
critical applications of embedded systems then it is
worth thinking that each day we trust these systems
with our lives. It is thus required that such safety-
critical systems are governed by protocols that are
flexible and fault- tolerant [6] and [7].

To us, previous research on CAN suggested
that although cost-effective and simple, the protocol
was neither flexible in “Shared-Clock” (SC)
environments [8] nor it possessed an inherent fault-
management strategy [9], [10] and [11]. Keeping in
mind such limitations of CAN, one can easily move
towards the more complex/expensive protocols like
Time-Triggered Protocol (TTP) [12] and FlexRay
[13]. On the contrary, our research motivated us
to progress towards making CAN more flexible &
fault-managed in order to keep the simplicity/cost-
effectiveness by suggesting a topology migration
from bus towards star-based architectures [14],
[15] and [16]. As elaborated in [8], for real-time
embedded safety-critical time-triggered (TT)
architectures, one of the major concerns for system
designers at system’s operation phase is jitter. Jitter

Research Article

Proceedings of the Pakistan Academy of Sciences: Pakistan Academy of Sciences
A. Physical and Computational Sciences 56 (1): 21–28 (2019)
Copyright © Pakistan Academy of Sciences
ISSN: 2518-4245 (print), 2518-4253 (online)

————————————————
Received: September 2017; Accepted: March 2019
* Corresponding Author: Muhammad Amir <amir@nwfpuet.edu.pk>

Comparative Analysis of Controller Area Network’s Migration Code
in a “Shared-Clock” Environment

Muhammad Amir1*, Syed Waqar Shah1, Bilal ur Rehman1, and Michael J. Pont2

1Electrical Engineering Department, University of Engineering and Technology, Peshawar
2SafeTTy Systems Ltd, United Kingdom

Abstract: Industrial and automotive applications since long have been utilizing the Controller Area Network (CAN)
protocol for their communications needs. History relating to the use of CAN suggests that although it is cost-effective
and less complex; a lack of flexibility and an incomprehensive fault-management strategy makes its use scarce in
safety-critical applications. This scarcity of CAN in safety related applications is primarily due the fact that this
protocol was originally implemented using a bus-topology. Previously, through our research, a migration of CAN
from bus to star topology was suggested. The results of which exhibited that such a migration positively impacted the
flexibility and fault-management capability of CAN. Here, in this paper, a comparative analysis of the codes used for
both CAN architectures (bus and star) is presented. The analysis exhibits that such a fruitful migration can be achieved
through almost the same software-overhead and complexity as was in the original CANbus-based architecture.

Keywords: CAN, Topology, Migration, Code-Volume.

1. INTRODUCTION

The bus-topology-based CAN protocol was
introduced in the early 1990’s specifically for
automotive applications [1]. Since then, it has
infiltrated many field-systems that rely on control
[2], [3], [4] and [5].

1.1 Problem Statement & Motivation

Nowadays, almost all systems (e.g. avionics,
automotive, marine transport (including ships,
ferries, boats & submarines), industrial process
control systems, building elevator systems, home
appliances, security systems, fire safety systems,
CCTV systems, ATM systems, Automated bomb
disposal systems etc) are controlled through
embedded systems that are invisible to us as users.
These systems are known as embedded because
we as users only see the system’s level of their
applications. In the above examples, if for a moment,
we consider avionics, automotive, industrial, fire
safety & elevator systems that are prime safety

is simply defined as the delay introduced in system’s
response time due to task context switching either
in co-operative or pre-emptively scheduled TT
architectures [16]. Such delays are caused due to
scheduler-software-overheads and incur a negative
effect on the response timing of systems where
safety is the main concern. This research paper
presents a comparison between CAN-bus and
CAN-star implementations of industrial process
control, pivoting primarily on code volume and
complexity metrics.

The comparison will show that such a topology
migration can be achieved with less scheduling-
software-overhead in order to keep jitter levels at
minimum [8]. This manuscript is constituted in a
manner such that: Section 2 describes the setup on
which our proposed migration was carried out. In
Section 3, comparative results of our case-study
based on values of code volume and complexity
metrics of both topology implementations are laid
out. Section 4 entails a discussion centering on the
obtained metrics values. Finally, in Section 5 we
present our conclusion.

2. MIGRATION & CASE-STUDY RIG

The topology shift for CAN was tested in a manner
that encompassed firstly an implementation of the
case-study using a CANbus architecture running
on a CANbus-based algorithm termed as Time-
Triggered Cooperative-Shared-Clock1 (TTC-SC1)
[8] and secondly, the architecture was shifted
towards a CANstar design and automated/tested
through a CANstar-based algorithm termed as Time-

Triggered Cooperative-Shared-Clock5 (TTC-SC5)
[15]. It is important to note here that the task-sets,
their schedules and their execution deadlines on the
Master and Slave nodes were kept identical in both
implementations. It keenly suggests that only the
topology of CAN architecture was shifted from bus
to star. The case-study rig, depictions of topologies
and their descriptions are presented in this section
as following:

The “RIG” or process control apparatus used
for both implementations is shown in Fig. 1. On
the far right in Fig. 1 is the “Basic Process Rig”
(BPR) used to simulate fluid (water/chemical) flow
while on far left is the heating element known as the
“Temperature Process Rig” (TPR) used to simulate
the boiler heating process in an industrial setup. The
module in the middle shown in Fig. 1 is the “Forced
Air Cooler” (FAC) kept them in the process for
emergency cooling of fluids in the setup. The entire
RIG is known as “PROCON” (short for process
control) apparatus and is supplied by Feedback
Instruments, UK [17]. On the other hand, Fig. 2
shows the original CANbus based implementation
of our case study. The Master node is in the middle
accompanied by Slave nodes on left and right. The
Master node is a developmental board housing
an LPC2294 microcontroller [18] with 4xCAN
interface support. It is supplied by Olimex [19].
Moreover, the Slave nodes are also development
boards having LPC-2129 microcontrollers [18] with
2xCAN interface support [19]. The Master node
here is responsible for deployment of TTC-SC1
protocol through the original CANbus topology
as well as for notifying system status as shown in

Fig. 1. Process Control setup (Rig) used for topology
migration

Fig. 2. CANbus-based implementation (one Master and
two Slaves)

22 Muhammad Amir et al

Fig. 3. CANbus-based implementation (Master node) Fig. 5. CANstar-based implementation (one Master and
two Slaves)

Fig. 4. Block diagram of CANbus-based implementation Fig. 6. Block diagram of CANstar-based implementation

Fig. 3. Furthermore, the Slave (seen on the right
in Fig. 2) is responsible for controlling the flow of
water inside the BPR while the Slave (seen on the
left in Fig. 2) is responsible for temperature control
of the heating element inside the TPR.

It is important to mention here that part of the
TTC-SC1 protocol (specific to Slaves) is run by
the abovementioned Slaves. The block diagram of
our CANbus based setup shown in Fig. 2 is given
in Fig. 4. It is evident from the block diagram that
Master and Slaves are sharing the same CANbus
for communication while deploying the TTC-
SC1 protocol. Fig. 5 on the other hand shows our
migrated CANstar based implementation of the
case study. For this migrated setup, the Master and
Slave nodes are kept the same with exactly the same
task-sets. Only difference here is that the Master is
now responsible for running the TTC-SC5 protocol
on the migrated CANstar topology.

The block diagram of our migrated CANstar
based setup shown in Fig. 5 is depicted in Fig. 6. The
block diagram portrays that the Master and Slave
nodes are now using dedicated CAN interfaces due

to the CANstar topology for deployment of TTC-
SC5 protocol [15]. So with this described setup we
were able to achieve the mentioned topology shift
and were able to perform a comparative case-study
while keeping identical task-sets on TPR (Slave-1)
and BPR (Slave-2) for both implementations. The
following section presents results acquired from
the source codes of both topologies. Source codes
included protocol software on Master as well as
Slaves in both topologies.

3. COMPARATIVE OBSERVATIONS

After running the case-study-rig on both topologies
we were able to obtain an identical system behavior
and response [15]. It is important to note that
our main concern here was to keep an eye on the
number of linearly-independent-paths (LIPs)
through each code that are going to be followed
by the system during run-time. More LIPs mean
more complexity and consequently more task jitter
[20], [21], and [22]. The definitions of code metrics
examined in such an architectural code comparison
are described in Table 1. The code comparison
metrics for both topologies were obtained through

 Migration Code Metric Analysis 23

Table 1. Code Metrics and their descriptions

Metric Description

“AvgCyclomatic” “Average-cyclomatic-complexity-for-all-nested-functions-or-methods”

“MaxCyclomatic” “Maximum-cyclomatic-complexity-of-all-nested-functions-or-methods”

“MaxNesting” “Maximum-nesting-level-of-control-constructs (if, while, for, switch, etc.) in-the-
function”

“CountPath” “Number-of-unique-paths-though-a-body-of-code, not-counting-abnormal-exits-or-
gotos”

“SumCyclomatic” “Sum-of-cyclomatic-complexity-of-all-nested-functions-or-methods”

“SumEssential” “Sum-of-essential-complexity-of-all-nested-functions-or-methods”

“CountLineCodeDecl” “Number-of-lines-containing-declarative-source-code. Note-that-a-line-can-be-
declarative-and-executable (e.g. int i = 0)”

“CountLineCodeExe” “Number-of-lines-containing-executable-source-code”

“CountDeclFileCode” “Number-of-code-files”

“CountDeclFileHeader” “Number-of-header-files”

the visualization software UnderstandTM 2.0 [23]
freely available from scitools TM [24]. They work
with companies/organizations like BOEING,
Adobe, Apple, IBM, NASA, SIEMENS, BMW,
GENERAL DYNAMICS & TOYOTA.

3.1 Case-Study Results

The comparison graphs and their corresponding
software metrics values for CANbus & CANstar
implementations on the PROCON apparatus are
presented in this sub-section as following.

The code volume comparison of both topologies
is given in Fig. 7 while the corresponding metrics
values are given in Table 2. From these two
depictions it is evident that in terms of declarative
and executable lines of code (LoC), on File-System’s
level, the original CANbus implementation requires
fewer LoCs when compared with the CANstar
implementation. The reason for this is obvious
as CANstar implementation provides flexibility

and fault-management at a very higher level [16].
Even if one looks at it the difference is not that
substantial. Fig. 8 and Table 3 present the file
volume comparison between both implementations.
From Fig. 8 it is clear that on File-System’s level the
CANstar’s implementations volume on embedded
level is marginally better than its counterpart. What
the above means is that during implementation the
CANstar code for Master and Slave nodes will
require less memory on the microcontrollers than
for CANbus implementation.

Moving along, comparison of the first three
metrics relating to cyclomatic complexity [20] of
both implementations is presented in Fig. 9 along
with their values given in Table 4. From Fig. 9 and
Table 4, it can be seen that the first three metrics
represented by Cyclomatic-Complexity-1 here
have values almost identical to one another for both
implementations. Such identical values suggest that
code for the migrated topology setup is as simple
as the original setup. It is pivotal to note here that

Table 2. Code volume of CANbus & CANstar implementations (Metrics-values)

CountLineCode
Decl (CANbus)

CountLineCode
Decl (CANstar)

CountLineCodeExe
(CANbus)

CountLineCodeExe
(CANstar)

File-System 538 544 1563 1637
Flow-Rig-Code 157 155 433 434
Master-Code 224 234 702 774
Temp-Rig-Code 157 155 428 429

24 Muhammad Amir et al

Table 3. File volume of CANbus & CANstar implementations (Metrics-values)

CountLineCode
Decl (CANbus)

CountLineCode
Decl (CANstar)

CountLineCodeExe
(CANbus)

CountLineCodeExe
(CANstar)

File-System 29 27 29 27
Flow-Rig-Code 10 9 10 9
Master-Code 9 9 9 9
Temp-Rig-Code 10 9 10 9

Table 4. Cyclomatic-Complexity-1 (Metrics-values) both implementations

Avg
Cyclomatic
(CANbus)

Avg
Cyclomatic
(CANstar)

Max
Cyclomatic
(CANbus)

Max
Cyclomatic
(CANstar)

MaxNesting
(CANbus)

MaxNesting
(CANstar)

File-System 3.34 3.35 22 22 5 5
Flow-
Rig-Code

2.97 3.03 9 9 5 5

Master-Code 3.74 3.67 22 22 5 5
Temp-
Rig-Code

2.95 3 8 8 5 5

Fig. 7. Code volume comparison of CANbus & CANstar implementations

the original CANbus based setup is revered for
its simplicity thus making it more reliable and
predictable [8], [14], [15] and [16]. The last three
metrics for both implementations represented by
Cyclomatic-Complexity-2 are compared side by
side in Fig. 10 and their values are given in Table
5. A visible difference in this comparison of both
implementations emerges when one looks at the
Path Counts (first two columns of Table 5). It is clear
from it that the proposed migrated topology has

fewer linearly-independent-paths (LIPs) through its
body of code making it less complex, more reliable
and more predictable than the original CANbus
topology code [20]. Rest of the columns in Table
5 does not show a major difference in complexity
between the two implementations.

Based on the above observations, Section 4
that follows presents a discussion relating to the
achievement of such a commercial off-the-shelf

 Migration Code Metric Analysis 25

Fig. 8. File volume comparison of CANbus & CANstar implementations

Fig. 9. CANbus & CANstar side by side comparison (Cyclomatic-Complexity-1)

Table 5. Cyclomatic-Complexity-2 (Metrics-values) both implementations

Avg
Cyclomatic
(CANbus)

Avg
Cyclomatic
(CANstar)

Max
Cyclomatic
(CANbus)

Max
Cyclomatic
(CANstar)

MaxNesting
(CANbus)

MaxNesting
(CANstar)

File-System 878 679 395 393 169 174
Flow-
Rig-Code

170 169 110 109 52 51

Master-Code 551 354 176 176 65 72
Temp-
Rig-Code

169 168 109 108 52 51

26 Muhammad Amir et al

Fig. 10. CANbus & CANstar side by side comparison (Cyclomatic-Complexity-2)

migration without drastically increasing code-
volume and the consequent jitter due to scheduler
overheads on the Master and Slave nodes.

4. DISCUSSION

As we know, viscosity of code complexity is a
measure of linearly-independent-paths (LIPs)
throughout the structure of the code [20]. Meaning,
high number of LIPs lead towards an increase in
complexity which consequently causes the system
to waste time on verifying corresponding conditions
for a single input variable. Such wastage of time
leads toward a delay (i.e. jitter) in the control action
of any safety-critical system.

By looking at the comparative analysis given
in Section 3, in Table 2, it is evident that population
of executable-lines-of-code (eLOC) in CANstar-
based implementation is 74 lines more than the
CANbus-based implementation. These eLOC are
essential for supporting the topology migration
and are executed at the initialization stage of the
system. Moreover, they do not represent any LIPs
in the topology code.

On the other hand, Table 5 (relating to number
of LIPs), one can see that the entire file system
of CANbus-based implementation has 199 LIPs
more when compared with the CANstar-based

architecture. This greater number of LIPs in
CANbus is due to scheduling code overhead on the
Master node that constitutes a bus-based shared-
clock environment. This scheduling overhead
causes eventually causes task jitter in turn making
CANbus based implementations unsuitable for
safety-critical applications. The above comparison
exhibits simplicity in the migrated topology code
projecting it as reliable & predictable for safety-
critical applications.

5. CONCLUSION

The comparative observations discussed in the
above section exhibit that a migration of CAN
protocol from bus to star topology is tremendously
easy, bears lesser complexity and is more fruitful.
By fruitfulness here, we mean that, the migrated
topology setup is more flexible and fault-manageable
as shown through our previous research referenced
herein as [16].

6. REFRENCES

1. Bosch, R. Controller Area Network Specifications
2.0. Postfach, Stuttgart, Germany, (1991).

2. Farsi, M. & M. Barbosa. CANopen Implementation:
Application to Industrial Networks. UK Research
Studies Press, Ltd. (2000).

3. Fredriksson, L. B. Controller Area Networks and

 Migration Code Metric Analysis 27

the protocol CAN for machine control systems.
Mechatronics. 4(2): 59-192 (1994).

4. Etschberger, K. Controller Area Network: Basic
Protocols, Chips and Applications. IXXAT
Automation GmbH, (2001).

5. Pazul, K. Controller Area Network (CAN) Basics.
Microchip Technology Inc, Preliminary DS00713A,
Page-1 AN713, (1999).

6. Kelkar, S. & R. Kamal. Adaptive Fault Diagnosis
Algorithm for Controller Area Network. IEEE
Transactions on Industrial Electronics. 61(10):
5527-5537 (2014).

7. Mary, G. I., A. C. Zachariah, & J. Lawrence.
Reliability Analysis of Controller Area Network
Based Systems – A Review. International Journal
of Communications, Networks and System Sciences.
6 (4): 155-166 (2013).

8. Ayavoo, D., M. J. Pont, M. J. Short, & S. Parker,
Two novel shared-clock scheduling algorithms
for use with ‘Controller Area Network’ and
related protocols. Journal of Microprocessors and
Microsystems. 31 (5): 326-334 (2007).

9. Giuseppe, B., P. Juan, & Z. Alberto. Overcoming
babbling-idiot failures in CAN networks: a
simple and effective Bus Guardian solution for
the FlexCAN architecture. IEEE Transactions on
Industrial Informatics. 3 (3): 225-233 (2007).

10. Short, M. J. & M. J. Pont. Fault-tolerant time-
triggered communication using CAN. IEEE
Transactions on Industrial Informatics. 3(2): 131-
142 (2007).

11. Manuel, B. P. Julian, N. Guillermo, & A. Luis. An
active star topology for improving fault confinement
in CAN networks. IEEE Transactions on Industrial
Informatics. 2 (2): (2006).

12. TTA-Group. Time-Triggered Protocol TTP/C High-
Level Specification Document. Protocol Version.
1.1, 1.4.3 ed. Vienna, Austria, TTTECH. (2003).

13. FlexRay. FlexRay Communication System Protocol
Specification Version 2.0. FlexRay Consortium.

(2004).
14. Amir, M. Ayavoo, D. & Pont, M. J. A novel shared-

clock scheduling protocol for fault-confinement in
CAN-based distributed systems. Proceedings of the
5th IEEE International Conference on System of
Systems, University of Loughborough, UK, pp. 1-6,
22nd-24th June, (2010).

15. Amir, M. & M. J. Pont. A time-triggered
communication protocol for CAN-based networks
with a fault-tolerant star topology. International
Symposium on Advanced Topics on Embedded
Systems and Applications (ESA2010) in conjunction
with the 7th IEEE International Conference on
Embedded Software & Systems, University of
Bradford, UK, 29th June-July 1st, 2010.

16. Amir, M. & M. J. Pont. Improving flexibility and
fault-management in CAN-based “Shared-Clock”
architectures. Journal of Microprocessors and
Microsystems. 37: 9-23 (2013).

17. http://www.feedback-instruments.com/products/
education/process_control website accessed:
09/04/2019.

18. Philips. LPC2119/2129/2194/2292/2294
Microcontroller User Manual. Philips
Semiconductor, 2004.

19. https://www.olimex.com/Products/ website
accessed: 09/04/2019.

20. McCabe, T. J. A complexity measure. IEEE
Transactions on Software Engineering. 2 (4): (1976).

21. Elaine, J. W. Evaluating software complexity
measures. IEEE Transactions on Software
Engineering, 14(9): (1988).

22. Geoffrey, K. G. & F. K. Chris. Cyclomatic
complexity density and software maintenance
productivity. IEEE Transactions on Software
Engineering. 17(12): (1991).

23. https://scitools.com/feature-category/metrics-
reports/ website accessed: 09/04/2019.

24. https://scitools.com/ website accessed: 09/04/2019.

28 Muhammad Amir et al

