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Abstract: It is known that the methods of integral transformations in the theory of partial differential equations made it 

possible to find solutions to many problems and clarify the physical meaning of some basic laws and phenomena in fluid 

mechanics. In this regard, in the present work, we study the Navier-Stokes system, which describe the flow of a viscous 

incompressible fluid. Moreover, on the basis of the developed method, the original problem is transformed to the system of 

Volterra and Volterra-Abel integral equations of the second kind, and taking into account the theory of these systems, the 

existence and uniqueness of the solution of the non-stationary Navier-Stokes problem in the special space, which was 

introduced in the paper, are proved. The solution was obtained for velocity and pressure in an analytical form, in addition, the 

found pressure distribution law, which is described by a Poisson type equation and plays a fundamental role in the theory of 

Navier-Stokes systems in constructing analytic smooth (conditionally smooth) solutions. 

 Keywords: Navier-Stokes Equation, Partial Differential Equations (PDE), Incompressible Fluid, Inhomogeneous Linear 

Equations, Solution Uniqueness. 

1. INTRODUCTION 

 

The difficulty in solving the 3D Navier-Stokes equations is 

due to their nonlinearity and the need to find the velocity 

and pressure depending on any values of the viscosity 

parameter [1], but despite this there are numerous works in 

this direction with certain limitations. For example, in 

works [2, 3 and 4], showed that the Navier–Stokes 

equations in three space dimensions always have a weak 

solution with suitable growth properties. Scheffer [5] 

applied ideas from geometric measure theory to prove a 

partial regularity theorem for suitable weak solutions of the 

Navier–Stokes equations. The partial regularity theorem of 

concerns a parabolic analogue of the Hausdorff dimension 

of the singular set of a suitable weak solution of Navier–

Stokes. In this paper, we are not trying to consider the 

extensive references on the Navier-Stokes system, since 

there are fundamental works in this area (see, for example, 

Landau-Lifshitz [6], Ladyzhenskaya [7], Prantdl [8], 

Schlichting [9] and others). Therefore, we restrict attention 

here to incompressible fluids filling all of   . The Navier–

Stokes equations are then given by: 

ν
ν ν grad ν

1
( ) f P ,

t





    


 (1.1) 

3

0 0div ν 0, ( , ) [0, ],x t D R T    
 

(1.2)
 

with initial conditions 

ν  3

t 0 ( x ) , x R ,    
  

 (1.3) 

where ( x ) is known scalar function, 
3R  is given 

vector with positive constant components: 

i0 ,( i 1,3 )  , 3R f ( x,t ) is external applied force 

(e.g. gravity), 0 
 

is kinematic viscosity, 
 

is 

density,   is Laplace operator,    is Hamilton 

operator. These equations are to be solved for an 

unknown velocity vector 
3ν R and pressure ( , )P x t , 

and equation (1.2) just says that the fluid is 

incompressible. Moreover, the purpose of this paper is 
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to establish the existence and uniqueness of a solution 

to the Navier-Stokes system for an incompressible fluid 

in space 1

3 0G ( D ) by the norm: 

ν ν { ν

ν }

ν ν

1 1
3 0 0 0

0

3

3 3
k

i iG ( D ) G ( D ) C( D )
i 1 i 1 0 k 2

it 1

T

it it1
R 0

D

,

sup ( x,t ) dt ,( i 1,3 ),

   


  







 



  



 

where 
1 2 3k ( k ,k ,k )  is the multi-index, 

ν ν ν ν  ν ν

ν
ν  

 

31 2

0

1 2 3 i i

k

k i
i kk k

1 2 3

2

j j

j 1

( , , ), k 0 : D ,

k 0 : D , ( i 1,3 ),
x x x

k k , ( k 0,1,2; j 1,2 ).



   

 

  
  


  




  (1.4) 

In this regard, we note that in our early works, for 

example, in [10], we proposed method for constructing 

smooth (conditionally smooth) solutions of nD Navier-

Stokes equations in 1 n

n 0 0G ( D R (0,T ))  with the 

condition: 

ν   n n

t 0
( x ), x R , ( R , n 3 ). 


      (1.5) 

Since it takes place 

 

 

0

n n

T

0R R

n n

( )ds f ( ,s )d ds ,

( f R , R ),

    



 

 

  
  (1.6) 

here 
nR   is a known vector with positive constant 

components: i0 ,( i 1,n )  , and then applying the  

 

transformation: 

ν exp
0

t
( ( ))J( x,t ),


      (1.7) 

where ( x,t )  is the new unknown scalar function, and 

0  is the introduced constant, which ensures the 

application of the Banach principle and the Picard's 

method [11] for the system of integral equations of 

Volterra-Abel type of the second kind, into which the 

original problem is transformed, nR J( x,t )  is the given 

vector: 

exp

 

 

  

n

2

n n

R

n
2 n

i i

i 1

n

t 0

0

x1
J ( ) ( )d ,

4 t2 ( t )

x ( x ) , ( x, R ),

J ( x ), x R ,

0 1; 0 const 1,


  



  



 





 
 





   

   

     



      

moreover, (1.7) is consistent at the initial time with 

condition (1.5) and with the incompressibility condition 

(1.2), (when nR ,n 3 )   . Therefore, since it takes 

place: 

   div ν  div

div exp div

 

div ν div exp

div div

n

i

j

n

t 0

2

n
R

n

0

n

x i

i 1

n

i j x

j 1

0, x R ; 0, 0 :

1
J ( ) ( x

2 t )d 0, ( x 2 t R ),

t
0 ( ) ( ( ))

J ( ) ,

( ) ( ) 0,( i 1,n ).

 

 


     




  

    







     

   


    


     


  


    








   (1.8) 

 



A solution of the Navier-Stokes problem 

Then, taking into account (1.1), (1.7) and (1.8) it 

follows, n( R ,n 3 ) :    

ν ν exp

[ ]

exp exp

[ ]+ exp

0

0 0

0

t
( ) ( ) ( ( ))

( )J ( J )

2t t
( ( ))( J )J ( ( ))

2t
( )J ( J ) ( ( ))( J )J ,

 


 

 

 


     

    

     

     

(1.9) 

and this means that under condition (1.2), the inertial 

terms of equation (1.1), taking into account (1.7), are 

linearized with respect to the newly introduced function 

( x,t ) and its derivatives with respect to
nx R , and 

the nonlinearity goes over to the known vector of the 

function J( x,t )  and partial derivatives with respect to

nx R . Therefore, 

exp [

] exp

exp grad 

0

0 0

0

t
( ( )) ( )J

t

1 t
( J ) ( ( ))J

2t 1
( ( ))( J )J f P

( ) ,


 




 

 

 


   



    

     



         (1.10) 

since 

exp

exp

[ ]

n

2

n n

R

2

n n

x1
J ( ) ( )d ,

4 t2 ( t )

x1
G( x, ,t ) ( ),( t 0 ),

4 t2 ( t )

G
L G G 0,

t


  










 
 





  


 

  






 

 

in addition, the Poisson equation for pressure is derived  

in the form: 

ν ν {

exp [

]},

div  

exp

j i

j i

i j

j i

n n

ix jx 0

i 1 j 1

n n

j ix x

i 1 j 10

n n

jx x i

i 1 j 1

n n

0 ix jx

i 1 j 10

1
P F

t
( ( )) ( J )

( J )

f 0,

2t
F ( ( )) J J ,




 


 



 

 

 

 


    



  




 



 





 

 



    

        (1.11)  

and it is obtained on the basis of (1.7) by applying the 

operation div  to equation (1.1), (or (1.10)). As a result, 

equation (1.1) on the basis of (1.7), (1.10) and (1.11) is 

transformed to a system of Volterra and Volterra-Abel 

equations of second kind, where the solvability of the 

original problem in 1

n 0G ( D )  follows from the 

solvability of this system. Then in the same paper, by 

the Sobolev theorem [11], suitable solutions of the 

Navier-Stokes problem were constructed in space

2 n

n; *W ( D R (0, ))    , that is, in this case the 

Navier-Stokes system admits a unique weak global 

solution in time in 2

n; *W ( D )
. Theoretically, an 

equation of this kind with low viscosity is of scientific 

interest among mechanics and mathematicians. 

2. FLUID WITH SMALL VISCOSITY 

There are various mathematical transformations in the 

theory of the partial differential equations which  
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simplify investigated problems and allow us to find the 

solutions in certain spaces ([6, 7] and [11]). In this 

regard, let the components of a velocity vector ν( x,t )

and
if ,(i=1,2,3) be the components of a given, 

externally applied force, satisfy the conditions(1.3) and,  

, ,   div  

div(

 

  

3 3

k 3

0

k

i 1 0

f R R R : f 0,

) 0,

D const , x R ,

D f const , ( x,t ) D , ( i 1,3 ).

 



 



    



    

     


 (2.1) 

In this case, we seek the solution of the Navier-Stokes 

problem in the form: 

ν J( x,t ),       (2.2)

 where 
3R J  is known vector-valued function of the 

form: 

exp

 

3

t

3 3 3
0 R

2
3

3
2

i i

i 1

1 1
J f ( ,s )

2 ( ( t s ))

r
( )d ds,( x, R ),

4 ( t s )

0 1; r x ( x ) ,


 

 


  



 




  



      


 



     (*) 

i.e., the vector J( x,t )
 
satisfies the differential heat 

equation with the homogeneous Cauchy condition, i.e.: 

t

3

t 0

J f J ,

J 0, x R ,





 


  

         (2.3)

 and ( x,t )
 
is a new unknown scalar function with the 

condition: 

 3

t 0
( x ), x R . 


       (2.4)

 

Lemma 1. In case of (2.2), when conditions (1.2), (2.1) 

are satisfied, the inertial terms of equation (1.1), taking 

into account (2.2), are linearized with respect to the 

introduced function ( x,t )  and its derivatives. 

Proof. In fact, under conditions (1.2) and (2.1), it 

follows from (2.2):  

div  div div

exp  

 div ν :  

div ν div div

3

i

t

3
0 R

2

3

3

i x

i 1

1
f 0 : J f ( x

2 ( t s ),s ) ( )d ds 0,

x 2 ( t s ) R ; 0

0 J .



   

  

  



  



   

     

    


 



   

(2.5)

 

And since 

j

3

i j x

j 1

( ) ( ) 0,( i 1,3 ),    


     (2.6) 

then, on the basis of (2.2), (2.5) and (2.6), the inertial terms 

of equation (1.1) are equivalently converted to the form:  

ν ν [

] [

]

2

2

( ) ( ) ( )J

( J ) ( J )J ( )J

( J ) ( J )J .

   

   

 

     

      

   

 (2.7) 

The indicated transformation is natural, since the 

incompressibility of the original problem is 

characterized with condition (1.2). Which was required 

to show.  

Further, substituting (2.2) into equation (1.1), we 

obtain a linear inhomogeneous differential equation of 

the type of heat conduction with variable coefficients: 

[ ] 2( )J ( J ) ( J )J
t


    


      


 



A solution of the Navier-Stokes problem 

grad 
1

(1 ) f P ( ) .  


                        (2.8) 

From where the equation for pressure is derived: 

ν ν {

[ ]},

j i

j i i j

j i

3 3

ix jx 0

i 1 j 1

3 3 3 3

j ix x jx x i

i 1 j 1 i 1 j 1

3 3
2

0 ix jx

i 1 j 1

1
P F

( J ) ( J )

F J J .




    



 

   

 


    



 








   



 

   (2.9)  

We are taking into account the operation div  with 

respect to (2.8), (that's tantamount to applying the 

operation div  with respect to equation (1.1), since 

(1.1) is equivalently converted to the form (2.8) based 

on (2.2)).  

In this case,  

{ }

{ }

{ },

j j j

1 j

2 j

3 j

3 3 3
1 1 1

1 j 1x 2 j 2 x 3 j 3x

j 1 j 1 j 1

3
1 2

1 x 1 j 1x

j 1

3
1 2

2 x 2 j 2 x

j 1

3
1 2

3 x 3 j 3x

j 1

J J J ,

1
P f (1 ) J J

1
P f (1 ) J J

1
P f (1 ) J J

     

  


  


  


  

  














 




   


    



   



  







(2.10) 

(2.10) is the condition of unequivocal compatibility for 

case (2.8), since   is a scalar function. Therefore, since 

there are (2.1), (2.2), (2.7) and system (2.8), then the 

pressure is determined by rule (2.9), since when 

applying the operation div  to equation (2.8), the 

equalities holds: 

div grad 

div  div

1 1

t

( P ) P,

f 0, ( ) 0,

  

 

  


 
 

div  div  div

div{ [ ]  }

j i i j

2

0

3 3 3 3

j ix x jx x i

i 1 j 1 i 1 j 1

( ) 0, ( J ) 0, ( J 0 ),

( )J ( J ) ( J )J F

( ( J ) ( J ) ).

  

   

    
   


   



      

 


   

 

Here, formula (2.9) modifies the Landau – Lifshitz 

formula (see [6]: (15.11)) and is an equation of Poisson 

type. Then it follows from (2.9), 

 {

[ ]},

3

j i i j

3

R

0

3 3 3 3

j ix x jx x i

i 1 j 1 i 1 j 1

1
P( x,t ) ( ,t )d ,( x, R ),

r

1
r x ; ( x,t ) F

4

( J ) ( J )

   

 


    
   


 




   


 




   

 (2.11) 

at that 

3R

1

rP ( ,t ) d
x x

  



 

      

3

3

3

R

x
( ,t ) d ,( x R ),

r


   


      (2.12) 

where (2.11) is called the Newtonian potential [11]. On 

the other hand, a solution to the Poisson equation (2.9) 

tending to zero at infinity will be unique if the function

ix ,( i 1,2,3 )   is unique, since the function ( x,t )  

contains these functions.     

To prove the above, we note that the obtained 

pressure distribution law allows us to express the velocity 

in integral form when ν 3R . In fact, substituting (2.12) 

into equation (2.8) with allowance for (2.10), we obtain an 

inhomogeneous linear integro-differential heat 

conduction equation with the Cauchy condition: 



Taalaibek D. Omurov 

[ ]
1 2 3t x x x

3

t 0

B , , , ,

( x ), x R ,

       

 


  


  

   (2.13) 

here the known functions contained in (2.13) are 

introduced on the basis of the notation: 

      (see. (2.11))

[

 
]

  

[ ] {

j

3

1 2 3

1 2

3
1

1 0 i

i 1

3

0 i

i 1

3 3
1 2

2 0 j i x

i 1 j 1

3
i

03
i 1 1R

2 2 2 3 3

1 1 2 3

1

x x x 0

,

d (1 ) f ( x,t ),

d 0; ( x,t ), :

( x,t ) d ( J J )

1
F ( x ;t )d ,

4 r

r ( ) ; h x R ,

B , , , d (
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] }.

j

j
3

j i

i j

3 3

j is

i 1 j 1

3 3
1 k

x j 0 3
j 1 k 1 1R

3 3

j ih h

i 1 j 1

3 3

jh h i

i 1 j 1

.) ( I )

1
(.)I (.) d (

4 r

( I ( x ,t )) ( x ,t )

( I ( x ,t ) ( x ,t )) d )








   

    

 



 

 

 


















 


  



   


  


 

 

 

 

 (2.14) 

It is known that problem (2.9) with sufficiently 

smooth initial data is solvable [11, 12] in
1

0G ( D ) , i.e. the 

solution of the problem under study is reduced to the 

determination of function  from the equation: 

exp

[ ]

3

1 2 3

t 2

3 3
0 R

3

1 r
( ( ))

4 ( t s )2

d ds
( B , , , )( ,s ) ,

( ( t s ) )
  

 



     



   





 
   (2.15) 

where   is a known function: 

    (see. (2.14))

exp

exp

  

exp

exp

3

3

3

i
3

2

i 1 2

i 0

2

0
3

R

t
2

1 1
3

0 R

t 2

2
3 3

0 R

2 3

2

t 2

2 x
3 3

0 R

; , :

1
( ) ( x 2 t )d ,

1
( ( )) ( x 2

( t s ),s )d ds;

1 r
( ( ))

4 ( t s )2

d ds
( ,s ) ,

( ( t s ) )

( x,t ) :

1 r
( (

42
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3 3
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))
( t s )

x d ds
( ,s )

2 ( t s ) ( ( t s ) )

d
( ( ))

t s

( J ( x 2 ( t s ),s )J ( x

1
2 ( t s ),s ))
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J ( x 2 ( t s ) ;s )

J ( x 2 ( t s ) ;s )d
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3,i2 x
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3
2 k
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3

k 1R

l

d ds ( x,t ),( i 1,3 ),

( x,t ),( i 1,3 ),
x

1
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( x 2 t )d , ( t 0 ),



 

 


  



   










































 

  



  




  


  


 (2.16) 

and it is easy to see, since   is a smooth function of 

spatial coordinates, then the function ( x,t )  admits 

restrictions:  



A solution of the Navier-Stokes problem 

[ ]

  

  

sup exp

sup exp
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k k

0 i 1

k k

2 3 0

3
2

k 4 ,1
3

k 1R
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3
0 ,T k 10 R
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T

0t 0t 0 4 01
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3

R
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1 1
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d ds ,
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sup ( x,t ) dt 2 T ,

1
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i
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1
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t s
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 (2.17) 

i.e., 
1

0G ( D )  .   

Further, since equation (2.15) contains 

ix, ,( i 1,2,3 )   ,   

then, taking into account  

 
ix iW , (i 1,3),                 (2.18) 

equation (2.15) is supplemented to a system,  
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(2.19) 

The system (2.19) consists of the Volterra and 

Volterra-Abel integral equations of the second kind. 

Therefore, constructing approximate solutions to such 

systems, there are various methods that are well known 

in the mathematics references, for example [11 and 12] 

and others.  

Since, under the conditions of problem (1.1) - (1.3), 

the introduced Voltaire type operators 

i ,( i 0,1,2,3 )   of system (2.19) contain small 

viscositie   
and

 
 , then the proof of solvability and 

the construction of the approximate solution can be 

realized on the basis of the Banach principle and the 
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 Picard's method [11], when conditions are allowed: 
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where 0 j ,0,W
 
is initial estimates, 

j
L is the Lipschitz 

coefficient of the operator j ,( j 0,1,2,3 )  ,  and 

here with 

1 2 3C C C C
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1 2 1 3

E W W W ,

E (1 d ) M M ,( M 4 ).





    


   

 (2.21) 

Uniqueness of functions i,W ,( i 1,2,3 ) 
 

follows from the solvability of system (2.19), 

moreover, taking into account expressions 

[ ]1 2 3B ,W ,W ,W  of formula (2.14) from (2.19) we 

have: 
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  (2.22) 

Consequently, we have an estimate of the form: 
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Therefore, differentiating the first equation (2.19) with 
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 respect to ix ,( i 1,2,3 ) , we obtain: 
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(2.24) 

Since the right side of (2.24) is a known function, then, 

taking into account (2.21), it follows from (2.24): 
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  (2.25) 

And this means that the functions 

ix, ,( i 1,2,3 )    are uniquely determined from 

(2.24), since the functions i,W ,( i 1,2,3 )   are 

unique. Therefore, pressure is the only one by formula 

(2.11). Which was required to show.  

On the other hand, since (2.22) with estimate (2.23) 

take place, then the function 2
ix
,( i 1,2,3 )   is defined in  

the form: 2
ii

ixx
W  ,  here in estimate takes place: 

 2
i

0

6x
C( D )

M , ( i 1,3 ).      (2.26) 

Taking into account that the function   has second-

order continuous partial derivatives with respect to 

spatial coordinates, and estimates (2.25), (2.26), we 

have: 
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Then, taking the time derivative from the first equation 

of (2.19), we obtain:
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moreover, from the estimate (2.28), on the basis of 

(2.16), (2.23) and (2.25) it follows: 
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Therefore, taking into account (2.27) and (2.29), we 

obtain: 
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Theorem 1. Let the Navier-Stokes system (1.1) is 

defined on the [ ]3

0 0D R 0,T  and with prescribed 

initial data (1.2), (1.3), and conditions (2.1), (2.10), 

(2.17) and (2.20). Then there exists a unique solution 

of the system (2.19) in 
1

0G ( D ).Moreover, taking into 

account (2.2), there exists solution to problem (1.1),  

(1.2) and (1.3) in 
1

3 0G ( D ). 

Remark 1. Let ν 3R  is the velocity vector satisfies 

condition (1.2) and  

ν  3

t 0 0, x R ,   
    

  (2.31)
 

at that 
if ( x,t )  is the component of a given external 

force f  admits the conditions: 
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and this means that 
3R   is a vector with constant 

components:
 i0 ,( i 1,2,3 )  , therefore, it becomes 

possible to use method (2.2) of the previous paragraph, 

( x,t )
 

is a new unknown scalar function with the 

condition: 

 3

t 0
0, x R .


       (2.32) 

Then, having held a similar discussion, as in the case (2.15), 

we have all the conditions of theorem 1, here: 

0( x,t ) 0  , since 
3( x ) 0,x R ,    (see (2.16) and 

(2.32)).  

Remark 2. Let ν 3R  is the velocity vector satisfies 

conditions (1.2), (1.3), and 
if ( x,t )  is the component of a 

given external force f  admits the conditions: 

 div   
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Then, based on (2.2) and (*), with respect to a new 

unknown scalar function  , it follows the condition 

(2.4). Therefore, taking into account (1.2), (2.5), (2.6) 

and (2.33), the inertial terms of equation (1.1) are 

equivalently converted to the form: 

ν ν [ ]

2 2

( ) ( ) ( )J ( J )

( J )J ( J ) ( J )J ,

    

   

       

     
 (2.34) 

where (2.34) differs from (2.7). Constraints on external 

force of the form (2.33) make it possible to simplify the 

Navier-Stokes problem and transform it into a system 

of Volterian type integral equations of the second kind. 

In fact, on the basis of (2.2) and (2.34), from (1.1) 

follows the equation: 

grad 
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t

1
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and the equation for pressure is derived: 
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Since   is a scalar function, then the condition: 
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 (2.37) 

is a univocal compatibility condition for (2.35). On the  

 

other hand, we note that it follows from (2.36): 

3
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1 1
P F ( ,t )d ,( r x ),

4 r
   


     (2.38) 

here (2.38) tends to zero at infinity, and there are 

second-order partial continuous derivatives, and for the 

first-order partial derivatives it takes place: 
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x 4 x
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In addition, in this case, the pressure becomes 

known, since the right side (2.38) is a known function, 

which is the difference between the results of this 

section and the previous one. Therefore, excluding 

pressure from (2.35), we obtain a linear differential 

equation with variable coefficients and with the Cauchy 

condition of the form: 
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where 
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Further, the solution of the problem under study is 

reduced to the determination of function  from the equation:   



Taalaibek D. Omurov 

exp
3

j

t 2

3 3
0 R

3

j 3
j 1

1 r
( ( ))

4 ( t s )2

d ds
( ,s )J ( ,s ) ,

( ( t s ) )


 



   



   





 



   (2.41) 

where   is a known function (see. (2.16)). 

If, when studying problems (1.1), (1.2) and (1.3) 

with condition (2.33), we partially abandon the  

requirements for the smoothness of the solution in the 

domain, then the question arises of which functions can be 

called solutions of the equation (1.1). For this purpose, let 

the functions ,   be continuous and div 0  , then 

equation (2.41) is not reduced to the form (2.19). 

Therefore, since equation (2.41) contains 

ix ,( i 1,2,3 ),   therefore, equation (2.41) can be 

integrated in parts, taking into account that the integrands 

tend to zero at infinity. So (2.41) is reduced to the 

Volterra-Abel integral equation of the second kind with 

respect to the function  , i.e.: 

H ( )( x,t )       ,    (2.42) 
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Under the conditions 
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          (2.43) 

equation (2.42) is solvable in 0C( D )  and this solution 

is constructed by the Picard's Method: 

n 1 n ,( n 0,1,...).     

Definition 1. A generalized solution of equation (2.40) 

in a domain 0D  is any continuous solution to equation 

(2.42) in 0D , and since (2.42) has a unique solution, 

then solution (2.40) is unique. 

Definition 2. Under the conditions of Definition 1, a 

generalized solution of the original problem is a 

function ν  constructed by the rule (2.2). 

Remark 3. In the case when the functions ,  are 

continuous, and div( ) 0  the result is valid, if we 

understand the partial derivatives in the sense of S. L. 

Sobolev [11]. This fact is also one of the significant 

advantages of the applied method. 
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4. CONCLUSIONS 

The main idea of this paper is that the Navier-Stokes 

equations (1.1) is reduced to Cauchy problem for 

inhomogeneous linear equations with the variable 

coefficients of the heat conduction type, based on the 

transformation (2.2), taking into account conditions (1.2) 

and (2.1). The indicated conditions are an important factor 

for the linearization of equation (1.1), since (2.7) holds 

when formula (2.2) introduced, i.e. the inertial terms in the 

Navier-Stokes equations with respect to the new unknown 

function  and its derivatives 
ix ,( i 1,2,3 )  are 

linearized. Further, taking into account (2.2), we also obtain 

Poisson type equations for pressure of the form (2.9), which 

modifies the Lipschitz-Landau formula. Therefore, with the 

exclusion of pressure from equation (2.8), the linear 

parabolic problem (2.13) follows, which is reduced to the 

system of Volterra and Volterra-Abel integral equations of 

the second kind (2.19). Note that the proposed method to 

solve this problem is applied for the first time. The 

solutions of the transformed equations are regular with 

respect to the viscosity coefficient µ, and they simplify the 

analysis of the original problem in space 1

3 0G ( D ). 

On the other hand, since the Navier-Stokes 

equations with arbitrary initial conditions were studied 

in paper [10], (see (1.5)), and in this paper these 

equations are studied with conditions (1.3) and (2.31). 

And this means that, in fact, from the obtained results 

of these works it follows that the Navier-Stokes 

equations for an incompressible fluid with Cauchy 

conditions are transformed to well-known mathematical 

problems. Note that in the future, space 
1

3 0G ( D )  can 

be used for the Navier-Stokes problem in a bounded 

domain, when 
0D  is bounded. 
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