schez, J. J., E.E. Castillo, J. Hortolano. 
& A. Rodriguez. Designing and using software 
tools for educational purposes: Flat, a case study. 
Transactions on Education 52: 66-74 (2009).

16. García-Osorio, C., I. Mediavilla-Sáiz, J. Jimeno-
Visitación. & N. García-Pedrajas. Teaching push-
down automata and turing machines. ACM SIGCSE 
Bulletin 40: 316 (2008).

17. Devedzic, V., J. Debenham. & D. Popovic. Teaching 
formal languages by an intelligent tutoring system. 
Educational Technology & Society 3: 36-49 (2000).

18. Nóbrega, G., F. Lima & D. Freire. Integrating the 
semantic wiki approach to face to face courses. 
In: World Conference on Computers in Education, 
Bento Gonçalves, Brazil. p. 1-19 (2009).

19. Rodger, S. H., J. Lim. & S. Reading. Increasing 
interaction and support in the formal languages and 
automata theory course. ACM SIGCSE Bulletin 39: 
58-62 (2007).

20. Cavalcante, R., T. F. Cornell. & S. H. Rodger. A 
visual and interactive automata theory course with 
jflap 4.0. ACM SIGCSE Bulletin 36: 140-144 (2004).

21. Rodger, S. H., E. Wiebe, K. M. Lee, C. Morgan, K. 
Omar. & J. Su. Increasing engagement in automata 
theory with jflap. ACM SIGCSE Bulletin 4: 403-407 
(2009).

22. Jarvis, J., J.M. Lucas. Incorporating transformations 

 Didactic Strategy for Learning Automata   65



into jflap for enhanced understanding of automata. 
ACM SIGCSE Bulletin 40: 14-18 (2008).

23. D’Antoniy, L., M. Weavery, A. Weinertz & R. 
Alury. Automata tutor and what we learned from 
building an online teaching tool. Bulletin of EATCS 
3; (2015).

24. de Souza, G.S., C. Olivete, R.C. Correia. & R.E. 
Garcia. Teaching-learning methodology for formal 
languages and automata theory. In: IEEE Frontiers 
in Education Conference, El Paso, USA. p. 1-7 
(2015).

25. de Souza, G.S., G.P.H. Gomes, R.C.M. Correia, 
C. Olivete, D.M. Eler. & R.E. Garcia. Combined 
methodology for theoretical computing. In: 
Frontiers in Education Conference, Erie, USA. p. 
1-7 (2016).

26. Neeman, A. Buy one get one free: automata 
theory concepts through software test. Journal of 
Computing Sciences in Colleges 31: 90-96 (2016).

27. Singh, D. & A.I. Isah. An outline of the development 
of the theory of formal languages. International 
Journal of Latest Trends in Computing  5: 172-181 
(2014).

28. Myller, N., R. Bednarik, E. Sutinen. & M. Ben-Ari. 
Extending the engagement taxonomy: Software 
visualization and collaborative learning. ACM 
Transactions on Computing Education 9: 7:1-7:27 
(2009).

29. McDonald, J. Interactive pushdown automata 
animation. ACM SIGCSE Bulletin 34: 376-380 
(2002).

30. Chud’a, D. Visualization in education of theoretical 
computer science. In: Proceedings of the 2007 
international conference on Computer systems 
and technologies,; Rousse, Bulgaria. p. 84:1-84:6 
(2007).

31. Chud’a, D. & D. Rodina. Automata simulator. In: 
Proceedings of the 11th International Conference on 
Computer Systems and Technologies and Workshop 
for PhD Students in Computing on International 
Conference on Computer Systems and Technologies, 
Sofia, Bulgaria. p. 394-399 (2010).

32. Chakraborty, P., P.C. Saxena. & C.P. Katti. Fifty 
years of automata simulation: a review. ACM 
Inroads; 2: 59-70 (2011).

33. Brown, C.W. & E.A. Hardisty. Regexex: an 
interactive system providing regular expression 
exercises. ACM SIGCSE Bulletin 39: 445-449 
(2007).

34. Esmoris, A., C.I. Chesnevar & M.P. Gonzalez. Tags: 
a software tool for simulating transducer automata. 
International journal of electrical engineering 
education  42: 338-349 (2005).

35. Grinder, M.T. A preliminary empirical evaluation of 
the effectiveness of a finite state automaton animator. 

ACM SIGCSE Bulletin; 35:157-161 (2003).
36. Stallmann, M.F., S.P. Balik, R.D. Rodman, S. 

Bahram, M.C. Grace. & S.D. High. Proofchecker: 
an accessible environment for automata theory 
correctness proofs. ACM SIGCSE Bulletin 39: 48-
52 (2007).

37. Rodger, S.H. Integrating hands-on work into the 
formal languages course via tools and programming. 
In: International Workshop on Implementing 
Automata Ontario, Canada. p. 132-148 (1996).

38. Lee, M.C. An abstract machine simulator. Lecture 
Notes in Computer Science 438: 129-141 (1990).

39. Vieira, L.F., M.A. Vieira. & N.J. Vieira. Language 
emulator, a helpful toolkit in the learning process 
of computer theory. ACM SIGCSE Bulletin 36: 135-
139 (2004).

40. Hamada, M. Supporting materials for active 
e-learning in computational models. Computational 
Science 5102: 678-686 (2008).

41. McFall, R. & H.L. Dershem. Finite state machine 
simulation in an introductory lab. ACM SIGCSE 
Bulletin 2: 126-130 (1994).

42. Luce, E. & S.H. Rodger. A visual programming 
environment for Turing machines. In: Proceedings 
of IEEE Symposium on Visual Languages, Bergen, 
Norway, p. 231-236 (1993).

43. McDonald, J. Interactive pushdown automata 
animation. ACM SIGCSE Bulletin; 34:376-380 
(2002).

44. Grinder, M.T. A preliminary empirical evaluation of 
the effectiveness of a finite state automaton animator. 
ACM SIGCSE Bulletin 35: 157-161 (2003).

45. Hamada, M. & K.A. Shiina. Classroom experiment 
for teaching automata. ACM SIGCSE Bulletin 
36:261-261 (2004).

46. White, T.M. & T.P. Way. jfast: A java finite automata 
simulator. ACM SIGCSE Bulletin 38: 384-388 
(2006).

47. Devedzic, V., J. Debenham. & D. Popovic. Teaching 
formal languages by an intelligent tutoring system. 
Educational Technology & Society 3: 36-49 (2000).

48. Wermelinger, M. & A.M. Dias. A prolog toolkit 
for formal languages and automata. ACM SIGCSE 
Bulletin 37: 330-334 (2005).

49. Schreyer, B., W. Wawrzynski. Finite automata 
models for CS problem with binary semaphore. 
ACM SIGCSE Bulletin 38: 330-330 (2006).

50. Meinke K. & N. Walkinshaw. Model-Based Testing 
and Model Inference. In: Margaria T., Steffen B. 
(eds) Leveraging Applications of Formal Methods, 
Verification and Validation. Technologies for 
Mastering Change, Lecture Notes in Computer 
Science, Springer, Berlin, Heidelberg  7609 (2012).

51. Clarke E. M, O. Grumberg, M. Minea. & D. Peled. 

66 Muhammad Shumail Naveed & Muhmmad Sarim



State space reduction using partial order techniques. 
International Journal on Software Tools for 
Technology Transfer 2: 279-87 (1999).

52. Sipser, M. Introduction to the Theory of 
Computation, 2nd ed. Boston. Thomson Course 
Technology Boston, USA (2006).

53. Cohen, D.I. Introduction to computer theory. 2nd 
ed. Wiley, New York, USA (1991).

54. Hopcroft, J.E., R. Motwani. & J.D. Ullman. 
Introduction to Automata Theory, Languages, and 
Computation, 2nd ed. Addison Wesley, New York, 
USA (2001).

55. Martin, J.C. Introduction to Languages and the 
Theory of Computation, 4th ed. McGraw-Hill, New 
York, USA (1991). 

 Didactic Strategy for Learning Automata   67




