
than the traditional models like Moving Average 
(MA), Autoregressive (AR), Autoregressive 
Moving Average (ARMA) and Autoregressive 
Integrating Moving Average ARIMA [3]. These 
traditional models do not provide significant 
information about the noises of long-term data. 
The fractional Gaussian noise (FGN) and fraction 
differencing noise (FDN) are the self-similarity 
models which are adequate for long-term data only 
[4]. Both FGN and FDN are the types of FARIMA. 
The FARIMA (p, d, q) models strongly depend on 
the fractional differencing parameter d. Data shows 
stationary behavior if d belongs to the interval (-0.5, 
0.5).  If d belongs to the interval (0, 0.5) then the 
data shows a persistent behavior, for d < 0 it will be 
anti-persistent and for d = 0 it will show Brownian 
behavior. The increasing of parameter d from 0 to 
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Abstract: Among other stochastic models, fractional auto regressive integrating moving average (FARIMA) is 
distinct because of its appropriateness for modeling stationary time series with long range dependence (long memory 
or persistence). Results obtained in this manuscript shows appropriateness of FARIMA model for the analysis of 
sunspot number. Analyzing for stationary, each cycle out of the 24 sunspot cycles were modeled. FARIMA can be 
used for modeling using different techniques. In view of the parameters obtained by maximum likelihood test two 
most appropriate techniques are adopted. These two are Direct Method and Whittle approximation Method. Results 
are obtained by applying these two types of FARIMA, the significance of these two methods were observed and 
compared using significance tests. For FARIMA models the fractional differencing parameter d is most decisive for 
the determination of persistency.  In this regard four types of model (0, d,0), (1, d,0), (0, d,1) and (1, d,1) are used. 
The adequacy of each of the models is determined with the help of Akaike, Bayesian-Schwarz and Hannan-Quinn 
Information criterion. The investigations made using these models are reliable for both short and long sunspot cycles. 
Finally, tail analysis is performed in view of the parameter (α) it is observed that heavy tails exist for each sunspots 
cycle confirming long range dependence. The study is useful to examine the sunspot historical data using the FARIMA 
model to understand their long term behavior.

Keywords: Akaike Information criterion (AIC), Bayesian-Schwarz Information criterion (BIC), Hannan-Quinn 
Information criterion (HIC), Log-likelihood, FARIMA & Heavy tails.

1. INTRODUCTION

Sunspot cycles exhibit random variations in their 
lengths and occurrence of peaks. According to 
the past records [1] the maximum and minimum 
length of the cycles is found to be 14-years and 
9-years respectively. The type of modeling needed 
to study the variation of solar activity cycles need 
to be capable of handling short and long term and 
long-term forecasts [2]. The different solar cycles 
are depicted in Fig. 1 indicating the various periods 
(Maunder minimum, Dalton minimum and Modern 
maximum) over the last 400 years.

FARIMA modeling is the stochastic process 
that deals with both short-term and long-term 
variations. This type of modeling is more feasible 



0.5 indicates the increasing of smoothness of any 
noise. The differencing parameter d depends on the 
self-similarity parameter H, these two are related 
by the equation d = H - 0.5 [5]. The significance and 
adequacy of the FARIMA models is determined 
by Akaike information criterion (AIC), Bayesian 
Schwarz information criterion (BIC) and Hannan 
Quinn information criterion (HIC). The range 
of Heavy Tail (HT) parameter α also depends 
on the differencing parameter and hence on the 
self-similarity parameter [5, 6], for d > 0 the HT 
parameter α > 1. For any noise (sunspot number) 
the HT parameter is α belongs to the interval (0, 2) 
[7].

2.  MATERIALS AND METHODS 

This manuscript consists of the analysis of 24 
sunspots cycles from 1754 to 2014. Several cycles 
have the same length approximately. For example, 
four cycles (2,3,5,16) are of 9-years duration, five 
cycles (8,18,19,21,22) are of 10-years duration, five 
cycles (7,11,12,14,17) are of 11-years duration, six 
cycles (1,9,10,13,15,20) are of 12-years duration, 
one cycle (23) of 13-years duration and two cycles 
(4,6) are of 14-years duration. FARIMA models (0, 
d,0), (1, d,0), (0, d,1) and (1, d,1) are investigated for 
appropriateness using AIC, BIC and HIC. For each 
sunspot cycle the maximum likelihood parameter 
ϕ and θ for standard error were estimated. Log 
likelihood parameters have also been estimated 
for each sunspot cycle. For the FARIMA models, 
each cycle has been further categorize and analyze 
using direct and the Whittle approximation method 
(Periodogram). The heavy tail parameter α is also 
calculated for each cycle to examine the strength of 

the cyclic data within the tails. 

2.1. FARIMA Modeling of Sunspot Cycles

It is mentioned earlier that the duration of short 
sunspots cycle is 9 years and long sunspots cycle 
is 14 years so, for the analysis of sunspot cycles 
requires a modeling that can handle both short 
and long sample sizes. FARIMA modeling is such 
a modeling that can be used to analyze both the 
short and long range data. The FARIMA (p, d, q) 
models depend on parameters p (Autoregressive 
(AR)) and q (Moving Average (MA)) mainly on 
the differencing parameter d.  The form of simple 
FARIMA (p, d, q) model is as the following. 

Where   is called a white noise and B is 
the back shift operator. White noise is the energy 
per frequency and representing the equal intensity 
of random signal at different frequencies. The 
condition -0.5 < d < 0.5 indicates the stationary 
behavior of any noise [8].

For the short range cycles the autocorrelation 
function (ACF (ρ)) test exhibits exponential decay 
which is defined as  
and also called short range correlation (Short Range 
Dependence). For the long range cycles the ACF  
diverges to a sum which is represented as   
  (Long Range Dependence).

                                       

The power spectral density or spectral density 

Fig. 1. The durations of sunspot cycles (1600 to 2000) for the 
last 400 years (Curtsy by Thomas and Weiss, 1992)
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applies to larger signals over a time period, the 
time interval can be infinite. The long range cycles 
follow fractional process which is associated with 
the spectral density of equation (2.2) expressed as 
follows 

                                                                                      

Where the function L(λ) varies regularly.  Where 
‘~’ represents the left and right hand side ratio 
converges to one [2, 8]. The fractional Brownian 
motion (fBm) is the common form of Brownian 
motion and also known as fractal Brownian motion. 
The fBm from a stationary sequence is given by

The sequence   is known as the 
fractional Gaussian noise (FGN) [4]. The moving 
average components and autoregressive are 
expressed by the following polynomials in q and p 
respectively.           

The operator (1-B)d is known as the fractional 
differencing operator which expands as a power 
series. The FARIMA (p, d, q) process is stationary 
for 0 < d < 0.5.      and      are the Maximum likelihood 
parameters                                      are estimated  
by Whittle’s approximation [2, 9].

2.2. Maximum Likelihood Parameters

The variation of parameters for each sunspot cycle 
depends on the number of spots in it. The stationary 
FARIMA (p, d, q) modeling works as a Gaussian 
process depending on the parameter 

The probability density of the estimates of the data 
is expressed as follows. 

                                   

Where     is known as the autocovariance 
matrix and x+ represents the transpose of matrix x 
of the forecasts. The log-likelihood for the above 
condition is given by                 . The 
x' is the given realization on which θ is based 

 [5, 9, 14]. The maximum log-likelihood in terms of 
argument can be describe as            
                                                                                                           

2.3. Whittle Approximation Method

This method approximates in terms of log-
likelihood and depends on the parameter θ.

                                                      

The determinant Σ|(θ)| and x+ Σ-1 strongly depend 
on θ. The approximation for both the terms range 
over the spectral density and involves an integral  
S(ω;θ) This process is approximated by a Riemann 
sum for the successive step of spectral density. The 
discrete version for the whittle estimator for the 
minimization is expressed as follows. 
                                                                                              

Where I(ωj) is the periodogram of the realization  
x' at frequencies of the Fourier ωj=      and j = 1,...     
         .  In view of [2] the discrete version with 
respect to θ* of the Whittle estimator is given as 
follows. 

                                                                                                    

2.4. Heavy Tail Parameters for Sunspot Cycles

For the sunspot cycle’s heavy tails parameters 
strongly depends on the self-similarity parameter H 
also known as Hurst exponent. For the persistent 
noise the range of heavy tail parameters is 0 < α 
< 2. The long-range dependence parameter d has 
the range [0, 1 - 1/ α] whereas H< 1. The above 
condition is a necessary condition for a stationary 
series.  For finite variance H = d + ½ and for infinite 
variance H = d + 1/ α. Since d > 0 so 1 < α. As 
suggested by [5, 10 & 11], the degree of long-range 
dependence is given by.
                            
                                      

For d < 0.5 it follows a power series expansion 
for all the sunspot cycles. For α < 2, the tails are 
asymptotically equivalent to Pareto law [12]. 
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2.5. Significance Tests for FARIMA Modeling

To develop suitable adequate models reliable 
significant tests are needed. For this purpose Akaike 
information criterion (AIC), Bayesian information 
criterion (BIC) and Hannan Quinn information 
criterion (HIC) are used to test the FARIMA (p, d, 
q) models. AIC is most easy to apply. It provides 
the distance between true probability density and 
probability estimated by the density function,  
p(x|θ). AIC is defined as follows:  
                                                                                                 

Here  is the number of parameters used in the 
model and l(θ|x) represents the log-likelihood. 
According to AIC the best model has the smallest 
distance from the true model attaining the smallest 
value with respect to AIC.Including the sample size 
N the difference of the AIC is known as Hannan-
Quinn information criterion define as: 

                                  

The Bayesian information criterion (BIC) is 
formulated under the framework of the Bayesian 
modeling. It is one of the consistent criteria that 
provides the adequacy for the models in short and 
long sample sizes. It is define as:
                                                                                    

with N as the sample size of the used data. BIC is 
also known as Schwarz information criterion [1, 5 
& 12].

3.  RESULTS AND DISCUSSIONS

The variations of 24 sunspots cycles are discuss 
here in the using FARIMA models. Four FARIMA 
models (0, d, 0), (1, d, 0), (0, d, 1) and (1, d, 1) are 
utilized here. These models are tested according to 
AIC, BIC and HIC. The adequacy of these models is 
also tested using Log-likelihood. For each cycle the 
results obtained were then compared using direct 
method and Whittle approximation method. Out of 
the four models mentioned above FARIMA (1, d, 
1) is found to be significant. The results obtained 
by Log-likelihood parameters using Whittle 
approximation are depicted in Tables 1, 2 and Fig 
2. These results also confirmed the significance of 
(1, d, 1) model. The adequacy is further tested by 
using AIC, BIC and HIC which further asserted the 
reliability of FARIMA (1, d, 1) model. In view of the 
errors it is found that HIC is most appropriate test, 
see table 2. Comparison of both the methods shows 
the Whittle approximation method is more reliable 
then the direct method. The results are depicted in 
Table 1 & 2. Three main parameters used in the 
study are self-similarity parameter H, differencing 
parameter d and heavy-tails parameter. In view of 
the four models solar cycle 4 show the least and 
cycle 5 shows the greatest log-likelihood values. 
Whittle approximation method is found to be more 
adequate than the direct method for FARIMA (1, 
d, 1) because it is based on Periodogram. In case 
of direct method FARIMA (0, d, 1) appeared to be 
inappropriate for all the solar cycles as the parameter 
θ does not converge. Similarly, the standard error 
estimated by FARIMA (0, d, 1) for 24 solar cycles 
did not appear appropriate. The standard error for 

Table 1.  FARIMA (1,d,1) model along with the related parameters of sunspots cycles (1-24) by direct method

Direct method

Cycle N d ϕ1 St. 
error θ1 St. 

error log LH AICC BIC HIC Model

1 150 0.3147 0.945723 0.071618 -0.78263 0.183786 -648.9 1306.0 1308.7 1301.2 X(t) - 0.946X(t-1) 
= Z(t) - 0.783Z(t-1)

2 104 0.2216 0.745855 0.245248 -0.29118 0.401332 -492.7 993.6 995.5 988.4 X(t) - 0.746X(t-1) 
= Z(t) - 0.291Z(t-1)

3 111 0.2229 0.940371 0.062143 -0.6585 0.181504 -550.5 1109.2 1111.2 1104.1 X(t) - 0.940X(t-1) 
= Z(t) - 0.658Z(t-1)

4 168 0.2611 0.953839 0.051188 -0.72211 0.170792 -804.1 1616.3 1619.3 1611.6 X(t) - 0.954X(t-1) 
= Z(t) - 0.722Z(t-1)

5 115 0.3602 0.923946 0.110671 -0.73741 0.25703 -446.6 901.4 903.5 896.4 X(t) - 0.924X(t-1) 
= Z(t) - 0.737Z(t-1)
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6 169 0.3516 0.957925 0.042614 -0.89021 0.06858 -671.4 1350.9 1353.9 1346.2 X(t) - 0.958X(t-1) 
= Z(t) - 0.890Z(t-1)

7 137 0.2949 0.956451 0.049627 -0.82554 0.118001 -597.3 1202.7 1205.2 1197.8 X(t) - 0.956X(t-1) 
= Z(t) - 0.826Z(t-1)

8 116 0.213 0.923182 0.105612 -0.59649 0.343552 -567.4 1143.0 1145.1 1137.9 X(t) - 0.923X(t-1) 
= Z(t) - 0.596Z(t-1)

9 151 0.2927 0.920345 0.10058 -0.68624 0.249373 -709.6 1427.3 1430.1 1422.5 X(t) - 0.920X(t-1) 
= Z(t) - 0.686Z(t-1)

10 136 0.2999 0.951628 0.053938 -0.7667 0.144204 -607.1 1222.3 1224.8 1217.5 X(t) - 0.952X(t-1) 
= Z(t) - 0.767Z(t-1)

11 139 0.2343 0.930396 0.080769 -0.61194 0.267388 -671.7 1351.7 1354.2 1346.8 X(t) - 0.930X(t-1) 
= Z(t) - 0.612Z(t-1)

12 135 0.3298 0.939194 0.077979 -0.78959 0.17407 -584.2 1176.6 1179.1 1171.7 X(t) - 0.939X(t-1) 
= Z(t) - 0.790Z(t-1)

13 137 0.3304 0.953495 0.050701 -0.81508 0.114329 -606.3 1220.7 1223.2 1215.8 X(t) - 0.953X(t-1) 
= Z(t) - 0.815Z(t-1)

14 130 0.3119 0.960515 0.043698 -0.86708 0.080856 -567.4 1142.9 1145.3 1138.0 X(t) - 0.961X(t-1) 
= Z(t) - 0.867Z(t-1)

15 143 0.2589 0.919588 0.093182 -0.64935 0.249788 -653.5 1315.1 1317.7 1310.3 X(t) - 0.920X(t-1) 
= Z(t) - 0.649Z(t-1)

16 115 0.3113 0.854201 0.204348 -0.54303 0.416137 -502.2 1012.6 1014.7 1007.5 X(t) - 0.854X(t-1) 
= Z(t) - 0.543Z(t-1)

17 128 0.2347 0.92585 0.100651 -0.62454 0.313174 -604.5 1217.2 1219.5 1212.2 X(t) - 0.926X(t-1) 
= Z(t) - 0.625Z(t-1)

18 117 0.2134 0.888777 0.129052 -0.4193 0.379693 -583.0 1174.2 1176.3 1169.1 X(t) - 0.889X(t-1) 
= Z(t) - 0.419Z(t-1)

19 126 0.2222 0.938647 0.071783 -0.60021 0.272444 -659.6 1327.4 1329.7 1322.4 X(t) - 0.939X(t-1) 
= Z(t) - 0.600Z(t-1)

20 144 0.2689 0.936897 0.074823 -0.67252 0.23057 -665.6 1339.4 1342.1 1334.6 X(t) - 0.937X(t-1) 
= Z(t) - 0.673Z(t-1)

21 119 0.2376 0.939469 0.076629 -0.66049 0.259154 -599.7 1207.6 1209.8 1202.6 X(t) - 0.939X(t-1) 
= Z(t) - 0.660Z(t-1)

22 124 0.2432 0.943264 0.062809 -0.67958 0.198364 -627.3 1262.9 1265.1 1257.9 X(t) - 0.943X(t-1) 
= Z(t) - 0.680Z(t-1)

23 154 0.2405 0.953301 0.055028 -0.72948 0.187148 -734.2 1476.5 1479.3 1471.7 X(t) - 0.953X(t-1) 
= Z(t) - 0.729Z(t-1)

24 56 0.199 0.894076 0.129387 -0.43066 0.351102 -237.8 484.0 484.3 478.0 X(t) - 0.894X(t-1) 
= Z(t) - 0.431Z(t-1)

1-24 3184 0.387 0.965347 0.014941 -0.8055 0.032628 -15198.7 30405.5 30415.0 30402.9 X(t) - 0.965X(t-1) 
= Z(t) - 0.806Z(t-1)

Table 2.  FARIMA (1, d, 1) model along with the related parameters of sunspots cycles (1-24) by Whittle  Approximation 
method

Whittle approximation method

Cycle N D ϕ1 St. 
error θ1 St. 

error log LH AICC BIC HIC Model

1 150 0.3147 0.9999 0.009444 -0.76754 0.139972 -642.8 1293.62 1296.5 1289.0 X(t) - 1.000X(t-1) 
= Z(t) - 0.768Z(t-1)

2 104 0.2216 0.9999 0.01185 -0.58608 0.237374 -488.1 984.127 986.2 979.2 X(t) - 1.000X(t-1) 
= Z(t) - 0.586Z(t-1)

3 111 0.2229 0.9999 0.010573 -0.61233 0.18434 -544.7 1097.33 1099.6 1092.4 X(t) - 1.000X(t-1) 
= Z(t) - 0.612Z(t-1)

4 168 0.2611 0.9999 0.00856 -0.6604 0.185069 -797.5 1603 1606.1 1598.5 X(t) - 1.000X(t-1) 
= Z(t) - 0.660Z(t-1)

5 115 0.3602 0.9999 0.010559 -0.69345 0.202215 -440.2 888.45 890.8 883.6 X(t) - 1.000X(t-1) 
= Z(t) - 0.693Z(t-1)
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6 169 0.3516 0.9999 0.009329 -0.89019 0.052877 -665.9 1339.79 1342.9 1335.3 X(t) - 1.000X(t-1) 
= Z(t) - 0.890Z(t-1)

7 137 0.2949 0.9999 0.009832 -0.80237 0.110543 -591.5 1191.09 1193.8 1186.4 X(t) - 1.000X(t-1) 
= Z(t) - 0.802Z(t-1)

8 116 0.213 0.9999 0.010527 -0.54961 0.277432 -561.7 1131.32 1133.6 1126.5 X(t) - 1.000X(t-1) 
= Z(t) - 0.550Z(t-1)

9 151 0.2927 0.9999 0.009357 -0.69272 0.174031 -703.5 1414.99 1417.9 1410.4 X(t) - 1.000X(t-1) 
= Z(t) - 0.693Z(t-1)

10 136 0.2999 0.9999 0.009615 -0.72834 0.143866 -600.8 1209.63 1212.3 1204.9 X(t) - 1.000X(t-1) 
= Z(t) - 0.728Z(t-1)

11 139 0.2343 0.9999 0.009459 -0.54508 0.255775 -665.5 1338.98 1341.7 1334.3 X(t) - 1.000X(t-1) 
= Z(t) - 0.545Z(t-1)

12 135 0.3298 0.9999 0.009921 -0.77293 0.137139 -578.2 1164.47 1167.1 1159.7 X(t) - 1.000X(t-1) 
= Z(t) - 0.773Z(t-1)

13 137 0.3304 0.9999 0.009693 -0.78927 0.10942 -600.1 1208.22 1210.9 1203.5 X(t) - 1.000X(t-1) 
= Z(t) - 0.789Z(t-1)

14 130 0.3119 0.9999 0.010543 -0.86218 0.065816 -562.1 1132.25 1134.8 1127.5 X(t) - 1.000X(t-1) 
= Z(t) - 0.862Z(t-1)

15 143 0.2589 0.9999 0.009544 -0.64155 0.19023 -647.5 1303.02 1305.8 1298.4 X(t) - 1.000X(t-1) 
= Z(t) - 0.642Z(t-1)

16 115 0.3113 0.9999 0.010709 -0.61379 0.22638 -496.3 1000.56 1002.9 995.7 X(t) - 1.000X(t-1) 
= Z(t) - 0.614Z(t-1)

17 128 0.2347 0.9999 0.010009 -0.5919 0.237746 -598.6 1205.13 1207.7 1200.4 X(t) - 1.000X(t-1) 
= Z(t) - 0.592Z(t-1)

18 117 0.2134 0.9999 0.010347 -0.39348 0.293814 -576.9 1161.81 1164.1 1157.0 X(t) - 1.000X(t-1) 
= Z(t) - 0.393Z(t-1)

19 126 0.2222 0.9999 0.009772 -0.48266 0.290022 -653.2 1314.44 1316.9 1309.7 X(t) - 1.000X(t-1) 
= Z(t) - 0.483Z(t-1)

20 144 0.2689 0.9999 0.00932 -0.61933 0.208117 -659.2 1326.46 1329.3 1321.8 X(t) - 1.000X(t-1) 
= Z(t) - 0.619Z(t-1)

21 119 0.2376 0.9999 0.010209 -0.57609 0.267986 -593.7 1195.33 1197.7 1190.5 X(t) - 1.000X(t-1) 
= Z(t) - 0.576Z(t-1)

22 124 0.2432 0.9999 0.009951 -0.61694 0.204629 -621.3 1250.51 1253.0 1245.7 X(t) - 1.000X(t-1) 
= Z(t) - 0.617Z(t-1)

23 154 0.2405 0.9999 0.008994 -0.66821 0.194277 -728.0 1464.06 1467.0 1459.5 X(t) - 1.000X(t-1) 
= Z(t) - 0.668Z(t-1)

24 56 0.199 0.814928 0.201703 -0.20047 0.219182 -240.2 488.41 489.2 482.8 X(t) - 0.815X(t-1) 
= Z(t) - 0.200Z(t-1)

1-24 3184 0.387 0.999898 0.002947 -0.82922 0.02437 -15190.5 30388.9 30398.4 30386.4 X(t) - 1.000X(t-1) 
= Z(t) - 0.829Z(t-1)

Table 3.  The long range dependence (LRD), fractional differencing (FD) and heavy tail (HT) parameter of sun-
spot cycles (1-24)

Cycle Duration N 0.5<H<1 (LRD) 0 < d < 0.5 (FD) 1 < α < 2 (HT)
1 1754.01-1766.06 150 0.8147 0.3147 1.3706
2 1766.07-1775.02 104 0.7216 0.2216 1.5568
3 1775.03-1784.05 111 0.7229 0.2229 1.5542
4 1784.06-1798.05 168 0.7611 0.2611 1.4778
5 1798.06-1807.12 115 0.8602 0.3602 1.2796
6 1808.01-1822.01 169 0.8516 0.3516 1.2968
7 1822.02-1833.06 137 0.7949 0.2949 1.4102
8 1833.07-1843.02 116 0.713 0.213 1.574
9 1843.03-1855.09 151 0.7927 0.2927 1.4146
10 1855.1-1867.01 136 0.7999 0.2999 1.4002
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11 1867.02-1878.08 139 0.7343 0.2343 1.5314
12 1878.09-1889.11 135 0.8298 0.3298 1.3404
13 1889.12-1901.04 137 0.8304 0.3304 1.3392
14 1901.05-1912.02 130 0.8119 0.3119 1.3762
15 1912.03-1924.01 143 0.7589 0.2589 1.4822
16 1924.02-1933.08 115 0.8113 0.3113 1.3774
17 1933.09-1944.04 128 0.7347 0.2347 1.5306
18 1944.05-1954.01 117 0.7134 0.2134 1.5732
19 1954.02-1964.07 126 0.7222 0.2222 1.5556
20 1964.08-1976.07 144 0.7689 0.2689 1.4622
21 1976.08-1986.06 119 0.7376 0.2376 1.5248
22 1986.07-1996.1 124 0.7432 0.2432 1.5136
23 1996.11-2009.08 154 0.7405 0.2405 1.519
24 2009.09-……. 56 0.699 0.199 1.602

1-24 1754-2014 3184 0.887 0.387 1.226

Table 4.  Relative empirical mean squared error (REMSE) of FARIMA (p, d, q) models using Whittle approxima-
tion method for sunspots cycles

sunspot
cycles

FARIMA(0,d,0) FARIMA(1,d,0) FARIMA(0,d,1) FARIMA(1,d,1)
AICC/BIC HIC/BIC AICC/BIC HIC/BIC AICC/BIC HIC/BIC AICC/BIC HIC/BIC

1 0.998053 0.996561 0.99793 0.995404 0.997933 0.995412 0.997778 0.994212
2 0.997917 0.995794 0.997907 0.994302 0.997915 0.994324 0.997886 0.992864
3 0.998106 0.996212 0.998023 0.994838 0.998047 0.9949 0.997975 0.993526
4 0.998389 0.997194 0.998199 0.9962 0.998214 0.996231 0.998053 0.995235
5 0.997581 0.995235 0.997497 0.993606 0.997506 0.993626 0.997414 0.991958
6 0.998012 0.996595 0.997845 0.995465 0.997846 0.995465 0.997662 0.994296
7 0.998006 0.996334 0.99788 0.995081 0.997884 0.995091 0.997752 0.993813
8 0.998147 0.996295 0.998012 0.994947 0.998036 0.995009 0.997951 0.993671
9 0.998248 0.996862 0.998095 0.995784 0.998101 0.995798 0.997958 0.994702

10 0.998018 0.996405 0.997925 0.995168 0.997934 0.995188 0.997799 0.993915
11 0.998215 0.996763 0.998084 0.995588 0.998102 0.995629 0.997976 0.994481
12 0.998007 0.996252 0.997853 0.994981 0.997857 0.99499 0.997728 0.993688
13 0.998065 0.996381 0.997915 0.995164 0.997919 0.995172 0.997784 0.9939
14 0.997917 0.99616 0.997846 0.994865 0.997849 0.994872 0.997736 0.993551
15 0.998175 0.996641 0.998 0.995458 0.99801 0.99548 0.997874 0.994301
16 0.997815 0.995774 0.997773 0.99431 0.997783 0.994335 0.997703 0.992857
17 0.998135 0.99645 0.997995 0.995179 0.998013 0.995223 0.9979 0.993956
18 0.998172 0.996392 0.998047 0.995062 0.998074 0.995128 0.997989 0.993828
19 0.998266 0.996765 0.998176 0.995578 0.998195 0.995623 0.9981 0.994473
20 0.998201 0.996698 0.998025 0.99553 0.998041 0.995566 0.9979 0.994395
21 0.998214 0.996467 0.99808 0.995192 0.998101 0.995244 0.998015 0.993983
22 0.998187 0.996597 0.998111 0.99538 0.998131 0.995428 0.998031 0.994207
23 0.998315 0.996978 0.998129 0.995898 0.998142 0.995926 0.997998 0.994862
24 0.99756 0.99257 0.997967 0.989654 0.998007 0.989856 0.998485 0.98709

1-24 0.999754 0.999763 0.999737 0.999683 0.999737 0.999683 0.999687 0.999603
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Fig. 2. Sunspot number’s plot cycle wise (1-12) with the residuals and autocorrelogram plots. The autocorrelogram 
shows decreasing in correlation with increasing the lag.
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all sunspot cycles follows the white noise process. 
Parameters obtained using Maximum likelihood 
estimator (MLE) for both the methods are depicted 
in Table1 & 2. The long-range dependence and 
differencing parameter are also estimated for each 
solar cycle. The results obtained confirmed that the 
solar cycles are stationary (0 <d< 0.5) as depicted 
in table 3. The sunspots data for each cycle are 
the positive random numbers and also persistent 
(0.5 < H < 1), furnished in table 3. The heavy tail 
parameter(α) was found significant in all the solar 
cycles (1 <  α < 2) and shows smallest value for solar 
cycle 5 and greatest for solar cycle 8 (see table 3). 
For d < 0.5, it shows a power series expansion for 
all the 24 sunspot cycles and for  α < 2, the tails are 
representing asymptotically equivalent to Pareto 
law. The relative empirical mean square prediction 
error (REMSPE) was estimated for each solar cycle 
to understand the model prediction reliability. This 
is obtained for each FARIMA (p, d, q) model in 
the perspective of BIC and found greater values for 
the ratio (AIC: BIC) in both methods (see Table 4). 
The prediction reliability of model FARIMA using 
Whittle approximation methods was confirmed. 

4.  CONCLUSION AND OUTLOOK

FARIMA models were developed and applied on 
each sunspots cycle. The significance of FARIMA 
models for each sunspot cycle was tested                   
according to AIC, BIC and HIC. Results show that 
for each cycle HIC is more consistent than AIC 
and BIC. The adequacy of FARIMA (1, d, 1) have 
also been verified in the perspective of parameters 
obtained with the help of log-likelihood technique 
using Whittle approximation method. All the sunspot 
cycles exhibited stationary behavior as parameter d
lies within the interval (0, 0.5).  The heavy tail 
parameter (1 < α < 2) was found in sunspot cycles, 
represents the smooth long-term behavior for solar 
activity and expected to continue in future. The 
REMSPE also confirmed the prediction reliability 
for the Whittle approximation method.
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