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1. INTRODUCTION

In this article, we consider the well-known Glycolytic Oscillator model. A biochemical reaction that is 
universal in metabolic systems contains the following sequence of steps:

 

where glucose-6-phosphate is denoted by GGP, FGP is fructose-6-phosphate, FDP is fructose-1,6-
diphosphate, ATP is adenosine triphosphate, ADT is adenosine diphosphate, and PFK is phosphofructokinase.

An assumption generally made is that the enzyme phosphofructokinase has two states, one of which 
has a higher activity. ADP stimulates this allosteric regulatory enzyme and produces the more active form. 
Thus a product of the reaction step mediated by PFK enhances the rate of reaction [1]. A schematic version 
of the kinetics is: 

The equations for this system, where x stands for FGP and y stands for ADP, are as follows:

subject to initial conditions;  x(0) = 1 and y(0) = 1.

These equations, derived in many sources, are known to have stable oscillations as well as other 
interesting features. Note that α and β are positive constants and independent of time. 
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First of all we will calculate the equilibrium points by equating both equations of system (1) equal to zero 
i.e,

α - βx - xy2 = 0     (2)

βx + xy2 - y =0    (3)

After solving the equations (2) & (3), we obtained one equilibrium point that is 

2.  RK4 METHOD  

In this section, we solve the systems (1) by RK4 Scheme as follows.

Table 1. Different values of α&β, with equilibrium points.

α β Equilibrium point
(x*, y*) Det J<1

1+Det(J)+
Trace (J)>0

1+Det(J) -
Trace(j)>0

0.5 0.2 (1.111..,0.5) 0.970953554685612 3.937992363829684 0.003914745541540
1.0 0.2 (0.8333..,1.0) 0.963203463203463 3.916666666666666 0.009740259740260
0.6 0.8 (0.5172..,0.6) 0.871023921079538 3.732598510129098 0.009449332029977
2.0 2.0 (0.3333..,2.0) 0.689393939393939 3.344696969696969 0.034090909090909
2.5 3.0 (0.2702…,2.5) 0.595105140559686 3.146526691981237 0.043683589138135
1.0 1.0 (0.5,1.0) 0.848484848484849 3.681818181818182 0.015151515151515
3.0 0.5 (0.3157…,3.0) 0.638449270028217 3.232609495767390 0.044289044289044
0.7 0.35 (0.8333…,7.0) 0.944705356144470 3.882366096388236 0.007044615900704
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Numerical Experiments

We have checked stability analysis for different values of parameter’s and Numerical experiments are 
performed using the first entry of Table 1.

3. NON STANDARD FINITE DIFFERENCE METHOD

In this section we shall construct Non-Standard Finite Difference Scheme for the system (1). First order 
time derivatives are described by using forward difference approximation [4, 5]. f ̇(t) can be approximated 
as

xn and yn are the approximations of x(nl) and y(nl), for n=0,1,2,…  and where ‘l’ is step size of time. For 
satisfying biological nature of the continuous time model, it should be non-negative. The numerical method 
which has been developed to solve the system must hold Conservation law proposed by Mickens [6, 7]. To 
construct the NSFD scheme for system (1), we note the following statements

1. The linear and nonlinear terms on the right hand side of first equation of system (1) are in the form

2. The linear and nonlinear terms on the right hand side of second equation of system (1) are in the form

So the system (1) can be written as 

Invoking some algebraic manipulations on Eqs. (6)-(7), the following relations are obtained:

3.1 Convergence Analysis

The stability and convergence of the proposed NSFD scheme about equilibrium point      are 

discussed here. Let

And 

And the Jacobian matrix is
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where as

From the basic theory of the stability analysis, we use the following lemma.

Lemma[10]: For the quadratic equation  μ2-μ L+M=0, both roots satisfy |μ_i |<1;i=1,2 if and only if the 
following conditions are satisfied:

 1+M-L>0

 1+L+M>0

 M<1

Let us define L = trace (J)  and M = det (J)

where L = trace (J)

And M = det (J)

Now 1 + M - L > 0

Again 1 + L + M > 0
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Since h > 0 and h ≠ 0, and all the conditions of the theorem are true, so the System is Stable for all values 
of h and converges to steady state.
Numerical Experiments

Numerical experiment is performed using first entry from the Table 1.

4.  RESULTS AND DISCUSSION

The Numerical modelling of well-known Glycolytic Oscillator model has been analysed. The model has 
one unique equilibrium point. An unconditionally convergent non-standard finite difference numerical 
model has been constructed and numerical experiments are performed for different values of discretization 
parameter ‘h’. Results are compared with the well-known numerical method i.e. Runge-Kutta method of 
order four (RK4). RK4 method and NSFD method converges for the time steps “h=0.001, 0.1, 1” (see Fig. 
1-3,5-7) while RK4 method diverges and NSFD method converges for the time steps “h=2.243, 5, 10, 100” 
(For RK4, see Fig. 4 and for NSFD, Fig. 8). The comparison of both methods are shown in Fig. 9-10. Also 
the phase portrait of the given system is shown in Fig. 11.

Fig. 1. The simulation with parameters α=0.5 and β=0.2 and step size 0.001.

Fig. 2. The simulation with parameters α=0.5 and β=0.2 and step size 0.1.

 Nonlinear Glycolytic Oscillator   75



Fig. 4. The simulation with parameters α=0.5 and β=0.2 and step size 2.243.

Fig. 5. The simulation with parameters α=0.5 and β=0.2 and step size 0.001.

Fig. 3. The simulation with parameters α=0.5 and β=0.2 and step size 1.
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Fig. 6. The simulation with parameters α=0.5 and β=0.2 and step size 0.1.

Fig. 7. The simulation with parameters α=0.5 and β=0.2 and step size 1.

Fig. 8. The simulation with parameters α=0.5 and β=0.2 and step size 2.243.
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Fig. 10. The simulation with parameters α=0.5 and β=0.2 and step size 2.243.

Fig. 11. The phase portrait with parameters α=0.5and β=0.2.

Fig. 9. The simulation with parameters α=0.5 and β=0.2 and step size 2.243
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5.  CONCLUSIONS

In this research, a non-standard finite difference 
scheme given by Mickens was successfully applied 
to find the numerical solution of the Glycolytic 
Oscillator model. It can be observed that when 
step size was increased up to 2.243 mm, the RK-4 
scheme gave negative values of both GP & ADP, 
while the proposed Non-Standard Finite Difference 
(NSFD) scheme preserved positivity as well as 
convergence of the solution for these values of step 
size. Unlike RK-4, which fails for large time steps, 
the developed NSFD scheme gave results that 
converged to true steady states for any time step 
used. The proposed scheme is easy to implement 
and numerically stable.
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