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Abstract: In a recent paper, Majumdar [1] studied, to some extent, the generalized recurrence relation, introduced by Matsuura 

[2] : 
  

 ( )       ( ) 2 1
                  1

sMT n, min MT n s, ,
s n

     
 

                                   

where n ≥ 1 and  ≥ 2 are integers. It may be mentioned here that,  = 2 corresponds to the Reve’s puzzle, introduced by Dudeney 

[3]. In this paper, we study more closely the properties of the function MT(n, ), and give a closed-form expression of it when 

 = 2i (for any integer i ≥ 2). 

 Keywords: Reve’s puzzle, Recurrence relation, Local-value relationships. 

1. INTRODUCTION 

 

Matsuura [2] posed the recurrence relation below:   

 

 ( )              (  ) 2 1 ;
                   0 1

n kMT n, min MT k,
k n

     
  

 1n ,                                                                                                             

(1.1) 

MT(0,   )        =        0,                                      (1.2)                                                              

where  ≥ 2 is an integer. 

Some of the properties satisfied by MT(n, ) has been 

studied by Majumdar [1]. In what follows, let, for n  1 

and   2 fixed: 
 

 

 

FT(n, k, ) =   MT(n, k, ) + 2n–k – 1 , 0  k  n – 1. 
 

 

 

 

Note that: 
 

 

 ( )            (   )
                  0 1
MT n, min FT n, k , .

k n
 

  
 

 

The main results found by Majumdar [1] are 

reproduced below for reference later. 

Lemma 1.1: For any          ≥        2 fixed, let FT(n, k, ) and FT(n 

+ 1, k, ) be minimized at the points k = k1 and      k = k2 

respectively. Then, k1 ≤ k2 ≤ k1 + 1. 

The inequality in Lemma 1.1 above needs some 

explanation. When  = 2i (for some integer i  2), as 

Lemma 2.4 shows, there are instances when MT(n, ) is 

attained at a unique value of k, while in other cases, 

MT(n, ) is attained at exactly two (consecutive) values 

of k. Thus, in the latter case, k1 may be interpreted as the 

minimum of the two values of k at which MT(n, ) is 

attained and then k2 is the minimum of the two values (if 

such a situation arises) at which MT(n, ) is attained. 

Alternatively, k1 may be taken as the maximum of the 

two values at which MT(n, ) is attained, and then k2 is 

the maximum of the two values where MT(n, ) is 

attained. 

The following lemma shows that, for  (  3) fixed, 

MT(n, ) is convex with respect to n (in the sense of the 

left-hand side inequality). 
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Lemma 1.2:  For any                ≥        3 fixed, for all n        ≥        1,  

MT(n   +   1,      ) – MT(n,      )  MT(n   +   2,      ) – MT(n   +   1,      ) 

     2[MT(n   +   1,      ) – MT(n,     )]. 

Lemma 1.3:  If  = 2i (for some integer i ≥ 1), MT(n, ) 

is attained either at a unique k, or else at two 

(consecutive) values. 

 

Lemma 1.4:  For any   3 and n  1 fixed, FT(n, k, ) is 

convex in k in the sense that: 
 

 

 

FT(n, k + 2, ) – FT(n, k + 1, )  FT(n, k + 1, ) – FT(n, k, ) 

for all 0  k  n – 3. 

This paper gives an explicit expression of MT(n, ) 

when  = 2i (for some integer i  3). This is done in 

Section 3. Section 2 gives some background materials. 

We conclude the paper with some remarks in Section 4. 
 

 

2. BACKGROUND MATERIALS 

 

We have the following results, due to Majumdar [1]. 
 

Lemma 2.1 :  Let  = 2
i (for some integer i  2). Then, 

for all n  1, MT(n   +   1,  ) – MT(n ,   ) = 2s for some integer 

s  1. 

 

Lemma 2.2 : Let  = 2i (for some integer i  2). Let FT(N, 

k, ) be minimized at the two points k = K, K + 1 for some 

integer N  1. Let  

M = 2N – K + i – 1.                                                                                                       

Then, FT(M, k, ) is minimized at the two values           k 

= N – 1, N. 
 

Lemma 2.3:  Let, for some N  1,   2, FT(N, k, ) be 

minimized at the two points k = K, K + 1. Then: 

1. FT(N – 1, k, ) is minimized at k = K, 

2. FT(n + 1, k, ) is minimized at k = K + 1, 

3. MT(N,        ) – MT(N – 1,      ) = 2N – K
 

–
   

1  

= MT(N   +   1,         ) – MT(N,          ). 

 

Lemma 2.4 below shows that, if  = 2i for some 

integer i ≥ 2, there is an integer N ≥ 1 such that            FT(N, 

k, ) is minimized at two values of k, and there is an 

integer M ≥ 1 such that FT(M, k, ) is minimized at a 

unique value of k.  

 

Lemma 2.4:  Let  = 2i for some integer i ≥ 2. Then, 

1. FT(i, k, ) is minimized at the point k = 0 only, 
 

 

2. FT(i + 1, k, ) is minimized at the two points           k 

= 0, 1; FT(i + 2, k, ) is minimized at the unique point 

k = 1. 
 

 

3. FT(i + 3, k, ) is minimized at the two points           k 

= 1, 2; FT(i + 4, k, ) is minimized at the unique point 

k = 2. 
 

 

 

Proof: To prove part (1), note that: 

 

FT(i, 0,)  2i – 1 <   MT(1, ) + 2i – 1  FT(i + 1, 1, ), 

so, that by Lemma 1.4, FT(i, k, ) is minimized at the 

unique point k = 0.  

(2) Since 

FT(i + 1, 0, )  2i+1 – 1 =  MT(1, ) + 2i – 1 
  FT(i + 1, 1, ), 

 

by Lemma 1.4 and Lemma 1.3, FT(i + 1, k, ) is 

minimized at k = 0, 1.  Again, since 
 

FT(i + 2, 0, )  2i+2 – 1 >  MT(1, ) + 2i+1 – 1  FT(i + 2, 1, ), 
 

 

 

it follows that FT(i + 2, k, ) is minimized at the unique 

point k = 1. 
 

(3) Note that: 

FT(i + 3, 1, )  
 MT(1, ) + 2

i+2 – 1  

= 
 MT(2, ) + 2i+1 – 1  FT(i + 3, 2, ). 
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Therefore, FT(i + 3, k, ) is minimized at k = 1, 2. Again, 

since 

FT(i + 4, 1, )  
 MT(1, ) + 2

i+3 – 1  

> 
 MT(2, ) + 2

i+2 – 1  FT(i + 4, 2, ), 

it follows that FT(i + 4, k, ) is minimized at the unique 

point k = 2.   

Lemma 2.5:  Let  = 2i for some integer i ≥ 2. Let, for  

fixed, FT(N, k, ) be minimized at the unique point       k 

= K (≠ 0) for some integer N ≥ 1. Then: 

1. FT(N + 1, k, ) is minimized at k = K, 
 

2. FT(N – 1, k, ) is minimized at the two points k = K – 1, K. 

Proof: By assumption, 
 

 

MT(N, ) =  MT(K, ) + 2N-K – 1 <  MT(K + 1, ) + 2N-K-1  – 1, 

 

MT(n, ) =  MT(K, ) + 2N-K – 1  <  MT(K – 1, ) + 2N-K+1 – 1, 

and hence, 

[MT(K + 1, ) – MT(K, )] > 2
N

  

–
   

K
  

–
   

1,                        (1) 

[MT(K, ) – MT(K – 1, )] < 2
N

  

–
   

K.                             (2) 

(1) If FT(N + 1, k, ) is not minimized at k = K, then by 

Lemma 1.3, FT(N + 1, k, ) is minimized at the unique 

point k = K + 1, so that: 

MT(N + 1, ) = 
 MT(K + 1, ) + 2

N-K – 1   

        < 
 MT(K, ) + 2

N-K+1 – 1 . 

Thus, 

[MT(K + 1, ) – MT(K, )] < 2
N

  

–
   

K, 

which, together with the inequality (1), contradicts 

Lemma 2.1. Thus, FT(N + 1, k, ) is minimized at k = K. 

Then, 

MT(N + 1, ) = 
 MT(K, ) + 2

N-K+1 – 1  

≤ 
 MT(K + 1, ) + 2

N-K – 1,  

giving 

[MT(K + 1, ) – MT(K, )] ≥ 2
N

  

–
   

K.                                                                                              (3) 

Observe that, 

MT(N + 1, ) – MT(N, ) = 2
N

  

–
   

K.                        (2.1) 
 

(2) If FT(N – 1, k, ) is not minimized at k = K, then by 

virtue of Lemma 1.3, it is minimized at the unique point 

k = K – 1, so that 

MT(N – 1, ) = 
 MT(K – 1, ) + 2

N-K – 1   

< 
 MT(K, ) + 2

N-K–1 – 1. 

Thus, 

[MT(K, ) – MT(K – 1, )] > 2
N

  

–
   

K
 

–
 

1,                                                                    
 

which, together with the inequality (2), contradicts 

Lemma 2.1. Hence, FT(N – 1, k, ) is minimized at        k 

= K. We now want to show that FT(N – 1, k, ) is 

minimized at k = K – 1 as well, for otherwise; 

MT(N – 1, ) = 
 MT(K, ) + 2

N-K–1 – 1  

< 
 MT(K – 1, ) + 2

N-K – 1, 

 giving 

 [MT(K, ) – MT(K – 1, )] < 2
N

  

–
   

K
  

–
   

1. 

Using the inequality (3), we get: 

 [MT(K + 1, ) – MT(K, )] ≥ 2
N

  

–
   

K  

                           > 2[MT(K, ) – MT(K – 1, )], 

which contradicts Lemma 1.2. Hence, FT(N – 1, k, ) is 

minimized at k = K – 1 as well. 

Here, 

MT(N – 1, ) = 
 MT(K, ) + 2

N-K–1 – 1  

= 
 MT(K – 1, ) + 2

N-K – 1, 

so that 

 MT(N, ) – MT(N – 1, ) = 2
N

  

–
   

K
 

–
 

1.                      (2.2)                                                                                       
   

                                                                        

Moreover, 
 

MT(N, )  MT(N  1, ) = [MT(K, )  MT(K  1, )].   

                   (2.3) 
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Corollary 2.1:  Let  = 2i for some integer i ≥ 1. Let, for 

 fixed, FT(N, k, ) be minimized at the unique point    k 

= K for some integer N ≥ 1. Then, FT(N + 1, k, ) is 

minimized at the two points k = K, K + 1, with 

                                                        MT(N + 1, )  MT(N, ) = 2N
   


    

K. 

 

Proof : If FT(N + 1, k, ) is minimized at the unique point 

k = K, then by part (b) of Lemma 2.5,  FT(N, k, ) is 

minimized at two values of k, contrary to the assumption. 

Thus, 

 

MT(N + 1, ) = 
 MT(K, ) + 2

N-K+1 – 1  

= 
 MT(K + 1, ) + 2

N-K – 1, 

which gives 

[MT(K + 1, ) – MT(K, )] = 2
N

  

–
   

K  

= MT(N + 1, )  MT(N, ).         (2.4) 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

Theorem 2.1:  Let  = 2i for some integer i ≥ 2. Let, for 

 fixed, FT(N, k, ) be minimized at the point k = K for 

some integer N ≥ 1. Then,  

MT(N, ) – MT(N – 1, ) = 2
N

  

–
   

K
  

–
  

1.                                                                                         

Moreover, 

1. if FT(N, k, ) is minimized at the two points k = K, K 

+ 1, then 
 

MT(N + 1, ) – MT(N, ) = 2
N

  

–
   

K
  

–
   

1  

= [MT(K + 1, )  MT(K, )],                                                                       

2. if FT(N, k, ) is minimized at the unique point k = K, 

then 

 

MT(N + 1, ) – MT(N, ) = 2
N

  

–
   

K  

= [MT(K + 1, )  MT(K, )].                                                                       
 

Proof: follows readily from Lemma 2.3, (2.2) and (2.4). 

                             

Let  = 2i for some integer i ≥ 2. Starting with a 

uniquely attained function MT(N, ) (for  fixed), the 

lemma below finds another. 

Lemma 2.6:  Let  = 2
i (for any integer i ≥ 2). Let, for  

fixed, FT(N, k, ) be minimized at the unique point       k 

= K.  Let                                                                                                                         

             
      

      

     M = 2N – K + i – 1.                                             (2.5) 

Then, FT(M + 1, k, ) is minimized at the unique point  k 

= N. 

Proof : Since FT(N, k, ) is minimized at the unique 

point k = K, FT(N + 1, k, ) is minimized at the two points 

k = K, K+ 1 (by Corollary 2.1). Therefore, using (2.5), 

from (2.1) and (2.3), we get 

 

 [MT(N + 1, ) – MT(N, )] = 2
N

  

–
   

K
 

+
    

i
 = 2

M
  

–
   

N
 

+
    

1,     (2.6)                               
 

 

[MT(N, ) – MT(N – 1, )] = 2
N

  

–
   

K
 

+
    

i
  

–
   

1
 = 2

M
  

–
   

N.      (2.7)                                                                                                         
 

 

By part (2) of Lemma 2.5, FT(N – 1, k, ) is minimized 

at the two points k = K – 1, K, and so, by part (3) of 

Lemma 2.2, 

 

                                                               MT(N – 1, ) – MT(N – 2, ) = 2
N

  

–
   

K
 

–
  

1. 

 

Therefore, by (2.5),  
 

[MT(N – 1, ) – MT(N – 2, )] = 2
N

  

–
   

K+
      

i
       

–
  

1
 = 2

M
  

–
   

N.   (2.8) 
 

Now, if, 

MT(M, ) =  MT(N – 1, ) + 2M-N+1 – 1  

= 
 MT(N – 2, ) + 2

M-N+2 – 1, 

we get, 

[MT(N – 1, ) – MT(N – 2, )] = 2
N

  

–
   

K+
      

i
       

–
  

1
 = 2

M
  

–
    

N
      

+
   

1,                       
 

contradicting (2.8). Thus, FT(M, k, ) is not minimized 

at k = N – 2. Again, if 

MT(M, ) =  MT(N – 1, ) + 2
M-N+1 – 1  

< 
 MT(N, ) + 2

M-N – 1, 

we get 

[MT(N, ) – MT(N – 1, )] > 2
M

  

–
   

N,                                    
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which contradicts (2.7). Hence, FT(M, k, ) is minimized 

at the two points k = N – 1, N. Then,      FT(M + 1, k, ) is 

minimized at the unique point k = N, because otherwise, 

MT(M + 1, ) = 
 MT(N, ) + 2

M-N+1 – 1  

= 
 MT(N + 1, ) + 2

M-N – 1, 

so that, 

[MT(N + 1, ) – MT(N, )] = 2
M

  

–
   

N, 
 

contradicting (2.6). Thus, MT(M + 1, ) is attained at the 

unique point k = N.                                                                       
 

Lemma 2.7:  Let  = 2i for some integer i ≥ 2. Let, for  

fixed, FT(N, k, ) be minimized at the unique point       k 

= K for some integer N ≥ 1,  so that, 

MT(N, ) – MT(N – 1, ) = 2
N

  

–
   

K
 

–
  

1, 

MT(N + 1, ) – MT(N, ) = 2
N

  

–
   

K. 

 Let,                                                                                                          

M = min {n : MT(n, ) – MT(n – 1, ) = 2
N

  

–
   

K
 

–
  

1}. 

Then, FT(n, k, ) is minimized at two values of k, for any 

n satisfying M ≤ n ≤ N – 1. 

Proof: By assumption, 

MT(M, ) – MT(M – 1, ) = 2
N

  

–
   

K
 

–
  

1, 

but 

MT(M – 1, ) – MT(M – 2, ) = 2
N

  

–
   

K
 

–
  

2. 
 

Let FT(M, k, ) be minimized at k = L (if FT(M, k, ) is 

minimized at two values of k, L is the minimum of the 

two values). Then, from Theorem 2.1, 

                                                        MT(M, ) – MT(M – 1, ) = 2
M

  

–
 

L
 

–
  

1. 
 

Now, if FT(M – 1, k, ) is minimized at the two points   k 

= L – 1, L, then by part (3)  of Lemma 2.3, 

MT(M – 1, ) – MT(M – 2, ) = 2
M

  

–
   

L
 

–
  

1, 

which contradicts the definition of M. Consequently, 

FT(M – 1, k, ) is minimized at the unique point k = L, 

and hence, by virtue of Lemma 2.5 and Corollary 2.1,         

FT(M, k, ) is minimized at the two points k = L, L + 1, 

so that, by part (2) of Lemma 2.2, FT(M + 1, k, ) is 

minimized at k = L + 1. Now, if FT(M + 1, k, ) is 

minimized at the unique point k = L + 1, then by (2.2) 

and (2.1), 

MT(M + 1, ) – MT(M, ) = 2M
  

–
   

L
  

–
   

1,  

MT(M + 2, ) – MT(M + 1, ) = 2M
  

–
   

L, 

and we must have M + 1 = N. Otherwise,                FT(M 

+ 1, k, ) is minimized at two values of k, namely, at k = 

L + 1, L + 2.  Continuing in this way, we see that each of 

the functions FT(M, k, ), FT(M + 1, k, ), …, FT(N – 1, 

k, ) is minimized at two values of k; more precisely, for 

ℓ = 0, 1, ..., FT(M + ℓ, k, ) is minimized at the two points 

k =
 L + ℓ, L + ℓ + 1.  

 

The next section considers the problem of finding 

the solution of the recurrence relation (1.1) when  = 2i 

for some integer i ≥ 2.         

                                                                                                                                                                        

 

3. THE SOLUTION OF THE RECURRENCE 

RELATION 

 

This section derives a closed-form expression of    MT(n, 

) when  = 2
i for any integer i ≥ 2. 

 

For any  ≥ 2 fixed, let: 
 

an = MT(n, ) – MT(n – 1, ),  n ≥ 1.                   (3.1) 

 

Let  = 2
i for some integer i ≥ 2. Let kj (j ≥ 0) be the largest 

index such that 

    2 j

j
ka  .                                                                                 (3.2) 
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iiIt may be noted here that, when  = 2
i for some integer i 

≥ 2, and kj is the largest index satisfying the condition 

(3.2), then MT(kj, ) is attained at a unique point, for 

otherwise, if MT(kj, ) is attained at k = K, K + 1, then by 

part (3) of Lemma 2.3, the definition of kj is violated. 

 

Clearly, for any  ≥ 2,  
 

                k0 = 1, k1 = 2. 
 

However, the sequence of numbers   0n n
k


, n ≥ 3, 

depends on . For example, 
 

               4   3, 4
( )

3,  5   2

, if
k

if










 

 

 

as can easily be verified. 

 

Theorem 3.1:  Let  = 2
i for some integer i ≥ 2. Let kj   (j 

≥ 0) be the largest index such that 

                                                                                                                                 2 j

j
ka  . 

Then,             

1. MT(kj, ) is attained uniquely at the point                k 

= kj – j – 1, 
 

2. MT(n, ) is attained at the two points k = n – j – 1,    n 

– j – 2 for all n with kj + 1  n  kj      +    1 – 1, 

3. MT (kj   +    1, ) is attained at the point k = kj       +   1 – j – 2. 

Proof: We prove the theorem by induction on j. The 

results can easily be verified when j = 0 and j = 1. So, we 

assume that the results are true for some j.  

Now, in the notation of Lemma 2.7, 

                                                                   N = kj, N  K  1 = j, N + M = kj+1. 
 

 

1. To prove part (1), note that MT(kj, ) is attained at 

the unique point k =
 K = kj – j – 1.   

 

2. follows immediately from Lemma 2.7 with           M 

= kj + 1, L = M  j  1 =
 kj  j, N = kj+1, so that      MT(M 

+ ℓ, ) is attained at the two points                k = M + 

ℓ  j  1, M + ℓ  j. 
 

3. Since (by part (2) above), MT(kj   +   1 – 1, ) is attained 

at the two points; 
 

                                                                                                 k =
 kj+1 – j – 3, kj+1 – j – 2, 

 

it follows, by Lemma 2.3, that MT(kj+1, ) is attained 

(uniquely) at the point k = kj+1 – j – 2. Thus, the results are 

true for j + 1 as well, completing induction.  

When   = 2i for some integer i ≥ 1, an expression of 

MT(n, ) in terms of the numbers kj can be derived. This 

is done in the following theorem. We then illustrate the 

use of Theorem 3.2 by finding 
(   1)(   2)

2
( )j j

MR
 

 

corresponding to the Reve`s puzzle in Lemma 3.1. 

 

 

Theorem 3.2:  Let  = 2i for some integer i ≥ 1. Let kj   (j 

≥ 0) be the largest index such that; 

        
2 j

j
ka  .                  

Let kj  n < kj+1 for some j ≥ 0. Then, 

                                      

1
1

1

(  ) 1 ( )2 2 ( )j
j

j

MT n, k k n k . 




      

Proof : We write MT(n, ) as follows : 
 

                 

1

(  ) (  ) ( 1  )[ ]
n

m

MT n, MT m, MT m ,  


    

 

                                                   

1 1
1

1   ( , ) ( 1  )    [ ]
kj

m k

MT m MT m , 
  



                                         

1

 (  ) ( 1  ) [ ]
n

m k
j

MT m, MT m , . 
 

    

Now, noting that  
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MT(m, )  MT(m  1, ) = 2ℓ  if kℓ1 + 1  m  kℓ; ℓ = 1, 

2, ..., 
 

the desired expression follows.                                                                                                                  

 

Recall that  = 2 correspond to the Reve’s puzzle.  

 

Let MR(n) is the minimum number of moves 

required to solve the Reve’s puzzle with n ≥ 1 discs. It is 

well-known (see, for example, Roth [4], Hinz [5] and 

Majumdar [6, 7]) that, for j ≥ 0, 
(   1)(   2)

2
( )j j

MR
 

) is 

attained at the unique point 
(   1)

2
j j

.k


  We now give an 

expression of 
(   1)(   2)

2
(

j j
MT

 
, 2) = 

(   1)(   2)
2

( )j j
MR

 
,  j 

≥ 0, in the following lemma, which makes use of 

Theorem 3.2. 

 

Lemma 3.1:  For j ≥ 0, 
 

MT(
(   1)(   2)

2
j j 

, 2) = 
1(   1)(   2)

2
( ) 2 1jj j

MR j . 
   

 

 

Proof  : We first note that, when  = 2, kℓ of Theorem 

3.2 is given by 
 

   

(   1)(   2)
2

  for all 0k .
 

   

 

Therefore, by Theorem 3.2,  
 

(   1)(   2)
2

( )
j j

MR
 

 
1

(   1)(   2) (   1)
2 2

1 2[ ]
j



  
     

1

1 ( 1)2
j

.


                                                                                        

Now, let 

1 1

( 1)2 2 2(2 1)j
j j

S .
 

       

Then, 

   1 1 1

1 1

1

2 ( 1)2 ( 1)2 ( 1)2 j
j j

S j  

 



        

                                                                                                

1

2

2 ( 1)2k j

k

j

k j 



    

                                                                    

1

1

2 2 ( 1)2( ) j
j

j 



     

 

                                                                                  

1 12 ( 1)2j jS j ,       

so that 

            S = j2j+1. 
 

Hence, finally we get the desired expression.  

 

The expression of 
(   1)(   2)

2
( )

j j
MR

 
 is well-known, 

and can be found in, for example, Roth [4], Hinz [5] and 

Majumdar [6, 7]). Lemma 3.1 gives an alternative 

approach to find it. We now state and prove the 

following theorem. 

 

Theorem 3.3:  Let  = 2
i for some integer i ≥ 2. Then, for 

any n ≥ 0, MT((n + 1)(
2
i n + ℓ), ) is attained at the 

unique point k = n[
2

( 1)i n  + ℓ], 1 ≤ ℓ ≤ i. 

Proof: The proof is by induction on n. 

nNoting that MT(n, ) is attained at the unique point       k 

= 0 for all 1 ≤ n ≤ ,i (by virtue of part (1) of Lemma 2.4), 

the validity of the result for n = 0 follows. So, we assume 

that the result holds true for some n. Then, by Lemma 

2.6, MT(N + 1, ) is attained at the unique point k = (n + 

1) (
2
i n + ℓ), where; 

N + 1 = 2(n + 1) (
2
i n + ℓ) – n[

2
( 1)i n  + ℓ] + i  

= (n + 2)[
2

( 1)i n  + ℓ]. 

 

This shows that the result is true for n + 1 as well, thereby 

completing induction.  
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The following two lemmas deal respectively with the 

particular cases when  = 4 and  = 8. 

 

Lemma 3.2:  For all n ≥ 1, 

1. 2 2 11
3

(  4) (3 2)2 1[ ]nMT n , n ,    

2. 21
3

( ( 1)  4) (3 1)2 1[ ]nMT n n , n .     

Proof: By Theorem 3.3, MT(n2, 4) is attained at the 

(unique) point k = (n – 1)2.  

Therefore,                                                                           

2 2 2 1(  4) 4 (( 1) , 4) 2 1nMT n , MT n      

 

2 2 3 2 14[4 (( 2) , 4) 2 1] 2 1n nMT n         

 

2 2 2 14 (( 2) , 4) 2.2 (1 4)nMT n .      

 

Continuing in this way ℓ times, we get: 

2(  4)MT n ,  

 2 2 1 14 (( )  4) 2 (1 4 ... 4 )nMT n , .          

 2 2 1 4  1
3

4 (( ) , 4) 2 n
.MT n .       

Now, choosing ℓ = n and then simplifying, we get the 

expression desired.  

(2) Since MT(n(n + 1),4) is attained at k = n(n – 1), by 

repeated application, we get 
 

2( ( 1), 4) 4 ( ( 1), 4) 2 1nMT n n MT n n      

 

2 2 24[4 (( 1)( 2), 4) 2 1] 2 1n nMT n n         

 

2 24 (( 1)( 2), 4) 2.2 (1 4)nMT n n .        

 

After ℓ iterations, we get 
 

( ( 1), 4)MT n n  

2 14 (( 1)( ), 4) 2 (1 4 ... 4 )nMT n n .           

 2 4  1
3

4 (( 1)( ), 4) 2 n
.MT n n .        

Finally, putting ℓ = n, we get the desired result after 

simplification. 

Corollary 3.1:  For any integer n ≥ 1, 
 

2 1

2

2 2
2 1

2
2

(3   2)2   1
( )   

3

(3   1)2   1
[ ( 1)]2

3

2 ( 1)      
(  4)   

 ( 1) ( 1)

n
n

n
n

n
N n ,

n
N n n ,

if n N n n
MT N ,

if n n N n


 

 

 
  


  

 
   



 

Proof: Since 
 

MT (n2 + m, 4)  MT (n2 + m  1, 4) = 22n
  


  

1 for all 1  m  n, 
 

MT(n(n + 1) + m, 4)  MT(n(n + 1) + m  1, 4) = 22n 

for all 1  m  n + 1, 

the result follows from Lemma 3.2. 
 

 

Lemma 3.3:  For any integer n ≥ 1,  

1. MT( 3
2

n(n + 1), 8) = 1
7

[(7n  1)23n + 1], 
 

2. MT( (   1)(3   2)
2

n n 
, 8) = 1

7
[(7n + 3)23n+1 + 1], 

 

3. MT( (   1)(3   4)
2

n n 
, 8) = 1

7
[(7n + 5)23n+2 + 1]. 

 

Proof: The proofs are given below. 

(1) By Theorem 3.3, MT( 3
2

n(n + 1), 8) is attained at the 

point k = 3
2

n(n  1), so that 
 

 

MT( 3
2

n(n + 1), 8) = 8 MT( 3
2

n(n  1), 8) + 23n  1 

 

= 8[8MT( 3
2

(n  1)(n  2), 8) + 23(n1)   1] + 23n  1 

 

= 82 MT( 3
2

(n  1)(n  2), 8) + 2.23n   (1 + 8). 

Continuing ℓ times, we get                                      
 

MT( 3
2

n(n + 1), 8) = 8ℓ MT( 3
2

(n  ℓ + 1)(n  ℓ), 8)  

+ ℓ.23n   (1 + 8 + ... + 8ℓ1) 
 

= 8ℓ MT( 3
2

(n  ℓ + 1)(n  ℓ), 8) + ℓ.23n   1
7

(8ℓ  1). 

 

In the above expression, putting ℓ = n, and then 

simplifying, we get the desired expression. 
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(2)  Since MT(
(   1)(3   2)

2
n n 

, 8) is attained at the point 

k =
(3   1)

2
n n 

, we get 

 

MT(
(   1)(3   2)

2
n n 

, 8) = 8 MT(
(3   1)

2
n n 

, 8) + 23n+1  1 

= 8[8MT(
(   1)(3   4)

2
n n 

, 8) + 23n2   1] + 23n+1  1 

= 82 MT(
(   1)(3   4)

2
n n 

, 8) + 2.23n+1   (1 + 8). 

And in general, after ℓ iterations, we have: 
 

MT(
(   1)(3   2)

2
n n 

, 8) = 8ℓ MT( 1
2

(n  ℓ + 1)(3(n  ℓ)  

+ 2), 8) + ℓ.23n+1   (1 + 8+ ... + 8ℓ1) 

= 8ℓ MT( 1
2

(n  ℓ + 1)(3(n  ℓ) + 2), 8) + ℓ.23n+1                   

 1
7

(8ℓ  1). 

Now, putting ℓ = n, we get 
 

MT(
(   1)(3   2)

2
n n 

, 8) = 8n + n.23n+1   1
7

(8n  1). 

Simplifying, we get the result desired. 

(3) Since MT(
(   1)(3   4)

2
n n 

, 8) is attained at the point 

k =
(3   1)

2
n n 

, we have 

MT(
(   1)(3   4)

2
n n 

, 8) = 8 MT(
(3   1)

2
n n 

, 8) + 23n+2  1 

 

=8[8MT(
(   1)(3   2)

2
n n 

, 8) + 23n1   1] + 23n+2  1 

= 82 MT(
(   1)(3   2)

2
n n 

, 8) + 2.23n+2   (1 + 8), 

and after ℓ iterations, we have: 
 

MT(
(   1)(3   4)

2
n n 

, 8) = 8ℓ MT( 1
2

(n  ℓ + 1)(3(n  ℓ)      

+ 4), 8) + ℓ.23n+2   (1 + 8+ ... + 8ℓ1) 

= 8ℓ MT( 1
2

(n  ℓ + 1)(3(n  ℓ) + 4), 8) + ℓ.23n+1                       

 1
7

(8ℓ  1). 

Finally, putting ℓ = n, we get 
 

MT(
(   1)(3   4)

2
n n 

, 8) = 3.8n + n.23n+2   1
7

(8n  1),  

 

which gives the desired result after simplification. 

 

4.  REMARKS 
 

In this paper, we derive some results in connection with 

the difference MT(n + 1, )  MT(n, ), which plays a 

vital role in solving the recurrence relation (1.1). These 

are given in Section 2. In Section 3, an alternative 

expression of MT(n, ) is given when  = 2
i for some 

integer i ≥ 1. From Theorem 3.2, we observe that the 

determination of the numbers kj, satisfying the condition, 

MT(kj, )  MT(kj  1, ) = 2j, is required, which is given 

in Theorem 3.3. This would enable us to find a closed-

form expression of MT(n, ), as has been illustrated in 

Lemma 3.2 and Corollary 3.1 explicitly for the particular 

case when  = 4. 

 

 

It may be mentioned here that, Matsuura [2] adopted 

a different approach to find MT(n, ). More specifically, 

letting   1n n
b


 be the sequence of numbers defined as 

follows: 

 

bn =
 2m ℓ; m ≥ 0, ℓ ≥ 0, 

 

 

and arranged in non-decreasing order, Matsuura [2] 

showed, by induction on n, using a recurrence relation 

satisfied by bn, that an =
 bn. In this paper, we follow a 

different approach, which enables us to find an explicit 

form of MT(n, ). Our analysis reveals many interesting 

properties and local-value relationships that are inherent 

in the optimal value function MT(n, ). Moreover, 

though for small values of n, bn may be found out, for 
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large values of n, finding bn, even using the recurrence 

relation satisfied by it, is a challenging problem. 

For  = 4, the first few terms of the sequence   1n n
b


 

are: 
 

                                                                    1, 2, 4, 4, 8, 8, 16, 16, 16, 32, 32, 32, 64, …. 

 

We recall that, when  = 2, MT(n, ) satisfies exactly one 

of the following relationships : 

MT(n   +   2,        ) – MT(n    +   1,         )         =     2[MT(n   +   1,      ) – MT(n,       )],                                                         

(4.1) 

MT(n   +   2,        ) – MT(n   +   1,         )         =     MT(n   +   1,      ) – MT(n,       ).                                                     

(4.2)                               

When  = 2
i for some integer i ≥ 2, we have the following 

results. 

 

Lemma 4.1:  Let  = 2i (for some integer i ≥ 1). Then, 

MT(n, ) satisfies the relationship (4.1) for some integer 

n ≥ 1 if and only if MT(n + 1, ) is attained at a unique 

value of k. 

Proof: If MT(n + 1, ) is attained at the unique point     k 

= K, then by Theorem 2.1, 

MT(n   +   2,        ) – MT(n   +   1,         ) = 2
n

 

–
   

K
    

+
   

1
          

=     2[MT(n   +   1,      ) – MT(n,       )]. 
 

Conversely, let the relationship (4.1) hold. Now, if, MT 

(n + 1, ) is attained at the two points k = K, K+1, then 

by Theorem 2.1, 
 

MT(n   +   2,        ) – MT(n   +   1,         ) = 2
n

 

–
   

K
          

=     MT(n   +   1,      ) – MT(n,       ), 
 

which is in contradiction with the assumption.   

Corollary 4.1:  Let  = 2i (for some integer i ≥ 1). Then, 

MT(n, ) satisfies the relationship (4.2) for some n ≥ 1 if 

and only if MT(n + 1, ) is attained at two values of k. 

It has been proved that, when   2i for any integer  i 

≥ 1, MT(n, ) is attained at a unique value of k (see 

Corollary 3.5 in Majumdar [1]). It then follows, by 

Corollary 4.1 above that, in such a case, MT(n, ) does 

not satisfy the relation (4.2).  

 

Corollary 4.2:  For  = 2i (for some integer i ≥ 1), the 

relationship (4.1) cannot hold for all n ≥ 1. 

Proof: Let MT(n, ), MT(n + 1, ) and MT(n + 2, ) 

satisfy the relationship (4.1). By Lemma 4.1,             MT(n 

+ 1, ) is attained at a unique point, say, k = K. Then, by 

Corollary 2.1, MT(n + 2, ) is attained at the points k = 

K, K + 1, so that by Theorem 2.1, 

MT(n   +   3,        ) – MT(n   +   2,         ) = 2
n

 

–
   

K
    

+
   

1
        

  =     MT(n   +   2,      ) – MT(n + 1,       ). 
 

This shows that, MT(n + 1, ), MT(n + 2, ) and     MT(n 

+ 3, ) satisfy the relationship (4.2). 

Lemma 4.2 :  Let  = 2i (for some integer i ≥ 1). Then, 

MT(n + 1, ) is attained at the unique point k = K (for 

some integer n ≥ 1) if and only if MT(K, ) is attained at 

a unique value of k. 

Proof : Let MT(n + 1, ) be attained at the unique point 

k = K. Then, by Lemma 4.1, MT(n + 1, ) satisfies the 

relationship (4.1), so that by (2.3) and (2.4), 

MT(K + 1, )  MT(K, ) = 2[MT(K, )  MT(K  1, )], 

so that, MT(K, ) is attained at a unique value of k. Next, 

let MT(K, ) be attained at a unique k. Then, by Lemma 
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2.6, we can find MT(n + 1, ) which is attained at the 

unique point k = K.  

In Table 4.1 and Table 4.2, we give the values of   

MT(n, ) for 1  n  19,  = 4, 8, 16. 

 

 

Table 1. Values of MT(n, ) for 1  n  10 and  = 4, 8, 16.  

In each cell, the number in parenthesis gives the value(s) of k at which MT(n, ) is attained. 

 

Table 2. Values of MT(n, ) for 11  n  19 and  = 4, 8, 16.  

In each cell, the number in parenthesis gives the value(s) of k at which MT(n, ) is attained  
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