
by multiplying the number of groups by ten and 
then adding the product to total count of individual 
spots. Results, however, vary greatly, since the 
measurement strongly depends on observer 
interpretation and experience and on the stability 
of the Earth’s atmosphere above the observing site. 
Today, sunspot numbers are more relative as many 
factors influence the accuracy such as; weather 
condition, place of observation, instruments used 
for observing solar activity. Sunspot numbers are 
smoothed and weighted average of measurements 
is considered from a set of network observations 
around the planet. Smoothed data is compared 
with predictions and finally results contain several 
different types of tables. The relative sunspot 
number was defined by Wolf in 1856 as R = K (10g 
+ s), where g is the number of sunspot groups and 
s is the total number of distinct spots. The scale 
factor K (usually less than unity) depends on the 
observer and is intended to affect the conversion to 
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1. INRODUCTION

In astronomy two things are of great importance, 
namely the measurement of the periodicity in the 
occurrence of the event and the effect of the event on 
planet earth. Sunspots are astronomical events which 
appears in the form of dark spots due to magnetic 
disturbances and solar activity on the surface of sun. 
These sunspots as shown in Fig. 1 are clearly visible 
from earth. Original concept was given in 1848 by 
the Swiss astronomer Johann Rudolph Wolf, who 
introduced a daily measurement of sunspot number. 
From the studies, it was revealed that there is a 
periodic cyclic behavior in the occurrence of these 
sunspots. Spectrum or periodontics are the main 
tools to estimate the periodicity of the data. Sunspot 
also occurs in clusters. Heinrich Schwabe also 
reported his results in his article [1] about days of 
observation in a year and number of clusters on sun. 
Wolf and Wolfer calculated daily sunspot number 



the scale originated by Wolf. 

Interest has grown over time to investigate 
daily sunspot numbers and study long term solar 
activity due to coronal mass ejections (CME), 
magnetic storms and their effect on global climate, 
weather changes and seismic activity. Investigating 
sunspot activity on solar surface and determining 
sunspot cyclic quasi-periodic behavior [2, 4] has 
many interesting effects on radio communication 
(RF) and satellite communication. There is a strong 
evidence that temperature variation on the surface 
of earth is also due to sunspot activity besides 
many other factors. Efficient spectrum estimation 
techniques [5] are available which can be used for 
estimating sunspot time series. GU Yule (1927) 
characterized the sunspot numbers as a “disturbed 
harmonic function” and proposed a parametric 
model with reference to Wolf sunspot numbers. 
Neural Network techniques have been used for 

forecasting sun spot numbers [6, 7] and efficient 
neural forecaster schemes have been proposed. The 
effect of sunspot numbers on high frequency radio 
waves has been investigated recently in [8]. Satellite 
communication is also affected by solar activities 
occurring on the surface of sun as it heavily depends 
on ionospheric stability conditions at various times 
of the year and seasonal changes that affect high 
frequencies in GHz range. This research work is 
an effort to utilize different parametric and non-
parametric techniques to estimate the estimate the 
frequency of occurrence of sunspot numbers.

2. 	 SOURCE OF DATASET FOR SUNSPOT 
NUMBERS

The daily sunspot number data were obtained 
from the NOAA’s National Geophysical Data 
Center. NOAA’s National Geophysical Data Center 
(NGDC) [9] provides scientific products, and 

Fig. 2. Data Record for Sunspot Number

Fig. 1. Sunspots
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Fig. 3. (a) Data Record for monthly and yearly Sunspot Number (1700-2014)

Fig. 3. (b) Data Record for monthly and yearly Sunspot Number (1700-2014)

Fig. 3. (c) Data Record for monthly and yearly Sunspot Number (1700-2014)

services for geophysical data from the Sun to the 
Earth. Three sets of these International Sunspot 
Numbers are available:

	Daily sunspot numbers (1849-2006). 

	Monthly sunspot numbers (1841-2005).
	Yearly mean sunspot numbers (1700- 2014).

The yearly mean sunspot numbers were used to 
generate the spectral analysis results. More recent 
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data is also available from 2002 up to year 2014 
from Royal Observatory of Belgium (http: //www.
sidc.be/silso/.). The data is shown graphically in 
Fig. 2 and Fig. 3. Daily, monthly and yearly sunspot 
number for different range of years are plotted in 
Fig. 2 and Fig. 3.
3. MATERIALS AND METHODS

There are two approaches for analyzing the sunspot 
data, namely time domain and frequency domain 
approaches, both are described in the following 
sections.

3.1. Time Domain Approach 

The autocorrelation sequence (ACS) of a stationary 
random signal [10] depends on the lag (or shift) 
between two time instants of a signal. The formal 
definition of ACS or auto-covariance of is given 
below.
	 r (k) = E{x ( t ) x* ( t - k )}                               (1)

Where E{.} is an expectation operator.

We expect that ACS estimates produced from 
N samples of a stationary random signal data 
should look substantially like ACS estimates over 
the same range of lag values if estimated from any 
other segment of N data samples, including the 
adjacent N data samples. Thus, if non-stationary 
data is suspected, a simple determination of 
the maximum N for quasi-stationary statistical 
behavior is to compare two ACS-estimates-vs-lag 
plots produced from two adjacent N-point data 
segments. If the plots are substantially similar, then 
N point data segments are continuously increased. 
The comparison of ACS estimates from an adjacent 
pair of N-point data segments are done until an N 
value is reached in which significant differences in 
the ACS estimates can be observed. This will be the 
threshold value between quasi-stationary and non-
stationary statistical behavior. 

3.2. Frequency Domain Approach 

If the ACS is stationary, then the Fourier transform 
(FT) of the ACS (or the power spectral density 
(PSD)) is also stationary. In this case, the shape of the 
plotted PSD, like the ACS plot, will not change over 
time. If time varying frequency content is observed, 
then the random signal has non-stationary statistical 

behavior. Again, one could experimentally vary the 
analysis interval duration N until differences in 
successive PSD estimate plots are noted, indicating 
the threshold between quasi-stationary and non-
stationary statistical behavior. Using the sunspot, 
an experimental determination through MATLAB 
scripts was made. k=250 samples were the threshold 
between quasi-stationary and stationary statistical 
behavior. The time-vs-frequency gram was created 
by using a sample spectrum (magnitude of FFT) for 
each analysis intervals of 250 samples, with 125 
sample overlap is shown on the next pages. 

3.3. Problem Statement

The power spectral density (PSD) of a zero-mean 
stationary stochastic process is defined as [10]: 

Our problem is to find an estimate of the power 
spectrum, of a discrete processfrom a finite record 
of observations where n=0 to N-1 of a single 
realization of sunspot numbers.is auto-correlation 
function of. Different parametric, non-parametric 
and frequency estimation approaches are used to 
obtain a good spectral estimate for sunspot numbers. 
The Periodogram is used as the benchmark to 
compare the results of the sunspot cycle period 
estimate by various techniques. 

3.4. Analysis and Results Using Non-Parametric 
Methods 

The simplest way to estimate the power spectrum 
of a signal is to use non-parametric methods 
which are also known as window-based methods. 
Window-based methods are the most fundamental 
type of spectral estimation approaches without 
requiring signal modeling. One of the most 
attractive properties of the window-based methods 
is their simplicity for implementation. However, 
these methods suffer from low frequency resolution 
especially when the length of observation data 
is short. Non- Parametric spectral estimation 
techniques are:

	The Periodogram
	Biased and Unbiased autocorrelation estimate
	Welch’s Method: Averaging Modified 
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Periodogram
	Blackman-Tukey approach: Periodogram 

smoothing

3.4.1. The Periodogram
The Periodogram is based on the power spectrum 
for finite data x(k), k = 0, 1… N-1. In Fourier 
domain, the Periodogram P can be expressed as

The sunspot data is noisy and has a DC 
offset and has non-zero mean. So the first step 
was to remove the mean and   filter the data. The 
Periodogram of our monthly sunspot data is shown 
in Fig. 4 and results are described in Table 1. A 

Table 1. Result of the Periodogram Spectral Estimate

Sampling Frequency, Fs 12 samples/year

Low pass Filter Order 66

High pass filter order 148

Cycle revealed from Periodogram 10.667 year/cycle

Fig. 5. Parks-McClellan Low pass filter (Order 66)

Fig. 4. Periodogram: before filtering and after filtering

large 0 Hz DC component due to positive numeric 
property of sunspot number is apparent in Fig. 4. 
In order to study the spectral estimation further it 
was necessary to remove the large DC component 
and to remove the noise from the data. The sunspot 
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numbers were filtered using low pass and high pass 
filters. Linear phase filters [11, 12] using Parks-
McClellan filter structures as shown in Fig. 5 
were used to realize low pass and high pass filters. 
MATLAB functions firpmord and firpm were used 
for simulation. The classical 11-year sunspot period 
frequency of 0.09 cycles per year is also clearly 
apparent in Fig. 6.

3.4.2. Biased and Unbiased Autocorrelation 
Spectral Estimate

Both biased and unbiased autocorrelation 
function were obtained from sunspot data. The 

autocorrelation function shown in Fig. 7 was 
generated for stationary analysis of the sunspot 
number time series and for observations regarding 
this series’ periodicity. The autocorrelation function 
for the sunspot number data clearly demonstrates 
periodicity with small cycles inside of larger 
cycles. Looking closer at the period of the smaller 
cycles, 11-year period can be clearly seen in the 
autocorrelation and monthly mean sunspot number 
plots. The autocorrelation estimate does not decay 
significantly for large correlation lag and so memory 
of the time series does not disappear quickly. Fig. 7 
also shows that biased estimate is more trustworthy 

Fig. 6. Cycle revealed from Periodogram

Fig. 7. Biased and un-Biased Autocorrelation Sequence
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than unbiased estimate.

3.4.3.  The Welch-Bartlett Method: Averaging 
Modified Periodogram

There are two methods available if we modify the 
original Periodogram. Any window can be used 
other than rectangular window. The modified 
Periodogram can be [10] expressed as

Where 				    is the length of the 
window

Bartlett’s method uses Periodogram averaging. 
However, the difficulty of this approach is that 
uncorrelated realizations of a process are generally 
not available.  is partitioned into K non-overlapping 

sequences xi (n) of length L, where N = KL.

Welch method is a refined version of Bartlett 
method. In Welch method data window is overlapped 
and a windowing function is also applied on data 
segment prior to computation of Periodogram. 
Smooth Periodogram as shown in Fig. 8 is achieved 
but the period estimate was approximately the same 
as the Autocorrelation estimate. The percentage of 
overlap changed the period estimate slightly but the 
best results were with overlaps of 40% to 50%. The 
period estimate was sensitive to segment length and 
segment length values of about 10% (=200/1977) of 
the data length resulted in the best period estimate. 

Fig. 8. Welch-Bartlett Power spectral estimate

Table 2. Parameter Setting and Result of the Welch-Bartlett Spectral Estimate
Spectral estimator parameters:
Window choices:  0--none, 1--Hamming, 2--Nuttall
Enter number of window choice: 1
Enter segment size per Periodogram (# data samples): 200
Enter inter-segment overlap (# data samples): 100
Performance with lag (L=200): 50% overlap
K= (2N/L)-1=18.77~ 19 sequences of length L
Resolution= (1.28*2*pi)/L=0.02
Variability=9/16*(L/N) =0.056
Revealed period=0.09961 corresponds to 10.039 years/cycle
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As the segment length increased, the Welch method 
returned results similar to the Periodogram. Bartlett, 
Hamming and Nutall windows were used to arrive 
at the period estimate. Final Estimator settings for 
MATLAB simulations are shown belowand results 
are summarized in Table 2.
Fs =12, 
N=1977 (data samples), 
Window=Bartlett
Fnyquist=6, T =0.0833 
num_psd =2048.

3.4.4. The Blackman-Tukey (BT) Method
Classical Blackman-Tukey auto/cross spectral 
estimate based on the Fourier transform of the 
auto/cross correlogram (ACS or CCS estimate) has 
been used. This method is also called Periodogram 
smoothing and uses a window function to in order 
to decrease the contribution of unreliable estimate 
to the Periodogram. 

The PSD via Blackman-Tukey can be calculated 
using expression in eq. (6).

The power spectrum has smaller variance. 
However, there is some resolution loss since a small 
number of autocorrelation estimates are used to form 
the estimate of the power spectrum. The Blackman-
Tukey method of smoothing the Periodogram is 
shown in Fig. 9. This has resulted in a lower sunspot 
cycle period estimate than the Periodogram but 
worse than the modified Periodogram. Various ACS 

lags which control window size were tried but the 
period estimate became worse when the window 
length exceeded 20% of the data length. 

4. ANALYSIS SETTINGS

We have used the following setting for different 
estimators:

	Autocorrelation Temporal Sequence Estimate. 
Both biased and unbiased ACS terms out 
to lag 500-800 months where it is small but 
there is strong evidence of cyclic behavior and 
periodicity. 

	Blackman-Tukey spectral estimate using the 
150 ACS estimates with 50% lag. Hamming 
window is applied to suppress side-lobe 
artifacts. Parks-McClellan Low-pass filter 
Order is 66 and high-pass filter order is 120.

	Autoregressive spectral estimate using modified 
covariance method gives best resolution and 
closes at order 48 terms; low order reduces 
spectral resolution details too much

	Minimum variance spectral estimate using 60th 
order  

	Pisarenko spectral estimate uses 20 sinusoids 
and calculated harmonic frequencies and signal 
power contribution at these frequencies and is 
considered the best estimate in Eigen Analysis 
techniques.

The time-frequency (TF) grams are also 
shown for non-stationary analysis. The various 
estimator settings are shown in Fig. 10. The TF 
gram clearly shows the dominant period at around 

Fig. 9. Blackman-Tukey PSD Estimate
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0.09375 cycles per year with adjacent harmonics of 
lower magnitude.Final estimator setting for non-
stationary analysis:
Interval=200, overlap=50%, Lag=150
Final Estimator setting for stationary analysis
Interval duration (# samples): 1977
Overlap (# samples) between analysis intervals: 0
Spectral estimator parameters:
Window choices:  0--none, 1--Hamming, 
2--Nuttall
Enter number of window choice: 1
Enter maximum lag (# samples) for estimated 
ACS: 300
Dominant Revealed period =0.09375cycles/year 
(10.667 years/cycle)
2nd revealed cycle=0.1875 cycles/year (5.33 
years/cycle) of lower magnitude.

5.	 RESULTS AND ANALYSIS (USING 
PAREMETRIC METHODS)

The non-parametric methods for spectrum estimation 
rely on Discrete Fourier Transform (DFT) and 
consequently exhibit a frequency resolution where 
N is the length of the data segment. Increasing 
the data segment length is usually not possible if 
data has been collected over a short finite interval 
or the signal may only be considered stationary 
over limited intervals. Parametric methods rely 
on an underlying model that adequately describes 
the generation of the sampled data. The spectrum 
calculated from the model produces a high-
resolution, smoothed spectrum due to the structure 

imposed by the model. However, the success of 
such methods very much depends on how accurate 
the model is, how accurate the model parameters 
can be estimated, and how sensitive the model 
estimation is to perturbations (e.g. noise) present in 
the data or deficiencies in the model (e.g. incorrect 
order of model). There are several parametric 
techniques that may be used to estimate the all-pole 
parameters. Parametric methods are classified as 
Autoregressive All-Pole model called AR(p) where 
p is the order, All-zero Moving average MA(q) 
process and Auto Regressive-Moving-Average 
(ARMA) process usually denoted by ARMA (p, 
q) process.  We will mainly concentrate on Auto 
Regressive process AR (p). 

5.1. Autoregressive All-Pole Model

An Autoregressive spectrum estimation requires 
that an all-pole model be found for the process. The 
objective is to find the coefficients, ap, in the AR 
process equation

There are 5 different method used for AR 
parameter estimation:

a.	 The Yule-Walker method (Autocorrelation 
method)

b.	 The Lattice (Geometric) method
c.	 The Lattice Burg method

Fig. 10. Blackman-Tukey 1D Time-Frequency (TF) grams
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d.	 The Covariance method
e.	 The Modified Covariance Method

5.2. Autoregressive Spectral Estimation by Yule-
Walker Method [10]

In this method of all-pole modeling, the AR 
coefficients, ap (k) are found by solving a set of 

normal equation. ε ppp aR =

Where Rp is an autocorrelation matrix and has 
Toeplitz structure, so we can use the Levinson-
Durbin recursion to solve for the coefficients ap(k). 
In this method autocorrelation is first estimated 

using some windowing function, so the data is 
extrapolated and produces less resolution than the 
other methods that do not employ any window. 
Biased autocorrelation estimate is also preferred 
over non-biased estimate. If the AR order is too 
high or over-modeled, then a phenomenon called 
line splitting may result producing various artifacts 
resulting in multiple peaks. So it is necessary 
to estimate an order closing to arrive at a good 
estimate. The results of this order closing are shown 
for Yule-Walker method and the power spectrum 
is shown in Fig. 11 through Fig. 14. The reader is 
referred to ref. [10, 16] for further details on various 
techniques. We have omitted certain information 
due to space limitation and are presenting only the 
results. There is a strong periodic behavior:

Fig. 11. Yule-Walker Method for AR spectral estimate

Fig. 12. AR spectral estimate: The Lattice (Geometric) method
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Fig. 13. Lattice Burg Algorithm PSD estimate

Fig. 14. AR Modified Covariance PSD estimate

Table 3. Performance Comparison of Non-Parametric and Parametric Methods

Non-Parametric Methods First Dominant period (cycles/year) Years/cycle
Periodogram 0.09433 10.667
Blackman -Tukey 0.09375 10.66
Welch Method 0.09961 10.3
Min-Variance 0.09523 10.5
Parametric Methods First Dominant period(cycles/year) Years/cycle
Yule-walker 0.09375 10.666
Lattice-Geometric 0.09375 10.666
Lattice-Burg 0.09375 10.666
Modified Covariance 0.09375 10.666

	 Spectral signal processing techniques for estimation of preiodcity in sun spot numbers	 19



	Revealed cycle =126/11=10.5 year/cycle
	Harmonic 1=259/12= 21.583 year/cycle
	Harmonic 2=385/12=32.083year/cycle  

6. CONCLUSION

The sunspots occur due to magnetic disturbances 
on the surface of the sun and affect the temperature 
and weather on our earth. It is necessary to find the 
periodicity by using various parametric and non-
parametric techniques. Results of various spectral 
estimates are shown in Table 3. From this table, 
it is clear that results of parametric estimation 
techniques are better than non-parametric 
estimation techniques of power spectrum 
estimation. Frequency of occurrence of sunspot 
numbers from non-parametric methods vary from 
10.5 to 11.1 years/cycle whereas from parametric 
methods this number is approximately 10.66 year/
cycle. From this research, it is concluded that 
parametric methods are a preferred choice for 
estimating the periodicity and PSD of sunspot 
numbers. Accurate prediction of sunspot numbers 
and their cyclic behavior can help us in predicting 
the accuracy of weathers conditions, design of 
satellite communication systems, predicting 
magnetic storms and their effect on global climate 
and seismic activity.  
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