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1. INTRODUCTION

Soil represents a naturally occurring complex 
system in which different biological, chemical and 
physical components interact with one another. 
A specific level of each component is maintained 
by formation, transformation and decomposition 
of complex organic materials in soil into simpler 
available nutrients by soil microbial populations [1-
3]. Some DNA and RNA based methods have been 
regularly used during 1990s to characterize and 
identify the function of different microbial proteins 
and enzymes from soil samples. For example, 
micro-autoradiography and in situ hybridization 
had been used as powerful tools to study function-
based microbial diversity and to identify the specific 
protein-protein and protein-substrate interactions 
in individual bacterial cells from soil microbial 
communities [4, 5]. By using stable isotope probing 
(SIP) DNA or RNA molecules, bacterial species 
involved in bioremediation of toxic compounds can 
be identified [6, 7]. 

Recently, various meta-omics approaches 
such as metagenomics, metatranscriptomics 
and metaproteomics have been used to study 
microbial ecology and functional make up of 
natural environments [8, 9]. ‘Metaproteomics’ is 
defined as the characterization of whole microbial 
protein complement from an environmental sample 
at a specific time. Microbial communities from 
different environments such as soil, marine and 
fresh water and activated sludge have been studied 
by using metaproteomic approaches [10-13]. A 
number of experiments have been performed for 
proteomic analysis of individual cells or microbe, 
protein-protein interactions and identification of 
disease biomarkers, but metaproteomics technique 
can be used for the entire environmental sample at a 
time to study functional microbial community [14-
16]. Metaproteomic based techniques can be used 
for identification of different microbial proteins 
and enzymes with potential biotechnological 
applications such as biodegradation of complex 
organic pollutants, biological nitrogen fixation and 
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other environmental processes [17].

In proteome analysis from soil samples, to 
get high quality proteins is a very critical step 
because protein distribution varies with change 
in microbial populations, e.g. Gram-negative 
bacteria have variety of intracellular proteins 
while Gram-positive bacteria have a great variety 
of extracellular proteins [18, 19].Some other 
methodological challenges may be there to get high 
quality and maximum number of proteins from a 
complex soil samples. Physical characteristics of 
soil, such as salinity, pH, temperature and texture, 
microbial diversity and presence of high amount 
of extracellular enzymes may affect the protein 
extraction process [20] and ultimately hinder the 
expression of proteins profiles and characterization 
of microbial metabolic pathways in a specific soil 
sample [21].

A number of previous studies have discussed 
on importance of metaproteomics from different 
environments. Metaproteomics studies on the 
plant rhizosphere microbiome help to understand 
complex metabolic pathways, detection of multiple 
functions of microbial genes and proteins. This 
review has focused on the recent advances in soil 
metaproteomics analysis, such as identification 
of proteins through HPLC, 2D-LC, MS/MS and 
MALDI analysis.

2. SOIL SAMPLE PREPARATION

Soil is one of the most complex sample types 
regarding metaproteomics analysis. It contains 
organic matter, inorganic ions and complex 
microbial communities. Microbial diversity 
identified from the soil is more diverse and 
complicated as compared to diversity other samples 
such water, human, animal or plant tissue [9, 11]. 
It is very tricky to handle soil samples during 
metaproteomics analysis as they react very quickly 
to environmental changes. Proteins extraction from 
soils is especially difficult and critical because it is 
mostly clay soil with more salt concentrations and 
less permeable than the loam and sandy soils [22, 
23].

3. PROTEIN EXTRACTION

Extraction of total proteins from an environmental 

sample especially from soil is very important for 
metaproteomics analysis [24, 25]. Lysis of Gram-
positive bacteria such as Bacilli and Cyanobacteria 
is difficult as compared to Gram-negative bacteria. 
So, protein concentrations are low because of 
incomplete lysis of Gram-positive bacterial cells. 
Soil sample also contains humic substances which 
cause problems in the protein extraction process. 
These compounds mostly interfere with protein 
purification and estimation through colorimetric 
methods and SDS-PAGE analysis [26]. Some 
organic substances present in soil samples hindered 
the separation of individual peptides obtained by 
tryptic digestion [27]. Whiffen et al. [28] suggested 
that humic acid and polyphenolic compounds 
usually interfere with protein estimation from soil 
samples when the Bradford assay is used (Fig. 1). 
Three different methods have usually been used for 
protein extraction from soil samples: (1) by using 
‘phenol method’ in which, lysis buffer with phenol 
used for cell lysis and extraction; (2) ‘cell lysis’ by 
using different concentrations of SDS; (3) protein 
extraction by cell lysis with alkaline solution e.g., 
NaOH. Recently, different kits have been used for 
extraction of total proteins from soil samples, e.g., 
Power Soil Protein kitand FastProtein™ with blue 
and red matrix. Soil protein extraction by using these 
kits is relatively easy and protein concentration is 
good as compared to previously described methods 
[29, 30].

4. PROTEIN PRECIPITATION

To concentrate and purify, protein samples are 
precipitated by using various inorganic or organic 
compounds. Salting out of some neutral salts such 
as ammonium acetate, and ammonium sulfate 
have been commonly used for protein extraction 
by protein-protein interactions [31, 32]. In this 
technique, to change the charge on the surface of 
proteins, salt concentration in solution is increased 
so that hydrophobic parts of proteins interacts 
and proteins can be precipitated from solutions 
easily.A number of previous studies reported that 
protein can be precipitated from soil samples by 
using ammonium acetate buffer[33]. Some organic 
solvents such as methanol, ethanol or acetone can 
be used for precipitation of proteins (Fig. 1). In this 
method, temperature is considered an important 
parameter to avoid denaturation of proteins. Some 
previous studies showed that protein precipitation 
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has also been done by using polymers, such as 
polyethylene glycols and dextrans. This method 
has been used for proteins identification from 
biomaterials [34].

5. PROTEIN SEPARATION

Protein separation techniques play important roles 
in the development of metaproteomics of soil. For 
protein separation, a number of methods have been 
used, such as polyacrylamide gel electrophoresis 
(PAGE), western blotting and high performance 
liquid chromatography (HPLC).

5.1.  SDS-PAGE

This technique is mostly used to separate and 
characterize different proteins from a mixture. 
Different proteins from a complex sample such 
as soil can be purified, analyzed and identified by 
using polyacrylamide gel electrophoresis (Fig. 1). 
Initially blue-native (BN-PAGE) has been used to 
separate a mixture of proteins [35, 36]. To address 
the resolution of complex mixtures of proteins, 
SDS-PAGE has been introduced. Various chemicals 
like detergents are used to denature the proteins 
which bind to individual proteins and help them 
to separate according to molecular mass [37, 38]. 
SDS-PAGE or one-dimensional electrophoresis 
has commonly been used to separate proteins on 

the basis of their molecular mass. Sodium dodecyl 
sulphate (SDS), a detergent is used in this method 
to denature the protein, so that they can be purified 
easily [28, 39]. It is a native technique which 
has been previously used to isolate and study 
enzymes and other proteins. In two-dimensional 
electrophoresis (2-D electrophoresis), proteins 
are separated in two directions: according to their 
isoelectric point in the 1stdimension and SDS-
PAGE in the 2nd dimension to separate proteins on 
the basis of their molecular weights (Fig. 2). This 
technique has the main advantage of identification 
of proteins with some post-translation modifications 
[40, 41]. Now 2-D electrophoresis is widely used 
to study the expression profile of proteins both 
quantitatively and qualitatively (Fig. 1 and 2). The 
intensity of spots provides the information about 
the presence and absence of proteins expression. 
A number of softwares have been used to analyze 
complex images [42]. The main drawback of this 
technique is to study and characterize proteins 
with more hydrophobic parts, e.g., membrane 
proteins. Another problem associated with 2-D 
electrophoresis is the analysis of proteins with low 
abundance. This technique has been used to analyze 
and separate more complex and less purified 
proteins from a mixture. SDS-PAGE is used to 
measure the protein size and molecular weight of 
proteins, peptide mapping, estimate protein purity, 
comparison of the polypeptide composition of 

Fig. 1. Overview of soil metaproteomics strategies

 Methods to analyze Protein from Soilsh   21



different proteins and ubiquitination of proteins 
[43, 44]. 

5.2. High Performance Liquid 
Chromatography (HPLC)

It is highly dynamic technique in its nature 
especially depending on physiological conditions 
and abundance of proteins that are analyzed 
at the same time (Fig. 1). Same proteins show 
different expression in different cells and tissues 
[45, 46]. Reverse phase high performance liquid 
chromatography is the most commonly used 
technique which has been used for the separation, 
quantification and identification of peptides, 
proteins and other small organic molecules on 
the basis of their hydrophobicity. By using this 
approach, small molecules can also be detected 
with the application of high pressure on the rate 
of solvent flow in the separation process [47, 48].
In HPLC technique, different detector types are 
used to separate and identify all proteins but for 
identification of individual peptides, HPLC is 
not sufficient by only using UV spectrum [49]. 
Duration of separation of specific proteins is 
controlled by using a high-pressure pump and 
computerized system [50, 51]. HPLC is also used 
for identification of proteins with post-translational 
modifications. For this purpose, HPLC system has 
water as mobile phase for the accurate detection of 
peptides with post-translational modifications [52, 
53].

5.3. Fast Protein Liquid Chromatography 
(FPLC)

It is a type of medium pressure liquid chromatography 

that can be used to purify proteins with high 
resolution and reproducibility. The distinctive 
feature of this technique is the stationary phase 
with small beads packed in plastic or glass columns 
which have high loading capacity [54]. The most 
common forms of FPLC are ion exchange, affinity 
and gel filtration chromatography. This technique 
can be used to purify different proteins and enzymes 
with applications in agriculture, industry, medicine 
and bioremediation of complex organic compounds 
[55].

5.4. Two Dimensional Liquid Chromatography 
(2D-LC)

The two dimensional liquid chromatography (2D-
LC) is usually used to analyze two samples of 
separate liquid chromatographs for combined data 
analysis [56]. This chromatography technique can 
be used to analyze and separate complex mixtures 
with lots of proteins such as soils, liquid samples, 
e.g. blood, urine, waste and marine water [57]. The 
2D-LC has important applications in proteomic 
and metabolomic studies of various environmental 
samples which are involved in the identification of 
targeted and non-targeted proteins [58].

5.5.  Western Blotting

Western blotting is a technique used to study 
different proteins from a mixture or peptides from 
an individual protein. This technique can be applied 
for identification of proteins, protein-protein 
interactions, the kinase activity of proteins, cellular 
localization, monitoring of post-translational 
modifications, e.g., glycosylation, methylation and 
ubiquitinylation [59, 60]. Analysis of some proteins 

Fig. 2. Separation of different proteins from a sample by using 2-D SDS gel electrophoresis

22 Salma Mukhtar et al



through this approach may have some error due to 
variations at any step reducing the reproducibility 
and reliability [61]. Significant improvements 
have been made in this technique over the last 
decade, such as the modifications in methods used 
for sample preparation, the source and amount of 
primary antibodies used [62, 63]. In recent years, 
some new protocols have also been introduced, 
such as DqiWest automated microfluid western 
blotting, capillary and microchip electrophoresis 
and single cell resolution [64]. So, with the help 
of these innovative developments in the protocol 
and instrumentation, sensitivity and reproducibility 
of western blotting can be increased [64, 65]. The 
principle of the western blotting is mainly based on 
the nature of proteins (intracellular or extracellular), 
quantity of specific proteins, composition of gel 
matrix used for proteins separation and antigen-
antibody binding during the identification of 
specific proteins (Fig. 1).

6. PROTEIN IDENTIFICATION 

6.1.  Mass Spectrometry 

For the identification of proteins, experimental 
spectra are compared with theoretical spectra 
obtained from protein databases [66]. Mass 
Spectrometry (MS) ionizes the chemical 
compounds into charged molecules and measures 
its mass to charge ratio. Although the technique 
was discovered in 1900s, but the scope was limited 

until other potential tools emerged.  Samples for 
MALDI-TOF are prepared by coating the sample 
with matrix. The matrix is an organic chemical 
compound with an ability to absorb energy. 
Crystallization of matrix consequently crystalizes 
the protein sample (Fig. 1). A laser beam ionizes 
the sample coated with matrix. Upon ionization, 
proteins from a specific sample get protonated 
and separated on the basis of charge and mass 
ratio upon acceleration on fixed potential. These 
proteins are identified and measured using different 
mass analyzers. Time of Flight (TOF) analyzer is 
preferred option for microbiological uses [45]. 

Tandem Mass Spectrometry is one of the most 
used techniques for proteomics after the digestion 
of proteins. The advancement in the field of matrix 
assisted laser desorption ionization (MALDI) has 
increased the scope of MS’s application for protein 
identification [67]. In MALDI-TOF technique, mass 
to charge ratio is calculated by determining the time 
it requires to travel the tube [68]. Followed by MS 
analysis, theoretic peptides from protein databases 
are checked for proximal correlation with resulting 
spectra (Fig. 3). The technique’s efficiency has 
provided the potential for the use of the developed 
approach for identification, quantification and 
detection in large-scale metaproteomics [69]. After 
the digestion, it matches the resulting spectra with 
theoretical spectra of the protein database [70]. The 
proteomic data obtained from mass spectrometry 
and protein sequences are added to the Proteome 

Fig. 3. Identification of proteins from a sample by using LC-MS/MS-MS data
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Xchange Consortium [71]. Standard proteomic 
softwares are often incompatible for metaproteomics 
search because they do not provide sufficient data 
on un-sequenced species and complete taxonomy 
of microbial communities [66].

Sequential Windowed Acquisition of all 
theoretical fragment ions Mass Spectrometry 
(SWATH-MS) is a recent development in the field of 
MS. Advancements in this technique gives us more 
accurate and reproducible results of low abundance 
microbial proteins. SWATH-MS uses an approach 
that simultaneously scans all ionized fragments in 
a given sample. Spectral library is used to match 
and identify peptide sequences with already known 
peptides (Fig. 1 and 3). Moreover, the abundance 
of peptides is quantitatively measured by extracting 
the targeted signals [72]. Mass Spectrometry 
performance varies in analyzing different sample 
which is one of the factors that affects the 
reproducibility and accuracy of proteomics results. 
To resolve the issue, several techniques have been 
developed, i.e. tandem mass tags (TMT) and isobaric 
tags for relative ad absolute quantification (iTRAQ). 
TMT and iTRAQ multiplex several samples in one 
analysis, reducing the quantitation error [73, 74]. 
A further development in mass spectrometry could 
yield a better throughput. Unlike genomic studies, 
the metaproteomics technologies that are based on 
mass spectrometry have the potential to provide 
a deeper understanding of functional interactions 
between host and microbes [75, 76].

6.2. SIP-Protemics (Stable Isotope Probes 
Linking Proteins)

Metaproteomics provides the complete information 
about the different proteins and enzymes to be found 
in a specific environment and their possible origin. 
To determine the function of a given enzyme from 
a particular environmental sample, stable isotope 
probes can be used. In this technique, environmental 
samples such as soil are labeled with isotope 15N 
or 13C to detect the functional relationships among 
different microorganisms [6, 77]. Microorganisms 
in this environment are able to incorporate 15N or 
13C into their molecules; DNA, RNA and proteins 
[78, 79]. By using stable isotope probes (DNA/
RNA-SIP), microbial populations can be quantified 
and identified directly from environmental samples. 

7. SHOTGUN PROTEOMICS ANALYSIS

For shotgun proteomics analysis, two methods, 
(1) data-independent acquisition and (2) data-
dependent selection of proteins with specific 
function are commonly used. These approaches can 
be used for comparative analysis and functional 
analysis of different proteins. This technique can 
also be used for the whole proteome analysis of 
various environmental samples such as blood, water 
and soil [80, 81]. Washburn et al. [82] have used 
shotgun metaproteomics for the analysis of whole 
proteome of yeast (Saccharomyces cerevisiae). 
They identified more than 1400 known proteins and 
some unknown or rarely identified proteins such as 
protein kinases, DNA replication and transcription 
factor proteins.

8. STATISTICAL ANALYSES OF 
METAPROTEOMES

A number of statistical software’s can be used to 
find the correlations among diversity analysis 
and different environmental factors. Multivariate 
analyses such as principal component analysis 
(PCA), correspondence analysis (CA), non-metric 
multidimensional scaling (NMDS) and analysis 
of similarity (ANOSIM) are the most common 
methods used for metaproteomic analyses [83, 84].

9. CONCLUSION

Metaproteomic studies of the rhizosphere soils have 
permitted the analysis of individual proteins that 
are involved in complex metabolic pathways. This 
approach provides a detailed study of the structure 
and functions of soil microbial communities together 
with metagenomics and transcriptomics. Thus, this 
review mainly focused on overview of the study of 
soil metaproteomics and improvements in methods 
for extraction, purification, and identification of 
soil proteins. A few protocols can be established 
and standardized for the extraction of soil proteins 
from different environments. For the separation and 
identification of peptides and proteins, especially 
proteins with small amount, specific strategies 
should be used. Due to lack of advanced software’s 
and database gaps, metaproteomics technique 
needs some improvements to give an accurate 
and detailed picture of soil proteins. In future, 
advancement in metaproteomic techniques and 
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databases will be used for better understanding of 
functional microbial communities from different 
soils.
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