
lowing lemma, due to Chen, Tian and Wang [4].

Lemma 1.1 : For any n > 1, r > 1,
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Abstract: This paper considers a variant of the Reve’s puzzle with n ( >1) discs which admits of r ( >1) number of 
violations of the “divine rule”. Denoting by S

4
(n, r) the minimum number of moves required to solve the new variant, 

we give a scheme to find the optimality equation satisfied by S
4
(n, r). We then find an explicit form of the optimal 

value function S
4
(n, r).

Keywords: Tower of Hanoi, Divine rule, Sinner’s tower, Reve’s puzzle.

1. INTRODUCTION

The Tower of Hanoi puzzle with three pegs and 8 
discs of varying sizes, invented by the French Num-
ber theorist Lucas [1], is well known. An immedi-
ate generalization of the Tower of Hanoi problem 
is the 4-peg variant, which appears as the Reve’s 
puzzle in Dudeney [2]. In general form, the Reve’s 
puzzle is as follows : There are n ( > 1) discs d

1
, 

d
2
, …, d

n
 of varying sizes, and 4 pegs, S, P

1
, P

2 
and 

D. Initially, the discs’ rest on the source peg, S, in 
a tower in increasing order, with the largest disc at 
the bottom, the second largest disc above it, and so 
on, with the smallest disc at the top. The problem is 
to shift the tower from the peg S to the destination 
peg, D, in minimum number of moves, where each 
move can transfer only the topmost disc from one 
peg to another under the “divine rule” that no disc 
is ever placed on top of a smaller one.

 The Tower of Hanoi as well as the 4-peg gener-
alization has seen many variations, some of which 
have been reviewed by Majumdar [3]. Recently, 
Chen, Tian and Wang [4] have introduced a new 
variant of the Tower of Hanoi problem which allows 
r ( > 1) violations of the “divine rule”. In the new 
variant, the problem is to shift the tower of n discs 
from the peg S to the peg D in minimum number of 
moves, where for (at most) r moves, some disc may 
be placed directly on top of a smaller one. Denoting 
by S

3
(n, r) the minimum number of moves required 

to solve the new variant, S
3
(n, r) is given in the fol-

This paper generalizes the problem of Chen, 
Tian and Wang [4] to the Reve’s puzzle. The prob-
lem that we consider here may be stated as follows: 
Given a tower of n ( ≥ 1) discs on the peg S, the 
objective is to transfer it to the peg D in minimum 
number of moves, where the “divine rule” may be 
violated (at most) r times. Chen, Tian and Wang 
[4] call their variant as the sinner’s tower. Then, 
the variant we consider may be called the sinner’s 
tower with one Devil peg.

 Denoting by S
4
(n, r) the minimum number 

of  moves  required  to  solve  the  Reve’s  puzzle 
with  n ( ≥ 1)   discs   and   r ( ≥  1)   relaxations 
of the “divine rule”, we find an explicit form of                                
S

4
(n, r). This is done in Section 3. In Section 2, we 

give some background material. In the final Sec-
tion 4, some observations are made. We also give 
an open problem, where r number of relaxation of 
the “divine rule” is allowed.      

3
n 2r

2n 1 1 n r 2
S ( n, r ) 4n 2r 5 r 2 n 2r 3

n 2r 32 6r 1



2.  PRELIMINARY RESULTS

Let M
4
(n) denote the minimum number of moves 

required to solve the Reve’s puzzle with n ( > 1) 
discs. Then, the dynamic programming equation 
satisfied by M

4
(n) is (see, for example, Roth [5], 

Wood [6], Hinz [7], Chu and Johnson baugh [8], 
and Majumdar [9, 10]):

M
4
(n) =    min    { 2M

4
(K)+2n-k -1 }, n > 4,    

 1 < k < n-1
                         

With

M
4
(0) = 0; M

4
(n) = 2n – 1 for all 1 ≤ n ≤ 3.                                                                                                                                               

                                                                

Lemma 2.1:  Exactly one of the following two re-
lationships hold:

(1) M
4
(n + 2) – M

4
(n + 1) = M

4
(n + 1) – M

4
(n),

(2) M
4
(n + 2) – M

4
(n + 1) = 2{M

4
(n + 1) – M

4
(n)}.

The following two corollaries are the consequences 

of  Lemma 2.1.

Corollary 2.1:

M
4
(n + 1) – M

4
(n) = 2 if and only if n = 1, 2.

Proof: It is easy to show the “if” part of the lemma. 
Now, since for any n > 3,

M
4
(n + 1) – M

4
(n) >  M

4
(4) – M

4
(3) = 4 > 2 = M

4
(3) – M

4
(2),

The result follows, by virtue of Lemma 2.1. 

Corollary 2.2:

For n > 2r + 3, M
4
(n – r) – M

4
(n – 2r) > 4r.

Proof: Since

> r [M
4
(n – 2r + 1) – M

4
(n – 2r)],

we see that, for n > 2r + 3,

M
4
(n – r) – M(n – 2r) >r[M

4
(4) – M

4
(3)] = 4r.

The solution of the optimality equation (2.1) is 
given below for future reference (for a proof, the 
reader is referred to Majumdar [9, 10]).

Theorem 2.1: Let

for some s ϵ {1, 2, ...}.

Then,

attained at the unique points k = 

attained at the two points k = n – s – 1, n – s.

Lemma 2.2: Let the function F(k) be defined as fol-
lows:

  F(k) = M
4
(k) – 2k, k > 0.

Then,

(1) F(k) is strictly increasing in k >2,

(2) F(k) attains its minimum (with the minimum 
value – 1) at the points k = 1, 2, 3.

Proof: Since

      F (k + 1) – F(k) = [M
4
(k + 1) – M

4
(k)] – 2,

part (1) follows immediately by virtue of Corollary 
2.1.

Then, part (2) is an easy exercise, and is left for the 
reader. 

Let us consider the following optimization prob-
lem:

 Min {2M
4
(k) + 6ℓ + 2m + 1}             (2.2)

such that

 k + 2ℓ + m = n – 1 
 ℓ + m – 1 = r 
 0 < k < n – 1, ℓ > 0, m > 0

 4 44 4

r 1

i 0
M n r M n 2r M n r i M n r i 1

s( s 1) ( s 1)( s 2 )
2 2n

 4
ss( s 1)

2M 2 s 1 1 .k 2
1)  s(s

 4
s s( s 1) 12M n 2 n 1

s( s 1) ( s 1)( s 2 )
2 2n

 4
ss( s 1)

2M 2 s 1 1 .k 2
1)  s(s

 4
s s( s 1) 12M n 2 n 1

s( s 1) ( s 1)( s 2 )
2 2n

 4
ss( s 1)

2M 2 s 1 1 .k 2
1)  s(s

 4
s s( s 1) 12M n 2 n 1

s( s 1) ( s 1)( s 2 )
2 2n

 4
ss( s 1)

2M 2 s 1 1 .k 2
1)  s(s

 4
s s( s 1) 12M n 2 n 1

(2.1a)

(2.1b)
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Lemma 2.3: The optimization problem (2.2) is 
equivalent to the
 
 Min 2{M

4
(k) – 2k} + 4n – 2r – 5       (2.3)                                                                                      

such that

  k = n – 2r + m  – 3
  ℓ + m = r +1
  0 < k < n – 1, ℓ > 0, m > 0

with the minimum value

                      

Proof : From the two equality constraints in (2.2), 
we get after eliminating ℓ,

  k = n – 2r + m – 3.                (2.5)

Using the constraint conditions ℓ + m = r + 1 and 
(2.5), we may re-write the objective function in 
(2.2) as follows:

2M
4
(k) + 6ℓ + 2m + 1 = 2M

4
(k) + 6(r – m + 1) + 2m + 1

= 2M
4
(k) + 6r – 4(k – n + 2r + 3) + 7

= 2M
4
(k) – 4k + 4n – 2r – 5.

Now, if r + 4 < n < 2r + 6, then from (2.5),                  
m – r + 1 < k < m + 3, and we may choose                     
mϵ{0, 1, ..., r + 1} such that kϵ{1, 2, 3}. Then, for 
any such k, F(k) of Lemma 2.2 attains the minimum 
value – 1, and hence, the objective function in (2.3) 
has  the  minimum  value  4n – 2r – 7.  On  the  other  
hand, if  n > 2r + 7 (so that k ≥ m + 4), part (2) 
of Lemma 2.3 asserts that the objective function in 
(2.3) is strictly increasing in k, and hence, it attains 
its minimum at k = n – 2r – 3. Then, after simplify-
ing, we get (2.4).

Thus, the lemma is established. 
It may be mentioned here that, when r+4<n<2r+6, 
by properly choosing m, we may have  k ϵ {1, 2, 3}. 
For example, in the extreme case n = r + 4, choos-
ing m = r in (2.5), we get k = 1. Another extreme 
case is n = 2r + 6, where m = 0 gives k = 3.

3. THE PROBLEM & ITS SOLUTION

Formally, the problem that we consider is as fol-
lows: There are four pegs, S, P

1
, P

2
 and D. Initially, 

there is a tower of n ( > 1) discs (of varying sizes) 
on the source peg S, in small-on-large ordering. The 
objective is to move this tower to the destination 
peg D, using the auxiliary pegs P

1 
and P

2
, in mini-

mum number of moves, where each move shifts the 
topmost disc from one peg to another, and for (at 
most) r ( > 1) moves, some disc may be placed di-
rectly on top of a smaller one.

Let S
4
(n, r) be the minimum number of moves 

required to solve the above problem. The following 
theorem gives an explicit form of S

4
(n, r).

Theorem 3.1: For n > 1, r > 1,

Proof : The proof is trivial if 1 < n <  3. 
So, let 4 < n < r + 3. In this case, the transfer of the 
tower from the peg S to the peg D may be affected 
as follows :

 Scheme 1 

1. Move the topmost n – 3 ( < r) discs from the 
peg S to the peg P

1
, one by one, in an “inverted 

tower” (thereby violating the “divine rule” at 
most r – 1 times).

2. Shift the next two largest discs on the peg S to 
the peg P

2
 in an “inverted tower”, which vio-

lates the “divine rule” once.

3. Transfer the largest disc d
n
 from the peg S to the 

peg D.

4. Move the discs on the peg P
2
 to the peg D. 

5. Finally, shift the discs on the peg P
1
, one by 

one, to the peg D, to complete the tower on the 
peg D.

The total number of violations of the “divine 
rule” is (at most) r, and the total number of moves 
involved is

4

4

2n 1 1 n r 3
S ( n, r ) 4n 2r 7 r 4 n 2r 6

M ( n 2r ) 6r n 2r 7

4

4n 2r 7 r 4 n 2r 6
2M ( n 2r 3 ) 6r 7 n 2r 7

                     

 (2.4)
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 2{(n – 3) + 2} + 1 = 2n – 1.

Next, let r + 4 < n < 2r + 6. In this case, we follow 
the scheme below :

 Scheme 2

1. Move the top most k ( > 0) discs, d
1
, d

2
, …, d

k
, 

from the source peg S to some auxiliary peg, 
say, P

1
, in a tower in M

4
(k) moves.

2. Consider the next 2ℓ (ℓ > 1) discs on the peg 
S. With these 2ℓ discs, form ℓ pairs of discs          
( d

i
, d

i+1 
). For each pair ( d

i
, d

i+1 
), d

i
 is first 

moved to the peg D, next d
i+1

 is shifted to the 
peg P

2
, and then d

i
 is moved again (from the 

peg D) to the peg P
2
. Note that, in this step, the 

first pair does not violate the “divine rule”, but 
each of the next ℓ – 1 pairs violate the “divine 
rule” once. This step requires 3ℓ moves, and 
the “divine rule” is violated ℓ  – 1 times (so that 
ℓ satisfies the condition that 1 < ℓ <  r + 1).

3. Move the next m (  > 0) largest discs (from the 
peg S) to the peg P

2
, one by one, in an “inverted 

tower”, in m moves, violating the “divine rule” 
m times.

4. Transfer the largest disc d
n
 (from the peg S) to 

the peg D.
5. The m discs in the “inverted tower” on P

2
 are 

shifted, one by one, to D.
6. For each of the ℓ pairs of discs ( d

i
, d

i+1 
) on the 

peg P
2
, di is moved to the peg S, next d

i+1
 is 

shifted to the peg D, and then di is moved again 
(from S) to D.

7. Finally, move the k discs from the peg P
1
 to the 

peg D, in a tower.

The total number of moves involved in the above 
7 steps is:

2{M
4
(k) + 3ℓ + m} + 1 = 2M

4
(k) + 6ℓ +2m + 1,

and the total number of violations of the “divine 
rule” is ℓ + m – 1, where the numbers k (0 < k < 
n –1 ), ℓ (1 < ℓ < r + 1), and m (0 < m < r) are 
to be determined so as to minimize the total num-
ber of moves. Thus, the above scheme leads to the 
optimization problem (2.2), or, equivalently, (2.3). 
Now, for r + 4 < n < 2r + 6, the result follows from 
Lemma 2.3. 

Finally, let n > 2r + 7. We consider the following 

scheme to transfer the tower from the peg S to the 
peg D.

 Scheme 3

1. Move the topmost k ( > 1) discs, d
1
, d

2 
, …,d

k
, 

from the peg S to some auxiliary peg P
1
, say, 

using the four pegs available, in (minimum) 
M

4
(k) moves.

2. Shift the remaining n – k discs on the peg S 
to the peg D, using the three pegs available, in 
(minimum) S

3
(n – k, r) moves.

3. Finally, transfer the tower of k discs from the 
peg P

1
 to the peg D, again in (minimum) M

4
(k) 

moves, to complete the tower on the destination 
peg D.

The total number of moves involved is, using Lem-
ma 1.1,

   2M
4
(k) + S

3
(n – k, r) = 2M

4
(k) + 2n–k–2r + 6r – 1,

and k is to be determined such that the total num-
ber of moves is minimum. Thus, in this scheme, the 
minimum number of moves required is:

 min     [2M
4
(k)+2n-2r-k +6r-1] =M

4
(n-2r)+6r,

       1 < k < n - 2r
 
where we have used (2.1a).

Letting
  n = 2r + 7 + t, t > 0,

the (minimum) number of moves under Scheme 2 
is, by virtue of Lemma 2.3, 2M

4
(t + 4) + 6r + 7, 

while,   the   (minimum)   number    of    moves   is
M

4
(t + 7) + 6r under Scheme 3. Since M

4
(6) in (2.1) 

is attained at the (unique) point k = 3 and M
4
(10) is 

attained at the (unique) point k = 6, it follows that:

 M
4
(t + 7) < 2M

4
(t + 4) + 7 for all t > 3.

It is an easy exercise to verify, using Theorem 2.1, 
that

 M
4
(t + 7) = 2M

4
(t + 4) + 7 for all 0 < t < 2

.
All these complete the proof of the theorem. 

Remark 3.1. In addition to Scheme 2 and Scheme 3 
above, there is another one to shift the tower from 
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the peg S to the peg D, namely, the following one:

1. Move the topmost k ( > 0) discs from the peg S 
to the peg P

1
, say, in (minimum) M

4
(k) moves.

2. Shift the next r largest discs d
k+1

, d
k+2

, …, d
k+r

 
from the peg S to the peg P

1
, in an “inverted 

tower” ( violating the “divine rule” r times).
3. Transfer the tower of n – k – r discs from the 

peg S to the peg D, (using the three available 
pegs)  in (minimum) 2n–k–r – 1 moves.

4. Move the discs d
k+r

, d
k+r–1

, …, d
k+1

, in this order, 
one by one, from P

1
 to D.

5. Finally, shift the tower (of k discs) on the peg P
1
 

to the peg D.

The minimum number of moves required under this 
scheme is

min     [2{M
4
(k) + r} + 2n-r-k -1] = M

4
(n-r)+2r.

1 < k < n - r
 

However, note that, by Corollary 2.2,                   
M

4
(n – 2r) + 6r < M

4
(n – r) + 2r for all n > 2r + 3, 

so that this scheme is worse than Scheme 3.

It may be mentioned here that, by symmetry, 
Step 2 and Step 3 in Scheme 2 may be interchanged; 
in this case, 0 < ℓ < r, and 1 < m < r + 1, and Step 5 
and Step 6 are to be interchanged as well.

4.  CONCLUSION

From the proof of Theorem 3.1, we observe that, 
when n = r + 3 (so that k = m – r > 0), we have 
the “saturated case” of “inverted tower” in the 
sense that all the topmost n – 1 discs are placed in          
“inverted tower” on the auxiliary peg (S) just before 
the largest disc is moved (from the peg S) to the peg 
D. Again, when n = 2r + 6 (so that k = m + 3 > 3), 
we have the “saturated case” in Step 2 in Scheme 
2 in the sense that all the r number of violations of 
the “divine rule” is used up in this step. This shows 
that, for n ≥ 2r + 7, for each increase in n, we have 
to increase the number of discs in Step 1 accord-
ingly.

From Theorem 3.1, we observe further that, 
for n > 2r + 7, the function S

4
(n, r) involves                      

M
4
(n – 2r), and so for any r > 1 fixed, we may ap-

peal to Theorem 2.1 to find the expression of S
4
(n, 

r). It is indeed interesting to find that the new vari-

ant has a closed-form solution, given in Theorem 
3.1, and further that the optimal value function can 
be expressed in terms of the optimal value function 
of the original Reve’s puzzle.

To see how the relaxation of the “divine rule” 
affects the original optimal value function, we con-
sider the case when r = 1. From Theorem 3.1, we 
see that

 and for n ≥ 8,

 S
4
(n, 1) = M

4
(n – 2) + 6.

Let

where 0 ≤ R ≤ s. Then, by Theorem 2.1,

  = 2s(s + R – 1) + 1.

Therefore,

           

Since

 M
4
(n) = 2s(s + R + 1) + 1,                (4.2)

from (4.1) and (4.2), we see that, the relaxation of 
the “divine rule” once, the number of moves de-
creases approximately by an additive factor of 2s+1. 
It may be mentioned here that, in some cases, there 
are multiple optimal strategies. For example, when 
n = 2r + 4, an alternative scheme is the following :

1. Move the disc d
1
 from the source peg S to some 

auxiliary peg, say, P
1
.

2. Consider the next 2(r + 1) discs on the peg 
S. With these discs, form r + 1 pairs of discs              
( d

i
, d

i+1 
). For each pair ( d

i
, d

i+1 
), d

i
 is first 

moved to the peg D, next d
i+1

 is shifted to the 
peg P

2
, and then d

i
 is moved again (from the 

peg D) to the peg P
2
. Note that, in this step, 

the first pair does not violate the “divine rule”, 
but each of the next r pairs violates the “divine 
rule” once. This step requires 3(r + 1) moves, 

4
2n 1 1 n 4

S ( n,1)
4n 9 5 n 8

  

R2
)  s(s 12n s  3

4
s1s( s ) s( s 1) s( s 1)R R 12 2 2M 2

= 2s(s + R  1) + 1

S4(n, 1) = 4
s1s( s ) R 2, 12S 2 ( s R 1) 7

4
2n 1 1 n 4

S ( n,1)
4n 9 5 n 8

  

R2
)  s(s 12n s  3

4
s1s( s ) s( s 1) s( s 1)R R 12 2 2M 2

= 2s(s + R  1) + 1

S4(n, 1) = 4
s1s( s ) R 2, 12S 2 ( s R 1) 7

4
2n 1 1 n 4

S ( n,1)
4n 9 5 n 8

  

R2
)  s(s 12n s  3

4
s1s( s ) s( s 1) s( s 1)R R 12 2 2M 2

= 2s(s + R  1) + 1

S4(n, 1) = 4
s1s( s ) R 2, 12S 2 ( s R 1) 7 (4.1)

4
2n 1 1 n 4

S ( n,1)
4n 9 5 n 8

  

R2
)  s(s 12n s  3

4
s1s( s ) s( s 1) s( s 1)R R 12 2 2M 2

= 2s(s + R  1) + 1

S4(n, 1) = 4
s1s( s ) R 2, 12S 2 ( s R 1) 7S

4
(n,1)
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and the “divine rule” is violated r – 2 times.

3. Transfer the largest disc d
n
 (from the peg S) to 

the peg D.

4. For each of the (r + 1) pairs of discs                                  
( di, d

i+1 
) on the peg P

2
, d

i
 is moved to the peg 

S, next d
i+1

 is shifted to the peg D, and then d
i
 is 

moved again (from S) to D.

5. Finally, move the disc from the peg P
1
 to the 

peg D.

 The scheme requires:

  2[1 + 3(r + 1)] + 1 = 6r + 9

number of moves. 

It is an interesting problem to look for all the 
alternative optimal schemes. It may be noted here 
that, for n ≥ 2r + 10, Scheme 3 is the only optimal 
policy. Chen, Tian and Wang [4] have posed the 
Tower of Hanoi problem with an evildoer disc. 
Another problem of interest is the following gen-
eralization:

Reve’s Puzzle with r Evildoers: In the Reve’s 
puzzle, any r of the n ≥ 1 discs may be an evildoer, 
where an evildoer disc can be placed directly on top 
of a smaller disc any number of times.

Denoting by E (n, r) the minimum number of 
moves required to solve the above problem, it is 
found that

 E (n, 1) = S
4
(n, 1) for 1 ≤ n ≤ 17,

but E (18, 1) = 155, if the disc D
16

 is taken as the 
evildoer. It remains open to find an expression of 

E (n, r). For small values of n and r, the values of 
S

4
(n, r) can be calculated easily. Table 1 gives the     

values of S
4
(n, r) for n = 1(1)10, r = 0(1)6. For          

r >7, the number of moves is 2n – 1, 1 < n < 10.
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Table 1. Values of S
4
(n, r) for, n = 1(1)10, r = 0(1)6

r  /  n 0 1 2 3 4 5 6

1 1 1 1 1 1 1 1

2 3 3 3 3 3 3 3

3 5 5 5 5 5 5 5

4 9 7 7 7 7 7 7

5 13 11 9 9 9 9 9

6 17 15 13 11 11 11 11

7 25 19 17 15 13 13 13

8 33 23 21 19 17 15 15

9 41 31 25 23 21 19 17

10 49 39 29 27 25 23 21
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