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Abstract: We investigate a new subclass T3 (@, v, k, t)of harmonic functions satisfying condition:

K (z) K (z)
%{azﬁ”(z) +T} >k |az8"(2) +T_ 11+ 1—|yl(z € E),

Where £(z) = zt — Z‘]?';2|aj|zj+t'1 and K (z) = Z;‘;1|bj|zj+t'1, |b;] <1 .We also determine the coefficients
inequalities, growth and distortion bounds, radius of star likeness for the analytic part of the harmonic

functions F(z) = 2(z) + K (z) . For specific values of parameters involved, our findings may be related to the
previously known results.
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1. INTRODUCTION

Harmonic functions are important because of their applications in minimal surfaces and these functions
play a vital role in applied mathematics for example, [3, 5, and 6]. Harmonic functions have close
connections with conformal mappings are not analytic in general and hence the Cauchy-Riemann
equations do not hold. These functions were first studied by differential geometers and then complex
analysts involved in their study which was initiated by Clunie and Sheil-Small [4] in 1984.

A continuous function f(z) = u(x,y) + iv(x,y)is harmonic, if both uand v are harmonic. A
harmonic functionftakes the canonical form:f(z) = l(z) + k(z),where [ and k are analytic in U. The
characterization of f for local univalence and sense-preserving is just |l'(z)| > |k'(z)| in U. For detail, we

refer [4,7]. Let I be the class of functions f(z) = [(z) + k(z) univalent and sense-preserving in U such
that f(0) = £,(0) — 1 = 0. A function f € H,is expressed as:

f(@) =z+3X7 02/ +¥7.,b2),|b)| <1 (z€U). (1.1)
This function f reduces to [ for k = 0. Jahangiri [10] introduced the class T3, () comprising of
functions f'such that
l(z)=z—- 39:2|aj|zj, (z € V). (1.2)
and
k(z) = Xj=1 |bj|zj, (z € ). (1.3)

A functionf € T («), if it satisfies the condition:

%(arg f(reie)) >a 0<a<l. (1.4)
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Jahangiri proved that a functionf'satisfying (1.4)along with

w Jj-a jta

gl + X,

lbj|<20<a<1, (1.5)

where [ and kare defined by (1.2) and (1.3) respectively, then f is sense-preserving and convex of order
ainU.

Frasin [9] defined the class T3 (a,y) consisting of functionsf: f(z) = [(z) + k(z)satisfy the condition:
k(2)

‘R{azl”(z) +7} >1—|y|,whereyeC, a>0,z€U,

where [ and k are of the form (1.2) and (1.3) respectively. He also proved that if f € T3, (a,y), then

i[ G- Dl 1—3a]<| |
A T
]:

fora, =b;=1,0<a< 1? andy € C.Let F(z) = 2(z) + K (z), where
2(2) = z' = ¥7,|aj|z/ " (z € U) (1.6)
and
K(z) = X7 |b|z/ 71 (z € U). (1.7)
Makinde and Afolabi [11] introduced the class T3, (a,y,t) consisting of functions F (z) = & (z) +
¥ (z) such that £ and K are of the form (1.6) and (1.7) respectively and satisfying the condition:

K(z)
ER{O_'ZB”(Z) + T} >1-|yl(zel),

where y € C and a > 0. In this particular article, Makinde and Afolabi studied various properties of
the class T3 (@, v, t).In the following, we define a new class T3 (a,y,m,t).
Definition 1.1. Let F (z) = 8(z) + X (z) be a harmonic function defined in U such that £ and K have
the series representations (1.6) and (1.7) respectively. Then F € T3, (o, y,m,t), if & and K satisfy the

condition:

K (2)

Z

K (2)
z

?R(azﬁ”(z) + ) >m |az£3”(z) + —1[+1-|yl(z€eU), (1.8

wherea =2 0,m=0andy e C
Functions in the class 73, (a,y, m, t) are related with the uniformly harmonic functions. The image
domain of such functions is basically conic depending on the values of 72.The condition described above

in (1.8) is equivalent to:

R [(1 +me'?) (azﬁ”(z) + ]C(z)) -me®>1-1y|, (r <6 <mzel). (1.9)

VA

To avoid repetition of parameters in the Definitionl.1, we assume these parameters with the above
specific restrictions. If we take m = 0 in (1.8), we obtain the class T3 (a,y,t), see [11] with references
therein. For other related results, we also refer [1-2, 8, 11-18].



Some Properties of Harmonic Univalent Functions 73

2. PRELIMINARY RESULTS

In this section, we include a useful lemma. This lemma deals with the conditions on the infinite series of
coefficients involving in the representation of F.

Lemma 2.1. Let F(z) = 8(z) + K (2) be so that Land K are given by (1.6)and (1.7) respectively.

If F €T3 (a,t), then
jt+t—
L |+ Iy <2
=1

wherea; = by =1,0<t <1, and0 < a < 1.

3. RESULTS

In the following, we find estimates on the coefficients bounds. These coefficients bounds further lead to
the estimates of growth and distortions related to the functions F € T3 (@, y, m, t).

Theorem 3.1. Let F(z) = £(z) + K (z), where £ and K satisfy (1.6) and (1.7) respectively.
If F € T37(a,y, m, t), then

2—t—3
a <Iyl

i +t—-1)(+t—2)|a;| — < ,
_Z{“U"' )G+t = 2)]a] +t—1+a’ " 1+m
J:

(3.1)

wherea1=b1=1,0<t£1,§£a<§,andye(€.

Proof. Let F € T3 (a,y,m, t). In view of (1.6), (1.7), (1.9) and for t; = j + t — 1, we have

Re[(1+me®)zt~ | at(t — 1) + |by| — Z{atj(tj —1)|a;| - |b;[}z~* | —me®| = 1—1yl.
=2

Choosing z to be real and lettingz — 17 in the above inequality and simplifying, we obtain
(L+m)|at(t —1) + |by| = Zio{a(+t = DG+t = 2)|a| = |b}] = 1= ly| + m.

For 0 < at(t — 1) + |by| < 1, we write

0

, . lyl
{aG+t =D+t -2)|a| - ||} < : (3.2)
1+m
j=2
From Lemma 2.1, we have
j+t 1+a j+t—-1—-a j+t—1+a
— |J|_Z{—a o] + =]} <2,
j=1 =1
where 0 < a < 1,a; = 1. This implies that
|b|< 2—t-3a > (3.3)
=ivt-1+a 57 '

For0<t<1, % <a< Zg,y € C and on substituting (3.2) into (3.3), we get
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2—t—3a < ly|
+t—1+a ~14+m

Z{ a(j+t =1+t —2)|a;| —-
j=2 /

In the following, we deduce the conditions for the coefficients bounds for functions in the class
T3 (a,y,m, t).

Corollary 3.2. LetF (z) = £(z) + K(z) € Tyr(a,y,m,t), where & and K satisfy (1.6) and (1.7)
respectively. Then
G+t=-1+a)lyl+A+m)(2—-t—-3a)

|aj|Sa(]-_|_t_1)(j+t—2)(j+t—1+a)(1+m)'

wherey € Cand j > 2.
The following theorems deal with the growth and distortions related problems of the function £
involved in the class T3, (a,y, m, t).

Theorem 3.3. Let F(z) = 2(z) + K (z) € T3 (a,y,m,t) , where £ and K satisfy (1.6) and (1.7)
respectively. Then
r' —8(e,y,m Or[** < [2@)| < '+ 6(e,y,m, B)|r|", (3.4)

where

t+1+a)ly|l+A+m)2—-t—3a)
att+ DA +m)(t+1+a)

Proof Let F € T3 (@, y, m, t). Then from (3.2), we have

f(a,y,mt) =

at(t + 1) X5|a| = No,|b;] < - (3.5)

1+m’

From (3.3) and (3.5), we write

N t+1+a)lyl+ (1 +mQ2—t—3a)
Zlajl < (3.6)
- att+ DA +m)(t+1+a)
J:
From (1.6), we have the following inequality:
12(2)] =t — Z|aj||r|f+1 . (3.7)
j=2
Combining (3.6) and (3.7), we thus obtain
t+1+a +(1+m)(2—-t—-3a
2] 3 rt Myl + (1 +m)( ) et 68)
att+ DA +m)(t+1+a)
Adopting similar procedure, we write
t+1+a +(1+m)(2-t—-3a
12(2)| < rt + ( vl + X ) |r|t+L, (3.9)

att+ DA +m)(t+1+a)
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On combining(3.8) and (3.9), we obtain (3.4).

Theorem 3.4. If F € T3; (o, y, m, t), then for |z| = r < 1,we have
trt=l — 0(a,y,m,t)rt < |53'(Z)| < tr* '+ 0(a,y,m O)rt,  (3.10)
where

p _t+1+aly|+ T +m)(2—-t-3a)
(@y,mt) = a(+mit 1t

Proof. For F € T3, (a,y, m, t), from (3.2), we write

atZ(j +t—-Dlg| < n |_|)_/|m +Z|bj|.
j=2 j=2

G.11)
From (3.3) and (3.11), we obtain
< t+1+a)ly]+(1+m)©2-t-3a)
;(’“_maf"s a(+mt1+a)
(3.12)

Also for |z| = r < 1, we can write
1€'(2)| 2 it = T2,( + t — Dlay|rt. (3.13)
From (3.12) and (3.13), we have the following

(t+1+a)|y|+(1+m)(2—t—3a)r

! > t-1 _
@l = tr at(l+m)(t+1+a)

t (3.14)

Also for|z| = r < 1, we obtain that

(t+1+a)|y|+(1+m)(2—t—3a)r

at(1+m)(t+1+a) ; (3.13)

Q@) < trt1 +

Combining equations(3.14) and (3.15), we have the desired result.
In the theorem, we calculate the radius of starlikeness for F € T3, (at, v, m, t).

Theorem 3.5. Let F(z) = 8(z) + K (2) € Ty (a,y,m, t),
where £ and K are given by (1.6) and (1.7) respectively. Then £ is starlike of order p (0 < p < 1)in
|z|< 1, where

B (2—p—t)(1—p){a+t—1)|y|+(1+m)(2—t+3a)}f+%

@M G o - D@t - Dt e+ D)
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Proof. To obtain the desired result, it is enough to show that:

z8'(2)
2(2)

From (1.6), we have the following representation:

—1|£1—pfor lz| <7y

z8'(z) = tzt — Z(] +t— 1)|aj|zj+t‘1.
j=2

Thus, on simplifications, we can write

(t—1D+ 2,0+t —2)|aj| |z +2

e(z)

z2'(2) ’

The inequality|%i)z) - 1| < 1 — p holds only if

1— Zﬁzlaj||z|m+t_2

, (ap=1).

t—1 o (Jjt=1-p itt—
=+ 2 (B gl <1, (3.16)
The coefficients inequality (3.16) along with (3.12) yield the following bounds
s <GP =00 = plat t= Dyl + A +m@—t +30)
T oat(l+m)A-p)t+j—p—-Dt+j-D(t+a+1)’
that is,
1
2] < R-p-t)A-p)a+t—-Dly|l+ A +m)(2 -t + 3a)}]/+t-2 (3.17)
T at(+mA-p)t+j—p-D(+j-DEt+a+1)

Hence, from (3.17) we deduce the radius of the starlikeness of the functions F € T_H (a,y, m, t), that is,

Q-p-t)A—p)a+t—-Dlyl+ (A1 +m)(2 -t +3a)}

1
-2

= Inf[
j

This completes the proof.

3.5. Remarks

at(l+m)A—-p)t+j—p—-DEt+j—-D(Et+a+1)

We may also calculate radius of convexity of the functions F € T3, (a, y, m, t).

4. CONCLUSIONS

In this research, we introduced a new class
T3 (a,y, m, t)of harmonic functions. We obtained
the coefficients inequalities, growth and distortion
bounds, radius of starlikeness for the analytic part
of the harmonic functions involved in this newly
defined class. For specific values of parameters

involved, our findings may be related to the
previously known results.
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