
Research Article

Proceedings of the Pakistan Academy of Sciences: Pakistan Academy of Sciences
A. Physical and Computational Sciences: 57 (2): 81-88 (2020)
Copyright © Pakistan Academy of Sciences
ISSN: 2518-4245 (print), 2518-4253 (online)

————————————————
Received: March 2019; Accpeted: June 2020
*Corresponding Author: Ali Nasir <a.nasir@ucp.edu.pk>

Discrete Time Stochastic Root-finding with Forced Stopping Time

Ali Nasir1* and Huma Rehman Baig2

1Department of Electrical Engineering, University of Central Punjab, Lahore, Pakistan
2Directorate of Research, University of Central Punjab, Lahore, Pakistan

Abstract: In this paper, we present a Markov Decision Process (MDP) based formulation for solving the stochastic
root-finding problem with predefined stopping time. In the problem that we pose, we need to find only one root of
a given finite valued function f (p,u,h). Here, p is a known Markov chain, u is the adjustable variable, and h is the
unknown random variable with known distribution. Hence we cannot measure the true value of the function because
h is unknown. We assume that we have a way of measuring whether or not f is within some bound ε from zero. We
also present a formulation for the problem where f (p,u) is measurable but the adjustment of u is stochastic with
known distribution. Another challenge in our problem is the introduction of finite stopping time. This means that the
MDP policy has only a predefined finite number of actions available for adjusting u to find the root (or bring | f | < ε).
We have included a price control example in the paper to demonstrate the behavior of the resulting MDP policy in
response to the available time steps and the variable values of u and p. The results show reasonable trajectories for our
simulated environment.

Keywords: Markov decision processes, Stochastic root finding, Stochastic approximation.

1. INTRODUCTION

Stochastic root-finding is a well-researched problem
in mathematics and engineering. The problem that
we consider in this paper however is different from
the standard stochastic root-finding problem in
the literature. One of the main differences is the
discrete and finite nature of the unknown function
and consideration of known but arbitrary functional
form. Another major difference is the inclusion of a
finite time step limit for finding the root. Formally,
the problem can be posed in two ways:

i. Given a discrete finite-value function f (p,u,h)
where p is known and changes at regular
intervals according to a known Markov chain, u
is adjustable and known, and h is unknown with
a known distribution, find the control policy
𝜑 (p , u) for u that can compensate changes
in p and the unknown value of h such that the
function value is driven to within a bound ε
from 0 in less than or equal to n steps.

ii. Given a discrete finite-value function f (p,h(u))

where p is known and changes at regular
intervals according to a known Markov
chain, u is adjustable and known, and h is a
random function of u with known conditional
distribution given the values of u, find the
control policy 𝜑 (p,u) for u that can compensate
changes in p and the value of h such that the
function value is driven to within a bound ε
from 0 in less than or equal to n steps.

This type of problem has abundant applications
in planning under uncertainty and fault detection.
For example, consider a problem of elevator
assignment in a building where the number of
passengers is bounded by the floor capacity but their
appearance at each floor at any given time follows
a known distribution. In this problem, we would
like to bring the average waiting time for each
passenger close enough to a pre-specified optimal
time. Similar problems arise in the assignment of
vehicles in the problems involving transportation,
assignment of labor in the problems involving
demand and production, selection of price, selection
of thresholds in fault detection, selection of vehicle

to a lack of history dependence in Markov process-
based modeling. To avoid deadlocks and live locks,
appropriate history has to be included in the state
information. There is a class of problems though,
which naturally exhibits Markov property and for
those problems, our formulation works fine without
any additional information in the state space.
We have discussed the properties of conditional
distribution that can ensure that the system obeys
Markov property i.e. no history is required to find
the root.

For an illustration of our proposed framework,
we have also included a simulation-based example
of the price control problem. The resulting optimal
policy yields reasonable results and has some
important characteristics that are briefly discussed.
The paper is organized as follows. In Section 3 we
present an appropriate background for MDPs. Our
formulations are discussed in Section 4. Section
5 presents the simulation example and Section 6
includes conclusions and future work.

2. BACKGROUND ON MDP

An MDP is a controlled Markov chain that is solved
using a discrete stochastic dynamic programming
algorithm e.g. value iteration or policy iteration
[8-10]. Value iterations are applied to the optimal
control problem that maximizes an expected
discounted reward function of the form.

 (1)

Here, st represents state after t actions, and µt is the
action applied in state st according to a policy Pol (st
is a random variable). V is the expected discounted
reward function of states of the Markov chain (also
called the value function of the state). The discount
factor γ (γ ϵ (0, 1)), indicates that future rewards
have a lower value. We assume that R is bounded
from above and below. The policy that selects the
optimal action may be found as:

 (2)

There is a direct relationship between the value of
a state and the values of all the states that can be
reached from that state in a single optimal action.
This relationship can be expressed using the

speed on the road (speed bounded by road speed
limits), etc. The traditional stochastic root-finding
problem has been studied extensively in the past.
Some of the early contributions include the work
of Robbins and Monro [1] where a non-parametric
approach similar to the Newton-Raphson method
is proposed. Wu has shown that the knowledge of
the distribution of measurement noise can greatly
improve the convergence rate [2]. Similarly, Yazidi
[3] has proposed a novel approach for stochastic
root-finding which is based on adaptive d-ary
search. The solution shrinks the search by a factor
of 2d/3, where d ≥2 is user-defined. Glimsdal [5] has
proposed a Thompson sampling-based stochastic
searching solution for deceptive environments.
The proposed solution is also applicable to the
root-finding problem. Similarly, Zhang [6] has
presented a symmetrical, hierarchical stochastic
searching on a 1-D line by operating a controlled
random walk and obtaining information from the
stochastic environment. Also, Vahidipour [4] has
presented the shortest path in stochastic graphs
using Learning Automata and Adaptive Stochastic
Petri Nets (APSN-LA). The proposed solution has
been validated on six different stochastic graphs
and it has been reported as a relatively shortest
path solution compared to other algorithms.
Similarly, Pfeffer [7] a stochastic root-finding
solution based on homotopy analysis which is
applied to Schwinger equations. The author has
reported a mathematical formulation that shows
superior convergence properties compared to the
bold diagrammatic Monte Carlo approach. A good
review of the available solutions for the stochastic
root-finding problem is found in [11].

In this work, we assume the distribution of
the unknown part of the function is known. Our
formulation is based on the Markov Decision
Process (MDP) modeling. We present two modeling
approaches. In our first approach, the function has
some unknown element. In our second approach,
the actions to change the function have uncertainty
involved. The first approach corresponds to the
problems with noisy sensors and perfect actuators.
The second approach corresponds to the problems
with perfect sensors and noisy actuators.

We have discussed the possibilities of deadlocks
and live locks while using the formulation presented
in this paper. These situations basically can arise due

Nasir Ali and Huma Rehman Baig

2

been studied extensively in the past. Some of the
early contributions include the work of Robbins
and Monro [1] where a non-parametric approach
similar to the Newton-Raphson method is
proposed. Wu has shown that the knowledge of the
distribution of measurement noise can greatly
improve the convergence rate [2]. Similarly,
Yazidi [3] has proposed a novel approach for
stochastic root-finding which is based on adaptive
d-ary search. The solution shrinks the search by a
factor of 2d/3, where d ≥2 is user-defined.
Glimsdal [5] has proposed a Thompson sampling-
based stochastic searching solution for deceptive
environments. The proposed solution is also
applicable to the root-finding problem. Similarly,
Zhang [6] has presented a symmetrical,
hierarchical stochastic searching on a 1-D line by
operating a controlled random walk and obtaining
information from the stochastic environment. Also,
Vahidipour [4] has presented the shortest path in
stochastic graphs using Learning Automata and
Adaptive Stochastic Petri Nets (APSN-LA). The
proposed solution has been validated on six
different stochastic graphs and it has been reported
as a relatively shortest path solution compared to
other algorithms. Similarly, Pfeffer [7] a stochastic
root-finding solution based on homotopy analysis
which is applied to Schwinger equations. The
author has reported a mathematical formulation
that shows superior convergence properties
compared to the bold diagrammatic Monte Carlo
approach. A good review of the available solutions
for the stochastic root-finding problem is found in
[11].

In this work, we assume the distribution of the
unknown part of the function is known. Our
formulation is based on the Markov Decision
Process (MDP) modeling. We present two
modeling approaches. In our first approach, the
function has some unknown element. In our second
approach, the actions to change the function have
uncertainty involved. The first approach
corresponds to the problems with noisy sensors and
perfect actuators. The second approach corresponds

to the problems with perfect sensors and noisy
actuators.

We have discussed the possibilities of deadlocks
and live locks while using the formulation
presented in this paper. These situations basically
can arise due to a lack of history dependence in
Markov process-based modeling. To avoid
deadlocks and live locks, appropriate history has to
be included in the state information. There is a class
of problems though, which naturally exhibits
Markov property and for those problems, our
formulation works fine without any additional
information in the state space. We have discussed
the properties of conditional distribution that can
ensure that the system obeys Markov property i.e.
no history is required to find the root.

For an illustration of our proposed framework,
we have also included a simulation-based example of
the price control problem. The resulting optimal
policy yields reasonable results and has some
important characteristics that are briefly discussed.
The paper is organized as follows. In Section 3 we
present an appropriate background for MDPs. Our
formulations are discussed in Section 4. Section 5
presents the simulation example and Section 6
includes conclusions and future work.

2. BACKGROUND ON MDP
An MDP is a controlled Markov chain that is solved
using a discrete stochastic dynamic programming
algorithm e.g. value iteration or policy iteration [8-
10]. Value iterations are applied to the optimal
control problem that maximizes an expected
discounted reward function of the form.

0

0
() (,) | , .Pol t t t

t
V s E R s Pol s sγ µ

∞

=

= =

∑

 (1)

Here, st represents state after t actions, and µt is
the action applied in state st according to a policy Pol
(st is a random variable). V is the expected
discounted reward function of states of the Markov
chain (also called the value function of the state).
The discount factor γ (γ ϵ (0, 1)), indicates that future
rewards have a lower value. We assume that R is

Stochastic Root Finding with Markov Decision Process

 3

bounded from above and below. The policy that
selects the optimal action may be found as:

()* () arg max , (| ,) () .i k i j k i j
k j S

Pol s R s T s s V sµ γ µ
∈

∈ +

∑

 (2)

There is a direct relationship between the value
of a state and the values of all the states that can be
reached from that state in a single optimal action.
This relationship can be expressed using the Bellman
equation:

1() () max (| ,) ()t i i j k i t jk j S
V s R s T s s V sγ µ+

∈

= +

∑

(3)

where Vt+1(si) is the value of state si at iteration
t+1. R(si) is the immediate reward of state si. T (sj |μk,
si) is the probability of transitioning from state si to sj
by executing action μk. Value iterations converge and
one can bind the number of iterations (Itr) to reach
an error bound of ε as:

max2 1log / log .
(1)

R
Itr

γ ε γ

= −
 (4)

Here ε is the required tolerance of the solution
satisfying,

1() () , .t i iV V iς ς ε+ − < ∀ (5)

The inequality (5) is ensured by

1
1() () .t i t iV V γς ς ε
γ+

 −
− <

 (6)

The computational complexity of value iteration
is of the order O(N2k), where, N is the number of
states and k is the number of actions in the MDP. As
described in the book by Kumar and Varaiya [8],
Equation (3) converges to a unique solution. The
solution of Equation (3) achieves its maximum value
of the right-hand side in Equation (1). If the policy is
calculated using (2) with a solution of (3), it will be
optimal concerning (1). One of the algorithms to
solve (3) and find an optimal policy from (2) is
called value iteration; it is shown in Fig. 1.

Fig. 1. Value Iteration Algorithm

3. STOCHASTIC ROOT FINDING
FORMULATION

In this section, we formulate the MDP models for the
two problems discussed in Section 1.

3.1 Known Action and Unknown Function

The objective of root finding in this subsection is to
achieve | f | < ε where f is a function of three
variables, i.e., known but uncontrollable variable p,
known and controllable variable u, and unknown and
uncontrollable variable h. For stochastic root-finding
formulation where the function f is not measurable
(due to h) and actions of changing u have a
deterministic effect on u, the states of the MDP are
defined as,

{ }

{ }
{ } { }

1 2, ,...,
,

, , ,

, , 0,1 , 1, 2,...,

N

i i i i i

i i i i

S s s s
where
s p u B q

p P u U B q n

=

=

∈ ∈ ∈ ∈

 (7)

where, Bi is the binary flag in state si indicating
whether or not | f | < ε (B = 0 when | f | < ε). Also qi
indicates how many steps have passed since | f | < ε.
All the states with qi = n are considered as failed
states and are absorbing, i.e., no action is available
from these states. P and U are finite sets of discrete
values that variables p and u can take. Note that, we
do not assume any particular property about the form
of the function f; we just assume that we know that
form.

The set of actions is defined as

{ }1 1, ,..., , ,m mM NOOPµ µ µ µ+ − + −= (8)

82 Nasir Ali and Huma Rehman Baig

Bellman equation:

 (3)

where Vt+1(si) is the value of state si at iteration
t+1. R(si) is the immediate reward of state si. T
(sj |μk, si) is the probability of transitioning from
state si to sj by executing action μk. Value iterations
converge and one can bind the number of iterations
(Itr) to reach an error bound of ε as:

Here ε is the required tolerance of the solution
satisfying,

The inequality (5) is ensured by

The computational complexity of value iteration
is of the order O(N2k), where, N is the number of
states and k is the number of actions in the MDP.
As described in the book by Kumar and Varaiya
[8], Equation (3) converges to a unique solution.
The solution of Equation (3) achieves its maximum
value of the right-hand side in Equation (1). If the
policy is calculated using (2) with a solution of
(3), it will be optimal concerning (1). One of the
algorithms to solve (3) and find an optimal policy
from (2) is called value iteration; it is shown in Fig.
1.

3. STOCHASTIC ROOT FINDING
 FORMULATION

In this section, we formulate the MDP models for
the two problems discussed in Section 1.

3.1 Known Action and Unknown Function

The objective of root finding in this subsection is
to achieve | f | < ε where f is a function of three
variables, i.e., known but uncontrollable variable p,
known and controllable variable u, and unknown
and uncontrollable variable h. For stochastic root-
finding formulation where the function f is not
measurable (due to h) and actions of changing u
have a deterministic effect on u, the states of the
MDP are defined as:

 (7)

where, Bi is the binary flag in state si indicating
whether or not | f | < ε (B = 0 when | f | < ε). Also
qi indicates how many steps have passed since
| f | < ε. All the states with qi = n are considered
as failed states and are absorbing, i.e., no action is
available from these states. P and U are finite sets
of discrete values that variables p and u can take.
Note that, we do not assume any particular property
about the form of the function f; we just assume that
we know that form.

The set of actions is defined as

where µ+i increases u by the amount defined by
increment step i. Similarly, µ-i decreases u by the
amount defined by decrement step i. There is also
a NOOP action for the situations where we do not
wish to change u.

The reward function for the problem is defined as:

here, the reward is a negative exponential of a
penalty function that increases with a decreasing
number of allowable time steps (n - q).

The transition probabilities are computed from the
distribution of h.

Stochastic Root Finding with Markov Decision Process

 3

bounded from above and below. The policy that
selects the optimal action may be found as:

()* () arg max , (| ,) () .i k i j k i j
k j S

Pol s R s T s s V sµ γ µ
∈

∈ +

∑

 (2)

There is a direct relationship between the value
of a state and the values of all the states that can be
reached from that state in a single optimal action.
This relationship can be expressed using the Bellman
equation:

1() () max (| ,) ()t i i j k i t jk j S
V s R s T s s V sγ µ+

∈

= +

∑

(3)

where Vt+1(si) is the value of state si at iteration
t+1. R(si) is the immediate reward of state si. T (sj |μk,
si) is the probability of transitioning from state si to sj
by executing action μk. Value iterations converge and
one can bind the number of iterations (Itr) to reach
an error bound of ε as:

max2 1log / log .
(1)

R
Itr

γ ε γ

= −
 (4)

Here ε is the required tolerance of the solution
satisfying,

1() () , .t i iV V iς ς ε+ − < ∀ (5)

The inequality (5) is ensured by

1
1() () .t i t iV V γς ς ε
γ+

 −
− <

 (6)

The computational complexity of value iteration
is of the order O(N2k), where, N is the number of
states and k is the number of actions in the MDP. As
described in the book by Kumar and Varaiya [8],
Equation (3) converges to a unique solution. The
solution of Equation (3) achieves its maximum value
of the right-hand side in Equation (1). If the policy is
calculated using (2) with a solution of (3), it will be
optimal concerning (1). One of the algorithms to
solve (3) and find an optimal policy from (2) is
called value iteration; it is shown in Fig. 1.

Fig. 1. Value Iteration Algorithm

3. STOCHASTIC ROOT FINDING
FORMULATION

In this section, we formulate the MDP models for the
two problems discussed in Section 1.

3.1 Known Action and Unknown Function

The objective of root finding in this subsection is to
achieve | f | < ε where f is a function of three
variables, i.e., known but uncontrollable variable p,
known and controllable variable u, and unknown and
uncontrollable variable h. For stochastic root-finding
formulation where the function f is not measurable
(due to h) and actions of changing u have a
deterministic effect on u, the states of the MDP are
defined as,

{ }

{ }
{ } { }

1 2, ,...,
,

, , ,

, , 0,1 , 1, 2,...,

N

i i i i i

i i i i

S s s s
where
s p u B q

p P u U B q n

=

=

∈ ∈ ∈ ∈

 (7)

where, Bi is the binary flag in state si indicating
whether or not | f | < ε (B = 0 when | f | < ε). Also qi
indicates how many steps have passed since | f | < ε.
All the states with qi = n are considered as failed
states and are absorbing, i.e., no action is available
from these states. P and U are finite sets of discrete
values that variables p and u can take. Note that, we
do not assume any particular property about the form
of the function f; we just assume that we know that
form.

The set of actions is defined as

{ }1 1, ,..., , ,m mM NOOPµ µ µ µ+ − + −= (8)

Stochastic Root Finding with Markov Decision Process

 3

bounded from above and below. The policy that
selects the optimal action may be found as:

()* () arg max , (| ,) () .i k i j k i j
k j S

Pol s R s T s s V sµ γ µ
∈

∈ +

∑

 (2)

There is a direct relationship between the value
of a state and the values of all the states that can be
reached from that state in a single optimal action.
This relationship can be expressed using the Bellman
equation:

1() () max (| ,) ()t i i j k i t jk j S
V s R s T s s V sγ µ+

∈

= +

∑

(3)

where Vt+1(si) is the value of state si at iteration
t+1. R(si) is the immediate reward of state si. T (sj |μk,
si) is the probability of transitioning from state si to sj
by executing action μk. Value iterations converge and
one can bind the number of iterations (Itr) to reach
an error bound of ε as:

max2 1log / log .
(1)

R
Itr

γ ε γ

= −
 (4)

Here ε is the required tolerance of the solution
satisfying,

1() () , .t i iV V iς ς ε+ − < ∀ (5)

The inequality (5) is ensured by

1
1() () .t i t iV V γς ς ε
γ+

 −
− <

 (6)

The computational complexity of value iteration
is of the order O(N2k), where, N is the number of
states and k is the number of actions in the MDP. As
described in the book by Kumar and Varaiya [8],
Equation (3) converges to a unique solution. The
solution of Equation (3) achieves its maximum value
of the right-hand side in Equation (1). If the policy is
calculated using (2) with a solution of (3), it will be
optimal concerning (1). One of the algorithms to
solve (3) and find an optimal policy from (2) is
called value iteration; it is shown in Fig. 1.

Fig. 1. Value Iteration Algorithm

3. STOCHASTIC ROOT FINDING
FORMULATION

In this section, we formulate the MDP models for the
two problems discussed in Section 1.

3.1 Known Action and Unknown Function

The objective of root finding in this subsection is to
achieve | f | < ε where f is a function of three
variables, i.e., known but uncontrollable variable p,
known and controllable variable u, and unknown and
uncontrollable variable h. For stochastic root-finding
formulation where the function f is not measurable
(due to h) and actions of changing u have a
deterministic effect on u, the states of the MDP are
defined as,

{ }

{ }
{ } { }

1 2, ,...,
,

, , ,

, , 0,1 , 1, 2,...,

N

i i i i i

i i i i

S s s s
where
s p u B q

p P u U B q n

=

=

∈ ∈ ∈ ∈

 (7)

where, Bi is the binary flag in state si indicating
whether or not | f | < ε (B = 0 when | f | < ε). Also qi
indicates how many steps have passed since | f | < ε.
All the states with qi = n are considered as failed
states and are absorbing, i.e., no action is available
from these states. P and U are finite sets of discrete
values that variables p and u can take. Note that, we
do not assume any particular property about the form
of the function f; we just assume that we know that
form.

The set of actions is defined as

{ }1 1, ,..., , ,m mM NOOPµ µ µ µ+ − + −= (8)

Stochastic Root Finding with Markov Decision Process

 3

bounded from above and below. The policy that
selects the optimal action may be found as:

()* () arg max , (| ,) () .i k i j k i j
k j S

Pol s R s T s s V sµ γ µ
∈

∈ +

∑

 (2)

There is a direct relationship between the value
of a state and the values of all the states that can be
reached from that state in a single optimal action.
This relationship can be expressed using the Bellman
equation:

1() () max (| ,) ()t i i j k i t jk j S
V s R s T s s V sγ µ+

∈

= +

∑

(3)

where Vt+1(si) is the value of state si at iteration
t+1. R(si) is the immediate reward of state si. T (sj |μk,
si) is the probability of transitioning from state si to sj
by executing action μk. Value iterations converge and
one can bind the number of iterations (Itr) to reach
an error bound of ε as:

max2 1log / log .
(1)

R
Itr

γ ε γ

= −
 (4)

Here ε is the required tolerance of the solution
satisfying,

1() () , .t i iV V iς ς ε+ − < ∀ (5)

The inequality (5) is ensured by

1
1() () .t i t iV V γς ς ε
γ+

 −
− <

 (6)

The computational complexity of value iteration
is of the order O(N2k), where, N is the number of
states and k is the number of actions in the MDP. As
described in the book by Kumar and Varaiya [8],
Equation (3) converges to a unique solution. The
solution of Equation (3) achieves its maximum value
of the right-hand side in Equation (1). If the policy is
calculated using (2) with a solution of (3), it will be
optimal concerning (1). One of the algorithms to
solve (3) and find an optimal policy from (2) is
called value iteration; it is shown in Fig. 1.

Fig. 1. Value Iteration Algorithm

3. STOCHASTIC ROOT FINDING
FORMULATION

In this section, we formulate the MDP models for the
two problems discussed in Section 1.

3.1 Known Action and Unknown Function

The objective of root finding in this subsection is to
achieve | f | < ε where f is a function of three
variables, i.e., known but uncontrollable variable p,
known and controllable variable u, and unknown and
uncontrollable variable h. For stochastic root-finding
formulation where the function f is not measurable
(due to h) and actions of changing u have a
deterministic effect on u, the states of the MDP are
defined as,

{ }

{ }
{ } { }

1 2, ,...,
,

, , ,

, , 0,1 , 1, 2,...,

N

i i i i i

i i i i

S s s s
where
s p u B q

p P u U B q n

=

=

∈ ∈ ∈ ∈

 (7)

where, Bi is the binary flag in state si indicating
whether or not | f | < ε (B = 0 when | f | < ε). Also qi
indicates how many steps have passed since | f | < ε.
All the states with qi = n are considered as failed
states and are absorbing, i.e., no action is available
from these states. P and U are finite sets of discrete
values that variables p and u can take. Note that, we
do not assume any particular property about the form
of the function f; we just assume that we know that
form.

The set of actions is defined as

{ }1 1, ,..., , ,m mM NOOPµ µ µ µ+ − + −= (8)

Stochastic Root Finding with Markov Decision Process

 3

bounded from above and below. The policy that
selects the optimal action may be found as:

()* () arg max , (| ,) () .i k i j k i j
k j S

Pol s R s T s s V sµ γ µ
∈

∈ +

∑

 (2)

There is a direct relationship between the value
of a state and the values of all the states that can be
reached from that state in a single optimal action.
This relationship can be expressed using the Bellman
equation:

1() () max (| ,) ()t i i j k i t jk j S
V s R s T s s V sγ µ+

∈

= +

∑

(3)

where Vt+1(si) is the value of state si at iteration
t+1. R(si) is the immediate reward of state si. T (sj |μk,
si) is the probability of transitioning from state si to sj
by executing action μk. Value iterations converge and
one can bind the number of iterations (Itr) to reach
an error bound of ε as:

max2 1log / log .
(1)

R
Itr

γ ε γ

= −
 (4)

Here ε is the required tolerance of the solution
satisfying,

1() () , .t i iV V iς ς ε+ − < ∀ (5)

The inequality (5) is ensured by

1
1() () .t i t iV V γς ς ε
γ+

 −
− <

 (6)

The computational complexity of value iteration
is of the order O(N2k), where, N is the number of
states and k is the number of actions in the MDP. As
described in the book by Kumar and Varaiya [8],
Equation (3) converges to a unique solution. The
solution of Equation (3) achieves its maximum value
of the right-hand side in Equation (1). If the policy is
calculated using (2) with a solution of (3), it will be
optimal concerning (1). One of the algorithms to
solve (3) and find an optimal policy from (2) is
called value iteration; it is shown in Fig. 1.

Fig. 1. Value Iteration Algorithm

3. STOCHASTIC ROOT FINDING
FORMULATION

In this section, we formulate the MDP models for the
two problems discussed in Section 1.

3.1 Known Action and Unknown Function

The objective of root finding in this subsection is to
achieve | f | < ε where f is a function of three
variables, i.e., known but uncontrollable variable p,
known and controllable variable u, and unknown and
uncontrollable variable h. For stochastic root-finding
formulation where the function f is not measurable
(due to h) and actions of changing u have a
deterministic effect on u, the states of the MDP are
defined as,

{ }

{ }
{ } { }

1 2, ,...,
,

, , ,

, , 0,1 , 1, 2,...,

N

i i i i i

i i i i

S s s s
where
s p u B q

p P u U B q n

=

=

∈ ∈ ∈ ∈

 (7)

where, Bi is the binary flag in state si indicating
whether or not | f | < ε (B = 0 when | f | < ε). Also qi
indicates how many steps have passed since | f | < ε.
All the states with qi = n are considered as failed
states and are absorbing, i.e., no action is available
from these states. P and U are finite sets of discrete
values that variables p and u can take. Note that, we
do not assume any particular property about the form
of the function f; we just assume that we know that
form.

The set of actions is defined as

{ }1 1, ,..., , ,m mM NOOPµ µ µ µ+ − + −= (8)

Stochastic Root Finding with Markov Decision Process

 3

bounded from above and below. The policy that
selects the optimal action may be found as:

()* () arg max , (| ,) () .i k i j k i j
k j S

Pol s R s T s s V sµ γ µ
∈

∈ +

∑

 (2)

There is a direct relationship between the value
of a state and the values of all the states that can be
reached from that state in a single optimal action.
This relationship can be expressed using the Bellman
equation:

1() () max (| ,) ()t i i j k i t jk j S
V s R s T s s V sγ µ+

∈

= +

∑

(3)

where Vt+1(si) is the value of state si at iteration
t+1. R(si) is the immediate reward of state si. T (sj |μk,
si) is the probability of transitioning from state si to sj
by executing action μk. Value iterations converge and
one can bind the number of iterations (Itr) to reach
an error bound of ε as:

max2 1log / log .
(1)

R
Itr

γ ε γ

= −
 (4)

Here ε is the required tolerance of the solution
satisfying,

1() () , .t i iV V iς ς ε+ − < ∀ (5)

The inequality (5) is ensured by

1
1() () .t i t iV V γς ς ε
γ+

 −
− <

 (6)

The computational complexity of value iteration
is of the order O(N2k), where, N is the number of
states and k is the number of actions in the MDP. As
described in the book by Kumar and Varaiya [8],
Equation (3) converges to a unique solution. The
solution of Equation (3) achieves its maximum value
of the right-hand side in Equation (1). If the policy is
calculated using (2) with a solution of (3), it will be
optimal concerning (1). One of the algorithms to
solve (3) and find an optimal policy from (2) is
called value iteration; it is shown in Fig. 1.

Fig. 1. Value Iteration Algorithm

3. STOCHASTIC ROOT FINDING
FORMULATION

In this section, we formulate the MDP models for the
two problems discussed in Section 1.

3.1 Known Action and Unknown Function

The objective of root finding in this subsection is to
achieve | f | < ε where f is a function of three
variables, i.e., known but uncontrollable variable p,
known and controllable variable u, and unknown and
uncontrollable variable h. For stochastic root-finding
formulation where the function f is not measurable
(due to h) and actions of changing u have a
deterministic effect on u, the states of the MDP are
defined as,

{ }

{ }
{ } { }

1 2, ,...,
,

, , ,

, , 0,1 , 1, 2,...,

N

i i i i i

i i i i

S s s s
where
s p u B q

p P u U B q n

=

=

∈ ∈ ∈ ∈

 (7)

where, Bi is the binary flag in state si indicating
whether or not | f | < ε (B = 0 when | f | < ε). Also qi
indicates how many steps have passed since | f | < ε.
All the states with qi = n are considered as failed
states and are absorbing, i.e., no action is available
from these states. P and U are finite sets of discrete
values that variables p and u can take. Note that, we
do not assume any particular property about the form
of the function f; we just assume that we know that
form.

The set of actions is defined as

{ }1 1, ,..., , ,m mM NOOPµ µ µ µ+ − + −= (8)

Stochastic Root Finding with Markov Decision Process

 3

bounded from above and below. The policy that
selects the optimal action may be found as:

()* () arg max , (| ,) () .i k i j k i j
k j S

Pol s R s T s s V sµ γ µ
∈

∈ +

∑

 (2)

There is a direct relationship between the value
of a state and the values of all the states that can be
reached from that state in a single optimal action.
This relationship can be expressed using the Bellman
equation:

1() () max (| ,) ()t i i j k i t jk j S
V s R s T s s V sγ µ+

∈

= +

∑

(3)

where Vt+1(si) is the value of state si at iteration
t+1. R(si) is the immediate reward of state si. T (sj |μk,
si) is the probability of transitioning from state si to sj
by executing action μk. Value iterations converge and
one can bind the number of iterations (Itr) to reach
an error bound of ε as:

max2 1log / log .
(1)

R
Itr

γ ε γ

= −
 (4)

Here ε is the required tolerance of the solution
satisfying,

1() () , .t i iV V iς ς ε+ − < ∀ (5)

The inequality (5) is ensured by

1
1() () .t i t iV V γς ς ε
γ+

 −
− <

 (6)

The computational complexity of value iteration
is of the order O(N2k), where, N is the number of
states and k is the number of actions in the MDP. As
described in the book by Kumar and Varaiya [8],
Equation (3) converges to a unique solution. The
solution of Equation (3) achieves its maximum value
of the right-hand side in Equation (1). If the policy is
calculated using (2) with a solution of (3), it will be
optimal concerning (1). One of the algorithms to
solve (3) and find an optimal policy from (2) is
called value iteration; it is shown in Fig. 1.

Fig. 1. Value Iteration Algorithm

3. STOCHASTIC ROOT FINDING
FORMULATION

In this section, we formulate the MDP models for the
two problems discussed in Section 1.

3.1 Known Action and Unknown Function

The objective of root finding in this subsection is to
achieve | f | < ε where f is a function of three
variables, i.e., known but uncontrollable variable p,
known and controllable variable u, and unknown and
uncontrollable variable h. For stochastic root-finding
formulation where the function f is not measurable
(due to h) and actions of changing u have a
deterministic effect on u, the states of the MDP are
defined as,

{ }

{ }
{ } { }

1 2, ,...,
,

, , ,

, , 0,1 , 1, 2,...,

N

i i i i i

i i i i

S s s s
where
s p u B q

p P u U B q n

=

=

∈ ∈ ∈ ∈

 (7)

where, Bi is the binary flag in state si indicating
whether or not | f | < ε (B = 0 when | f | < ε). Also qi
indicates how many steps have passed since | f | < ε.
All the states with qi = n are considered as failed
states and are absorbing, i.e., no action is available
from these states. P and U are finite sets of discrete
values that variables p and u can take. Note that, we
do not assume any particular property about the form
of the function f; we just assume that we know that
form.

The set of actions is defined as

{ }1 1, ,..., , ,m mM NOOPµ µ µ µ+ − + −= (8)

Stochastic Root Finding with Markov Decision Process

 3

bounded from above and below. The policy that
selects the optimal action may be found as:

()* () arg max , (| ,) () .i k i j k i j
k j S

Pol s R s T s s V sµ γ µ
∈

∈ +

∑

 (2)

There is a direct relationship between the value
of a state and the values of all the states that can be
reached from that state in a single optimal action.
This relationship can be expressed using the Bellman
equation:

1() () max (| ,) ()t i i j k i t jk j S
V s R s T s s V sγ µ+

∈

= +

∑

(3)

where Vt+1(si) is the value of state si at iteration
t+1. R(si) is the immediate reward of state si. T (sj |μk,
si) is the probability of transitioning from state si to sj
by executing action μk. Value iterations converge and
one can bind the number of iterations (Itr) to reach
an error bound of ε as:

max2 1log / log .
(1)

R
Itr

γ ε γ

= −
 (4)

Here ε is the required tolerance of the solution
satisfying,

1() () , .t i iV V iς ς ε+ − < ∀ (5)

The inequality (5) is ensured by

1
1() () .t i t iV V γς ς ε
γ+

 −
− <

 (6)

The computational complexity of value iteration
is of the order O(N2k), where, N is the number of
states and k is the number of actions in the MDP. As
described in the book by Kumar and Varaiya [8],
Equation (3) converges to a unique solution. The
solution of Equation (3) achieves its maximum value
of the right-hand side in Equation (1). If the policy is
calculated using (2) with a solution of (3), it will be
optimal concerning (1). One of the algorithms to
solve (3) and find an optimal policy from (2) is
called value iteration; it is shown in Fig. 1.

Fig. 1. Value Iteration Algorithm

3. STOCHASTIC ROOT FINDING
FORMULATION

In this section, we formulate the MDP models for the
two problems discussed in Section 1.

3.1 Known Action and Unknown Function

The objective of root finding in this subsection is to
achieve | f | < ε where f is a function of three
variables, i.e., known but uncontrollable variable p,
known and controllable variable u, and unknown and
uncontrollable variable h. For stochastic root-finding
formulation where the function f is not measurable
(due to h) and actions of changing u have a
deterministic effect on u, the states of the MDP are
defined as,

{ }

{ }
{ } { }

1 2, ,...,
,

, , ,

, , 0,1 , 1, 2,...,

N

i i i i i

i i i i

S s s s
where
s p u B q

p P u U B q n

=

=

∈ ∈ ∈ ∈

 (7)

where, Bi is the binary flag in state si indicating
whether or not | f | < ε (B = 0 when | f | < ε). Also qi
indicates how many steps have passed since | f | < ε.
All the states with qi = n are considered as failed
states and are absorbing, i.e., no action is available
from these states. P and U are finite sets of discrete
values that variables p and u can take. Note that, we
do not assume any particular property about the form
of the function f; we just assume that we know that
form.

The set of actions is defined as

{ }1 1, ,..., , ,m mM NOOPµ µ µ µ+ − + −= (8)

Nasir Ali and Huma Rehman Baig

4

where µ+i increases u by the amount defined by
increment step i. Similarly, µ-i decreases u by the
amount defined by decrement step i. There is also a
NOOP action for the situations where we do not
wish to change u.

The reward function for the problem is defined
as,

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐵𝐵𝑖𝑖𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖: 𝑞𝑞𝑖𝑖 < 𝑛𝑛
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

 (9)

here, the reward is a negative exponential of a
penalty function that increases with a decreasing
number of allowable time steps (n - q).

The transition probabilities are computed from
the distribution of h.

𝑇𝑇�𝑠𝑠𝑖𝑖 , 𝜇𝜇𝑘𝑘 , 𝑠𝑠𝑗𝑗�

= �
𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒: 𝐵𝐵𝑗𝑗 = 0,𝑞𝑞𝑗𝑗 = 1

1 − 𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒:𝐵𝐵𝑗𝑗 = 1,𝑞𝑞𝑗𝑗 = 𝑞𝑞𝑖𝑖 + 1

(10)

T(si,µk,sj) represents the transition function from
state si to state sj when action µk is applied. Here, δ1
and δ2 are computed from the functional form of
f(p,u,h) to find the range of h such that | f | < ε. Also,
the above equation is for the states si other than the
failure states, i.e., qi < n in Equation (10). Finally,
the values of p and u in the next state sj in Equation
(10) are such that pj = pi and uj = ui + µk.

With the above formulation, we can use values
iteration to find the optimal policy for adjusting u.
next we discuss a slightly different formulation for a
similar problem with a different point of view.

3.2 Known Function and Unknown Action

The objective of root finding in this subsection is to
achieve | f | < ε where f is a function of two variables,
i.e., known but uncontrollable variable p and
controllable but unknown variable u, here u is
assumed to be a function of h where h is unknown
except for its probability distribution. For the case
where the function is computable but the effects of
changing the control variable are stochastic with a
known distribution, we assume f is of the form f(p,u).
The states can now be defined as

{ }

{ }
{ }

1 2, ,...,
,
, ,

, , 1, 2,...,

N

i i i i

i i i

S s s s
where
s f u q

f F u U q n

=

=

∈ ∈ ∈

 (11)

here, F is a finite set for values of f and all other
symbols have the same meaning as before. The set of
actions remain the same. The reward function is
technically the same but has a slightly different form

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐼𝐼(𝑓𝑓𝑖𝑖≥𝜀𝜀)𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖:𝑞𝑞𝑖𝑖 < 𝑛𝑛

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒
 (12)

here, we have used the indicator function I(x)
which is 1 when x is true and 0 otherwise. The
transition function will now depend upon the
distribution of the effect of actions on variable u.

(), , (| ,)

1 :

1

i k j j i k

j
j

i

T s s P u u u u

if f
q

q otherwise

µ µ µ

ε

+= = = =

 <=
+

 (13)

here, the distribution of u is assumed to be
Markov and known. Similar to Equation (10),
Equation (13) assumes qi < n. since the variable p
does not change during the execution of the action, fj
is computed from fi, ui, and uj.

3.3 Deadlocks and Live Locks

So far in the above formulations, we have not
assumed any specific relation between f and u. All
we know is that f depends upon u. This can lead to
deadlocks and live locks. By deadlocks we mean the
situations where the policy is stuck with one action
and that action is not working (i.e. not ensuring | f | <
ε). By live lock, we mean the situation where the
policy is oscillating between two actions (or more
actions) that are not working. The example of a
deadlock is as follows. Suppose that f =
sin(p)+cos(u)+h, ε = 0.01, p = 0, h = 1, and u = π/2.
Also, suppose that h is uniformly distributed
between -1 and 1. According to the distribution of h,
the best action computed by the MDP could be
NOOP (since h is unknown for the MDP). Hence,
the MDP policy will keep on suggesting NOOP and
the root will never be found. If the NOOP is defined
in such a way that it cannot change f, even, in that

Nasir Ali and Huma Rehman Baig

4

where µ+i increases u by the amount defined by
increment step i. Similarly, µ-i decreases u by the
amount defined by decrement step i. There is also a
NOOP action for the situations where we do not
wish to change u.

The reward function for the problem is defined
as,

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐵𝐵𝑖𝑖𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖: 𝑞𝑞𝑖𝑖 < 𝑛𝑛
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

 (9)

here, the reward is a negative exponential of a
penalty function that increases with a decreasing
number of allowable time steps (n - q).

The transition probabilities are computed from
the distribution of h.

𝑇𝑇�𝑠𝑠𝑖𝑖 , 𝜇𝜇𝑘𝑘 , 𝑠𝑠𝑗𝑗�

= �
𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒: 𝐵𝐵𝑗𝑗 = 0,𝑞𝑞𝑗𝑗 = 1

1 − 𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒:𝐵𝐵𝑗𝑗 = 1,𝑞𝑞𝑗𝑗 = 𝑞𝑞𝑖𝑖 + 1

(10)

T(si,µk,sj) represents the transition function from
state si to state sj when action µk is applied. Here, δ1
and δ2 are computed from the functional form of
f(p,u,h) to find the range of h such that | f | < ε. Also,
the above equation is for the states si other than the
failure states, i.e., qi < n in Equation (10). Finally,
the values of p and u in the next state sj in Equation
(10) are such that pj = pi and uj = ui + µk.

With the above formulation, we can use values
iteration to find the optimal policy for adjusting u.
next we discuss a slightly different formulation for a
similar problem with a different point of view.

3.2 Known Function and Unknown Action

The objective of root finding in this subsection is to
achieve | f | < ε where f is a function of two variables,
i.e., known but uncontrollable variable p and
controllable but unknown variable u, here u is
assumed to be a function of h where h is unknown
except for its probability distribution. For the case
where the function is computable but the effects of
changing the control variable are stochastic with a
known distribution, we assume f is of the form f(p,u).
The states can now be defined as

{ }

{ }
{ }

1 2, ,...,
,
, ,

, , 1, 2,...,

N

i i i i

i i i

S s s s
where
s f u q

f F u U q n

=

=

∈ ∈ ∈

 (11)

here, F is a finite set for values of f and all other
symbols have the same meaning as before. The set of
actions remain the same. The reward function is
technically the same but has a slightly different form

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐼𝐼(𝑓𝑓𝑖𝑖≥𝜀𝜀)𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖:𝑞𝑞𝑖𝑖 < 𝑛𝑛

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒
 (12)

here, we have used the indicator function I(x)
which is 1 when x is true and 0 otherwise. The
transition function will now depend upon the
distribution of the effect of actions on variable u.

(), , (| ,)

1 :

1

i k j j i k

j
j

i

T s s P u u u u

if f
q

q otherwise

µ µ µ

ε

+= = = =

 <=
+

 (13)

here, the distribution of u is assumed to be
Markov and known. Similar to Equation (10),
Equation (13) assumes qi < n. since the variable p
does not change during the execution of the action, fj
is computed from fi, ui, and uj.

3.3 Deadlocks and Live Locks

So far in the above formulations, we have not
assumed any specific relation between f and u. All
we know is that f depends upon u. This can lead to
deadlocks and live locks. By deadlocks we mean the
situations where the policy is stuck with one action
and that action is not working (i.e. not ensuring | f | <
ε). By live lock, we mean the situation where the
policy is oscillating between two actions (or more
actions) that are not working. The example of a
deadlock is as follows. Suppose that f =
sin(p)+cos(u)+h, ε = 0.01, p = 0, h = 1, and u = π/2.
Also, suppose that h is uniformly distributed
between -1 and 1. According to the distribution of h,
the best action computed by the MDP could be
NOOP (since h is unknown for the MDP). Hence,
the MDP policy will keep on suggesting NOOP and
the root will never be found. If the NOOP is defined
in such a way that it cannot change f, even, in that

Nasir Ali and Huma Rehman Baig

4

where µ+i increases u by the amount defined by
increment step i. Similarly, µ-i decreases u by the
amount defined by decrement step i. There is also a
NOOP action for the situations where we do not
wish to change u.

The reward function for the problem is defined
as,

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐵𝐵𝑖𝑖𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖: 𝑞𝑞𝑖𝑖 < 𝑛𝑛
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

 (9)

here, the reward is a negative exponential of a
penalty function that increases with a decreasing
number of allowable time steps (n - q).

The transition probabilities are computed from
the distribution of h.

𝑇𝑇�𝑠𝑠𝑖𝑖 , 𝜇𝜇𝑘𝑘 , 𝑠𝑠𝑗𝑗�

= �
𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒: 𝐵𝐵𝑗𝑗 = 0,𝑞𝑞𝑗𝑗 = 1

1 − 𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒:𝐵𝐵𝑗𝑗 = 1,𝑞𝑞𝑗𝑗 = 𝑞𝑞𝑖𝑖 + 1

(10)

T(si,µk,sj) represents the transition function from
state si to state sj when action µk is applied. Here, δ1
and δ2 are computed from the functional form of
f(p,u,h) to find the range of h such that | f | < ε. Also,
the above equation is for the states si other than the
failure states, i.e., qi < n in Equation (10). Finally,
the values of p and u in the next state sj in Equation
(10) are such that pj = pi and uj = ui + µk.

With the above formulation, we can use values
iteration to find the optimal policy for adjusting u.
next we discuss a slightly different formulation for a
similar problem with a different point of view.

3.2 Known Function and Unknown Action

The objective of root finding in this subsection is to
achieve | f | < ε where f is a function of two variables,
i.e., known but uncontrollable variable p and
controllable but unknown variable u, here u is
assumed to be a function of h where h is unknown
except for its probability distribution. For the case
where the function is computable but the effects of
changing the control variable are stochastic with a
known distribution, we assume f is of the form f(p,u).
The states can now be defined as

{ }

{ }
{ }

1 2, ,...,
,
, ,

, , 1, 2,...,

N

i i i i

i i i

S s s s
where
s f u q

f F u U q n

=

=

∈ ∈ ∈

 (11)

here, F is a finite set for values of f and all other
symbols have the same meaning as before. The set of
actions remain the same. The reward function is
technically the same but has a slightly different form

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐼𝐼(𝑓𝑓𝑖𝑖≥𝜀𝜀)𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖:𝑞𝑞𝑖𝑖 < 𝑛𝑛

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒
 (12)

here, we have used the indicator function I(x)
which is 1 when x is true and 0 otherwise. The
transition function will now depend upon the
distribution of the effect of actions on variable u.

(), , (| ,)

1 :

1

i k j j i k

j
j

i

T s s P u u u u

if f
q

q otherwise

µ µ µ

ε

+= = = =

 <=
+

 (13)

here, the distribution of u is assumed to be
Markov and known. Similar to Equation (10),
Equation (13) assumes qi < n. since the variable p
does not change during the execution of the action, fj
is computed from fi, ui, and uj.

3.3 Deadlocks and Live Locks

So far in the above formulations, we have not
assumed any specific relation between f and u. All
we know is that f depends upon u. This can lead to
deadlocks and live locks. By deadlocks we mean the
situations where the policy is stuck with one action
and that action is not working (i.e. not ensuring | f | <
ε). By live lock, we mean the situation where the
policy is oscillating between two actions (or more
actions) that are not working. The example of a
deadlock is as follows. Suppose that f =
sin(p)+cos(u)+h, ε = 0.01, p = 0, h = 1, and u = π/2.
Also, suppose that h is uniformly distributed
between -1 and 1. According to the distribution of h,
the best action computed by the MDP could be
NOOP (since h is unknown for the MDP). Hence,
the MDP policy will keep on suggesting NOOP and
the root will never be found. If the NOOP is defined
in such a way that it cannot change f, even, in that

 Stochastic Root Finding with Markov Decision Process 83

T(si,µk,sj) represents the transition function from
state si to state sj when action µk is applied. Here,
δ1 and δ2 are computed from the functional form of
f(p,u,h) to find the range of h such that | f | < ε. Also,
the above equation is for the states si other than the
failure states, i.e., qi < n in Equation (10). Finally,
the values of p and u in the next state sj in Equation
(10) are such that pj = pi and uj = ui + uk.

With the above formulation, we can use values
iteration to find the optimal policy for adjusting u.
next we discuss a slightly different formulation for
a similar problem with a different point of view.

3.2 Known Function and Unknown Action

The objective of root finding in this subsection
is to achieve | f | < ε where f is a function of two
variables, i.e., known but uncontrollable variable p
and controllable but unknown variable u, here u is
assumed to be a function of h where h is unknown
except for its probability distribution. For the case
where the function is computable but the effects of
changing the control variable are stochastic with
a known distribution, we assume f is of the form
f(p,u). The states can now be defined as:

here, F is a finite set for values of f and all other
symbols have the same meaning as before. The set
of actions remain the same. The reward function
is technically the same but has a slightly different
form:

here, we have used the indicator function
I(x) which is 1 when x is true and 0 otherwise.
The transition function will now depend upon the
distribution of the effect of actions on variable u.

here, the distribution of u is assumed to be
Markov and known. Similar to Equation (10),

Equation (13) assumes qi < n. since the variable p
does not change during the execution of the action,
fj is computed from fi, ui, and uj.

3.3 Deadlocks and Live Locks

So far in the above formulations, we have not
assumed any specific relation between f and u.
All we know is that f depends upon u. This can
lead to deadlocks and live locks. By deadlocks
we mean the situations where the policy is stuck
with one action and that action is not working (i.e.
not ensuring | f | < ε). By live lock, we mean the
situation where the policy is oscillating between
two actions (or more actions) that are not working.
The example of a deadlock is as follows. Suppose
that f = sin(p)+cos(u)+h, ε = 0.01, p = 0, h = 1, and
u = π/2. Also, suppose that h is uniformly distributed
between -1 and 1. According to the distribution of
h, the best action computed by the MDP could be
NOOP (since h is unknown for the MDP). Hence,
the MDP policy will keep on suggesting NOOP
and the root will never be found. If the NOOP is
defined in such a way that it cannot change f, even,
in that case, the policy may only fluctuate between
two best values of u closest to π/2. Similarly, for the
second formulation, if f = sin(p)+cos(u), ε = 0.01,
p = 0, u = π/2-0.1, and distribution of change in
u conditioned upon applied actions is such that a
particular action µ has the highest probability of
increasing µ by 0.1, the MDP policy, in this case,
could keep on applying the action µ and in reality,
it might never change µ at all. Livelock situations
could also arise in both formulations. To avoid
these unwanted situations, MDP needs to have a
record of past actions so that the actions that do
not work may not be tried again. This will increase
the state space depending upon how many values
µ can assume. For example, if µ can take on 10
possible values and we incorporate binary flags for
indicating which of the 10 values have been used in
the past, then the size of the state space will grow
by a factor of 210. We can also incorporate copies
of µ instead of binary flags for each of the finite
number of past actions. For example, if we want to
incorporate the history of the last 3 actions, then we
need 3 copies of variable u in the state space which
will increase the state space by a factor of 103. In
either case, the reward function and the transition
function would have to be adjusted accordingly to
make use of the additional available information in

Nasir Ali and Huma Rehman Baig

4

where µ+i increases u by the amount defined by
increment step i. Similarly, µ-i decreases u by the
amount defined by decrement step i. There is also a
NOOP action for the situations where we do not
wish to change u.

The reward function for the problem is defined
as,

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐵𝐵𝑖𝑖𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖: 𝑞𝑞𝑖𝑖 < 𝑛𝑛
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

 (9)

here, the reward is a negative exponential of a
penalty function that increases with a decreasing
number of allowable time steps (n - q).

The transition probabilities are computed from
the distribution of h.

𝑇𝑇�𝑠𝑠𝑖𝑖 , 𝜇𝜇𝑘𝑘 , 𝑠𝑠𝑗𝑗�

= �
𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒: 𝐵𝐵𝑗𝑗 = 0,𝑞𝑞𝑗𝑗 = 1

1 − 𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒:𝐵𝐵𝑗𝑗 = 1,𝑞𝑞𝑗𝑗 = 𝑞𝑞𝑖𝑖 + 1

(10)

T(si,µk,sj) represents the transition function from
state si to state sj when action µk is applied. Here, δ1
and δ2 are computed from the functional form of
f(p,u,h) to find the range of h such that | f | < ε. Also,
the above equation is for the states si other than the
failure states, i.e., qi < n in Equation (10). Finally,
the values of p and u in the next state sj in Equation
(10) are such that pj = pi and uj = ui + µk.

With the above formulation, we can use values
iteration to find the optimal policy for adjusting u.
next we discuss a slightly different formulation for a
similar problem with a different point of view.

3.2 Known Function and Unknown Action

The objective of root finding in this subsection is to
achieve | f | < ε where f is a function of two variables,
i.e., known but uncontrollable variable p and
controllable but unknown variable u, here u is
assumed to be a function of h where h is unknown
except for its probability distribution. For the case
where the function is computable but the effects of
changing the control variable are stochastic with a
known distribution, we assume f is of the form f(p,u).
The states can now be defined as

{ }

{ }
{ }

1 2, ,...,
,
, ,

, , 1, 2,...,

N

i i i i

i i i

S s s s
where
s f u q

f F u U q n

=

=

∈ ∈ ∈

 (11)

here, F is a finite set for values of f and all other
symbols have the same meaning as before. The set of
actions remain the same. The reward function is
technically the same but has a slightly different form

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐼𝐼(𝑓𝑓𝑖𝑖≥𝜀𝜀)𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖:𝑞𝑞𝑖𝑖 < 𝑛𝑛

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒
 (12)

here, we have used the indicator function I(x)
which is 1 when x is true and 0 otherwise. The
transition function will now depend upon the
distribution of the effect of actions on variable u.

(), , (| ,)

1 :

1

i k j j i k

j
j

i

T s s P u u u u

if f
q

q otherwise

µ µ µ

ε

+= = = =

 <=
+

 (13)

here, the distribution of u is assumed to be
Markov and known. Similar to Equation (10),
Equation (13) assumes qi < n. since the variable p
does not change during the execution of the action, fj
is computed from fi, ui, and uj.

3.3 Deadlocks and Live Locks

So far in the above formulations, we have not
assumed any specific relation between f and u. All
we know is that f depends upon u. This can lead to
deadlocks and live locks. By deadlocks we mean the
situations where the policy is stuck with one action
and that action is not working (i.e. not ensuring | f | <
ε). By live lock, we mean the situation where the
policy is oscillating between two actions (or more
actions) that are not working. The example of a
deadlock is as follows. Suppose that f =
sin(p)+cos(u)+h, ε = 0.01, p = 0, h = 1, and u = π/2.
Also, suppose that h is uniformly distributed
between -1 and 1. According to the distribution of h,
the best action computed by the MDP could be
NOOP (since h is unknown for the MDP). Hence,
the MDP policy will keep on suggesting NOOP and
the root will never be found. If the NOOP is defined
in such a way that it cannot change f, even, in that

Nasir Ali and Huma Rehman Baig

4

where µ+i increases u by the amount defined by
increment step i. Similarly, µ-i decreases u by the
amount defined by decrement step i. There is also a
NOOP action for the situations where we do not
wish to change u.

The reward function for the problem is defined
as,

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐵𝐵𝑖𝑖𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖: 𝑞𝑞𝑖𝑖 < 𝑛𝑛
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

 (9)

here, the reward is a negative exponential of a
penalty function that increases with a decreasing
number of allowable time steps (n - q).

The transition probabilities are computed from
the distribution of h.

𝑇𝑇�𝑠𝑠𝑖𝑖 , 𝜇𝜇𝑘𝑘 , 𝑠𝑠𝑗𝑗�

= �
𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒: 𝐵𝐵𝑗𝑗 = 0,𝑞𝑞𝑗𝑗 = 1

1 − 𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒:𝐵𝐵𝑗𝑗 = 1,𝑞𝑞𝑗𝑗 = 𝑞𝑞𝑖𝑖 + 1

(10)

T(si,µk,sj) represents the transition function from
state si to state sj when action µk is applied. Here, δ1
and δ2 are computed from the functional form of
f(p,u,h) to find the range of h such that | f | < ε. Also,
the above equation is for the states si other than the
failure states, i.e., qi < n in Equation (10). Finally,
the values of p and u in the next state sj in Equation
(10) are such that pj = pi and uj = ui + µk.

With the above formulation, we can use values
iteration to find the optimal policy for adjusting u.
next we discuss a slightly different formulation for a
similar problem with a different point of view.

3.2 Known Function and Unknown Action

The objective of root finding in this subsection is to
achieve | f | < ε where f is a function of two variables,
i.e., known but uncontrollable variable p and
controllable but unknown variable u, here u is
assumed to be a function of h where h is unknown
except for its probability distribution. For the case
where the function is computable but the effects of
changing the control variable are stochastic with a
known distribution, we assume f is of the form f(p,u).
The states can now be defined as

{ }

{ }
{ }

1 2, ,...,
,
, ,

, , 1, 2,...,

N

i i i i

i i i

S s s s
where
s f u q

f F u U q n

=

=

∈ ∈ ∈

 (11)

here, F is a finite set for values of f and all other
symbols have the same meaning as before. The set of
actions remain the same. The reward function is
technically the same but has a slightly different form

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐼𝐼(𝑓𝑓𝑖𝑖≥𝜀𝜀)𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖:𝑞𝑞𝑖𝑖 < 𝑛𝑛

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒
 (12)

here, we have used the indicator function I(x)
which is 1 when x is true and 0 otherwise. The
transition function will now depend upon the
distribution of the effect of actions on variable u.

(), , (| ,)

1 :

1

i k j j i k

j
j

i

T s s P u u u u

if f
q

q otherwise

µ µ µ

ε

+= = = =

 <=
+

 (13)

here, the distribution of u is assumed to be
Markov and known. Similar to Equation (10),
Equation (13) assumes qi < n. since the variable p
does not change during the execution of the action, fj
is computed from fi, ui, and uj.

3.3 Deadlocks and Live Locks

So far in the above formulations, we have not
assumed any specific relation between f and u. All
we know is that f depends upon u. This can lead to
deadlocks and live locks. By deadlocks we mean the
situations where the policy is stuck with one action
and that action is not working (i.e. not ensuring | f | <
ε). By live lock, we mean the situation where the
policy is oscillating between two actions (or more
actions) that are not working. The example of a
deadlock is as follows. Suppose that f =
sin(p)+cos(u)+h, ε = 0.01, p = 0, h = 1, and u = π/2.
Also, suppose that h is uniformly distributed
between -1 and 1. According to the distribution of h,
the best action computed by the MDP could be
NOOP (since h is unknown for the MDP). Hence,
the MDP policy will keep on suggesting NOOP and
the root will never be found. If the NOOP is defined
in such a way that it cannot change f, even, in that

Nasir Ali and Huma Rehman Baig

4

where µ+i increases u by the amount defined by
increment step i. Similarly, µ-i decreases u by the
amount defined by decrement step i. There is also a
NOOP action for the situations where we do not
wish to change u.

The reward function for the problem is defined
as,

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐵𝐵𝑖𝑖𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖: 𝑞𝑞𝑖𝑖 < 𝑛𝑛
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

 (9)

here, the reward is a negative exponential of a
penalty function that increases with a decreasing
number of allowable time steps (n - q).

The transition probabilities are computed from
the distribution of h.

𝑇𝑇�𝑠𝑠𝑖𝑖 , 𝜇𝜇𝑘𝑘 , 𝑠𝑠𝑗𝑗�

= �
𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒: 𝐵𝐵𝑗𝑗 = 0,𝑞𝑞𝑗𝑗 = 1

1 − 𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒:𝐵𝐵𝑗𝑗 = 1,𝑞𝑞𝑗𝑗 = 𝑞𝑞𝑖𝑖 + 1

(10)

T(si,µk,sj) represents the transition function from
state si to state sj when action µk is applied. Here, δ1
and δ2 are computed from the functional form of
f(p,u,h) to find the range of h such that | f | < ε. Also,
the above equation is for the states si other than the
failure states, i.e., qi < n in Equation (10). Finally,
the values of p and u in the next state sj in Equation
(10) are such that pj = pi and uj = ui + µk.

With the above formulation, we can use values
iteration to find the optimal policy for adjusting u.
next we discuss a slightly different formulation for a
similar problem with a different point of view.

3.2 Known Function and Unknown Action

The objective of root finding in this subsection is to
achieve | f | < ε where f is a function of two variables,
i.e., known but uncontrollable variable p and
controllable but unknown variable u, here u is
assumed to be a function of h where h is unknown
except for its probability distribution. For the case
where the function is computable but the effects of
changing the control variable are stochastic with a
known distribution, we assume f is of the form f(p,u).
The states can now be defined as

{ }

{ }
{ }

1 2, ,...,
,
, ,

, , 1, 2,...,

N

i i i i

i i i

S s s s
where
s f u q

f F u U q n

=

=

∈ ∈ ∈

 (11)

here, F is a finite set for values of f and all other
symbols have the same meaning as before. The set of
actions remain the same. The reward function is
technically the same but has a slightly different form

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐼𝐼(𝑓𝑓𝑖𝑖≥𝜀𝜀)𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖:𝑞𝑞𝑖𝑖 < 𝑛𝑛

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒
 (12)

here, we have used the indicator function I(x)
which is 1 when x is true and 0 otherwise. The
transition function will now depend upon the
distribution of the effect of actions on variable u.

(), , (| ,)

1 :

1

i k j j i k

j
j

i

T s s P u u u u

if f
q

q otherwise

µ µ µ

ε

+= = = =

 <=
+

 (13)

here, the distribution of u is assumed to be
Markov and known. Similar to Equation (10),
Equation (13) assumes qi < n. since the variable p
does not change during the execution of the action, fj
is computed from fi, ui, and uj.

3.3 Deadlocks and Live Locks

So far in the above formulations, we have not
assumed any specific relation between f and u. All
we know is that f depends upon u. This can lead to
deadlocks and live locks. By deadlocks we mean the
situations where the policy is stuck with one action
and that action is not working (i.e. not ensuring | f | <
ε). By live lock, we mean the situation where the
policy is oscillating between two actions (or more
actions) that are not working. The example of a
deadlock is as follows. Suppose that f =
sin(p)+cos(u)+h, ε = 0.01, p = 0, h = 1, and u = π/2.
Also, suppose that h is uniformly distributed
between -1 and 1. According to the distribution of h,
the best action computed by the MDP could be
NOOP (since h is unknown for the MDP). Hence,
the MDP policy will keep on suggesting NOOP and
the root will never be found. If the NOOP is defined
in such a way that it cannot change f, even, in that

84 Nasir Ali and Huma Rehman Baig

calculating the policy.

There is a class of problems for which the
deadlocks and live locks do not occur. The problems
of this class exhibit a strictly monotonic relation in
distribution between f and u. For example, if the
conditional distribution of the change in f given
change in u is such that f changes only directly
or only inversely with u and f does not change if
u does not change, then we have a monotonic
relation in distribution between f and u. Additional
information required here is the sign of f. So the
flag B in the earlier formulation should have three
possible values, indicating f > ε, f < -ε, and | f | <
ε. The second formulation where we already know
f, the strictly monotonic relation in conditional
distribution should exist between u and the action
to change u which is the same as the strictly
monotonic conditional distribution between change
in f and deterministic action to change u in the
earlier formulation. This is because in both cases,
we effectively try to change f, but the effect of our
action follows a known distribution. In this sense,
both formulations represent the same problem is
conditional independence. Fortunately, we have a
way to determine conditional independence and
that is the Bayesian network. The Bayesian network
for a single target-neighbor pair is shown in Fig. 2.
There are a few things to note here. First, a target
status is random only when it is submitted to a
neighboring spacecraft for exploration. Otherwise,
an idle target remains idle unless submitted for and
an explored target remains explored indefinitely.
Second, the target status depends only on the
status of the neighboring spacecraft to which it is
submitted and it is independent of the status of all
other neighboring spacecraft. Third, the status of
each neighbor is independent of the status of other
neighbors. Under these considerations, there is one
Bayesian network for each target-neighbor pair.

4. SIMULATION EXAMPLE

In this section, we present a simulation example
for a price control problem where f (p,h(u)) is the
difference between production p and demand h.
Our control variable is price u that is assumed to
have indirect but strictly monotonic stochastic
relation with the demand, i.e., the demand increases
when the price is reduced and vice versa but the
increase or decrease in demand follows a known

distribution. Also, if the price does not change, the
demand does not change with probability 1. The
state space is represented as:

Note that the value of f ranges between -10
and 10 in the above equation. The value of the
controllable variable u ranges from 1 to 5 with
the smallest possible increment of 0.1, i.e., u can
assume values such as 1, 1.1, 1.2, and up to so on 5.
Finally, the number of steps (q) ranges from 1 to 6.
The action space is defined as:

Equation (15) presents 13 possible actions
where the smallest possible nonzero change in u is
0.1 and the largest possible change in u is 4. Note
that these actions are context-dependent, i.e., if u
is already equal to 5 in the current state, then any
action requiring a positive change in u shall result
in NOOP. Similarly, reduction in u is not allowed
when u is at its minimum value. The reward
function is represented by Equation (12) with
n = 6. To avoid big transitions in u, we also used a
cost function where the cost of changing the price
was proportional to the magnitude of the change.

Stochastic Root Finding with Markov Decision Process

 5

case, the policy may only fluctuate between two best
values of u closest to π/2. Similarly, for the second
formulation, if f = sin(p)+cos(u), ε = 0.01, p = 0, u =
π/2-0.1, and distribution of change in u conditioned
upon applied actions is such that a particular action µ
has the highest probability of increasing u by 0.1, the
MDP policy, in this case, could keep on applying the
action µ and in reality, it might never change u at all.
Livelock situations could also arise in both
formulations. To avoid these unwanted situations,
MDP needs to have a record of past actions so that
the actions that do not work may not be tried again.
This will increase the state space depending upon
how many values u can assume. For example, if u
can take on 10 possible values and we incorporate
binary flags for indicating which of the 10 values
have been used in the past, then the size of the state
space will grow by a factor of 210. We can also
incorporate copies of u instead of binary flags for
each of the finite number of past actions. For
example, if we want to incorporate the history of the
last 3 actions, then we need 3 copies of variable u in
the state space which will increase the state space by
a factor of 103. In either case, the reward function
and the transition function would have to be adjusted
accordingly to make use of the additional available
information in calculating the policy.

There is a class of problems for which the
deadlocks and live locks do not occur. The problems
of this class exhibit a strictly monotonic relation in
distribution between f and u. For example, if the
conditional distribution of the change in f given
change in u is such that f changes only directly or
only inversely with u and f does not change if u does
not change, then we have a monotonic relation in
distribution between f and u. Additional information
required here is the sign of f. So the flag B in the
earlier formulation should have three possible
values, indicating f > ε, f < -ε, and | f | < ε. The
second formulation where we already know f, the
strictly monotonic relation in conditional distribution
should exist between u and the action to change u
which is the same as the strictly monotonic
conditional distribution between change in f and
deterministic action to change u in the earlier

formulation. This is because in both cases, we
effectively try to change f, but the effect of our
action follows a known distribution. In this sense,
both formulations represent the same problem is
conditional independence. Fortunately, we have a
way to determine conditional independence and that
is the Bayesian network. The Bayesian network for a
single target-neighbor pair is shown in Fig. 2. There
are a few things to note here. First, a target status is
random only when it is submitted to a neighboring
spacecraft for exploration. Otherwise, an idle target
remains idle unless submitted for and an explored
target remains explored indefinitely. Second, the
target status depends only on the status of the
neighboring spacecraft to which it is submitted and it
is independent of the status of all other neighboring
spacecraft. Third, the status of each neighbor is
independent of the status of other neighbors. Under
these considerations, there is one Bayesian network
for each target-neighbor pair.

Fig. 2. Conditional Distribution of Change in f given
Initial value of f and Change in u.

4. SIMULATION EXAMPLE

In this section, we present a simulation example for a
price control problem where f (p,h(u)) is the
difference between production p and demand h. Our
control variable is price u that is assumed to have
indirect but strictly monotonic stochastic relation
with the demand, i.e., the demand increases when the
price is reduced and vice versa but the increase or
decrease in demand follows a known distribution.

-5 0 5 10
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

fj

P
(f + =

 f j|m
u,

f i)

PHI(mu,fi) = 0, r = 16

Nasir Ali and Huma Rehman Baig

6

Also, if the price does not change, the demand does
not change with probability 1. The state space is
represented as

{ }

{ }

1 2, ,...,
,
, ,

[10 :10], [1: 0.1: 5], [1: 6]

N

i i i i

i i i

S s s s
where
s f u q
f u q

=

=

∈ − ∈ ∈

 (14)

Note that the value of f ranges between -10 and
10 in the above equation. The value of the
controllable variable u ranges from 1 to 5 with the
smallest possible increment of 0.1, i.e., u can assume
values such as 1, 1.1, 1.2, and up to so on 5. Finally,
the number of steps (q) ranges from 1 to 6. The
action space is defined as,

𝑀𝑀

= �
𝜇𝜇+0.1, 𝜇𝜇−0.1,𝜇𝜇+0.5,𝜇𝜇−0.5, 𝜇𝜇+1, 𝜇𝜇−1, 𝜇𝜇+2, 𝜇𝜇−2, 𝜇𝜇+3, 𝜇𝜇−3,

𝜇𝜇+4, 𝜇𝜇−4,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 �

(15)
Equation (15) presents 13 possible actions where

the smallest possible nonzero change in u is 0.1 and
the largest possible change in u is 4. Note that these
actions are context-dependent, i.e., if u is already
equal to 5 in the current state, then any action
requiring a positive change in u shall result in
NOOP. Similarly, reduction in u is not allowed when
u is at its minimum value. The reward function is
represented by Equation (12) with n = 6. To avoid
big transitions in u, we also used a cost function
where the cost of changing the price was
proportional to the magnitude of the change. The
transition function is given as

()

()

()
[]

() { }

min

max

min max

, , (| ,)

1 :

1

,
(| ,)

1 : 0
1 : 0

2 : 0.5, 2 ,
, : 1, 2,3, 4 ,

i k j j i k j i

j
j

i

j i k
j i k j i

i k

i k

i k k i k

i i k k k i

T s s P f f f f u u

if f
q

q otherwise

r f f
P f f f f u u

NC
f f if

r
f f if

f if f f f
f f sign if f

µ µ

ε

µ
µ

µ
µ

µ µ µ
µ µ µ µ

+

+

= = = = −

 <=
+

− −Φ
= = = − =

− + <
= − + >

+ = + ∈
Φ = + + ∈ () []

() ()()

min max,

(1), 1 ,
2

k k

i

i k i k

sign f f
f otherwise

r rNC f r f

µ µ

µ µ

 + + ∈

−
= Φ + −Φ +

(16)

In Equation (16), r is the range of values fj can
take given fi and µk. Φ is the function that determines
the most likely value for the result of applying µk
from fi. NC is the normalization constant. For
elaboration purposes, the distribution curve for r =
16, fi = -5, µk = 4, and Φ = 0 is shown as a function
of possible values of fj in Fig. 2. Note that, since µk >
0, f can only increase. The results in Fig. 2 indicate
that the value of µ is large whenever the value of f is
large. Note that µ is negative for positive values of f
and positive for the negative values of f.

We calculated the optimal policy for the above
example and the results are shown in Fig. 3 and Fig.
4. In Fig. 3, the optimal policy is to increase the
price whenever demand exceeds production (i.e. f <
0) and decrease the price in the opposite situation.
The change in price depends upon the magnitude of f
and available price change such that the price
remains in the range of 1 to 5. In Fig. 4, the policy is
plotted for u = 1.5 which means the decrease in price
is not available. Note that in Fig. 4, the change in
price not only depends upon f but is also dependent
upon q. As can be seen in Fig. 4, for larger q the
change in price is more aggressive for the same
value of f.

Finally, we include an example of a trajectory of
f generated using our optimal policy in a random
environment where p jumps randomly after every 7-

Nasir Ali and Huma Rehman Baig

6

Also, if the price does not change, the demand does
not change with probability 1. The state space is
represented as

{ }

{ }

1 2, ,...,
,
, ,

[10 :10], [1: 0.1: 5], [1: 6]

N

i i i i

i i i

S s s s
where
s f u q
f u q

=

=

∈ − ∈ ∈

 (14)

Note that the value of f ranges between -10 and
10 in the above equation. The value of the
controllable variable u ranges from 1 to 5 with the
smallest possible increment of 0.1, i.e., u can assume
values such as 1, 1.1, 1.2, and up to so on 5. Finally,
the number of steps (q) ranges from 1 to 6. The
action space is defined as,

𝑀𝑀

= �
𝜇𝜇+0.1, 𝜇𝜇−0.1,𝜇𝜇+0.5,𝜇𝜇−0.5, 𝜇𝜇+1, 𝜇𝜇−1, 𝜇𝜇+2, 𝜇𝜇−2, 𝜇𝜇+3, 𝜇𝜇−3,

𝜇𝜇+4, 𝜇𝜇−4,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 �

(15)
Equation (15) presents 13 possible actions where

the smallest possible nonzero change in u is 0.1 and
the largest possible change in u is 4. Note that these
actions are context-dependent, i.e., if u is already
equal to 5 in the current state, then any action
requiring a positive change in u shall result in
NOOP. Similarly, reduction in u is not allowed when
u is at its minimum value. The reward function is
represented by Equation (12) with n = 6. To avoid
big transitions in u, we also used a cost function
where the cost of changing the price was
proportional to the magnitude of the change. The
transition function is given as

()

()

()
[]

() { }

min

max

min max

, , (| ,)

1 :

1

,
(| ,)

1 : 0
1 : 0

2 : 0.5, 2 ,
, : 1, 2,3, 4 ,

i k j j i k j i

j
j

i

j i k
j i k j i

i k

i k

i k k i k

i i k k k i

T s s P f f f f u u

if f
q

q otherwise

r f f
P f f f f u u

NC
f f if

r
f f if

f if f f f
f f sign if f

µ µ

ε

µ
µ

µ
µ

µ µ µ
µ µ µ µ

+

+

= = = = −

 <=
+

− −Φ
= = = − =

− + <
= − + >

+ = + ∈
Φ = + + ∈ () []

() ()()

min max,

(1), 1 ,
2

k k

i

i k i k

sign f f
f otherwise

r rNC f r f

µ µ

µ µ

 + + ∈

−
= Φ + −Φ +

(16)

In Equation (16), r is the range of values fj can
take given fi and µk. Φ is the function that determines
the most likely value for the result of applying µk
from fi. NC is the normalization constant. For
elaboration purposes, the distribution curve for r =
16, fi = -5, µk = 4, and Φ = 0 is shown as a function
of possible values of fj in Fig. 2. Note that, since µk >
0, f can only increase. The results in Fig. 2 indicate
that the value of µ is large whenever the value of f is
large. Note that µ is negative for positive values of f
and positive for the negative values of f.

We calculated the optimal policy for the above
example and the results are shown in Fig. 3 and Fig.
4. In Fig. 3, the optimal policy is to increase the
price whenever demand exceeds production (i.e. f <
0) and decrease the price in the opposite situation.
The change in price depends upon the magnitude of f
and available price change such that the price
remains in the range of 1 to 5. In Fig. 4, the policy is
plotted for u = 1.5 which means the decrease in price
is not available. Note that in Fig. 4, the change in
price not only depends upon f but is also dependent
upon q. As can be seen in Fig. 4, for larger q the
change in price is more aggressive for the same
value of f.

Finally, we include an example of a trajectory of
f generated using our optimal policy in a random
environment where p jumps randomly after every 7-

Fig 2. Conditional Distribution of Change in f given
Initial value of f and Change in u.

 Stochastic Root Finding with Markov Decision Process 85

The transition function is given as:

 (16)
In Equation (16), r is the range of values fj can

take given fi and µk. Φ is the function that determines
the most likely value for the result of applying
µk from fi. NC is the normalization constant. For
elaboration purposes, the distribution curve for r =
16, fi = -5, µk = 4, and Φ = 0 is shown as a function
of possible values of fj in Fig 2. Note that, since µk
> 0, f can only increase. The results in Fig 2 indicate
that the value of µ is large whenever the value of f is
large. Note that µ is negative for positive values of f
and positive for the negative values of f.

We calculated the optimal policy for the above
example and the results are shown in Fig. 3 and

Fig 4. In Fig 3, the optimal policy is to increase
the price whenever demand exceeds production
(i.e. f < 0) and decrease the price in the opposite
situation. The change in price depends upon the
magnitude of f and available price change such that
the price remains in the range of 1 to 5. In Fig 4,
the policy is plotted for u = 1.5 which means the
decrease in price is not available. Note that in Fig.
4, the change in price not only depends upon f but
is also dependent upon q. As can be seen in Fig. 4,
for larger q the change in price is more aggressive
for the same value of f.

Finally, we include an example of a trajectory
of f generated using our optimal policy in a random
environment where p jumps randomly after every
7-time steps. Fig 5 shows the results. Note that,
our policy was able to bring f within the allowable
range i.e., [-1 1] in maximum 5-time steps (without
failing).

We have also presented the statistics of the
results of Fig 5 in Table 1. Table 1 indicates that the
number of steps to bring the function f within the
threshold range from 1 to 5 with an average value
of 2.58. The standard deviation of 1.43 indicates
that the function f is brought within the threshold in
four steps for most cases.

Nasir Ali and Huma Rehman Baig

6

Also, if the price does not change, the demand does
not change with probability 1. The state space is
represented as

{ }

{ }

1 2, ,...,
,
, ,

[10 :10], [1: 0.1: 5], [1: 6]

N

i i i i

i i i

S s s s
where
s f u q
f u q

=

=

∈ − ∈ ∈

 (14)

Note that the value of f ranges between -10 and
10 in the above equation. The value of the
controllable variable u ranges from 1 to 5 with the
smallest possible increment of 0.1, i.e., u can assume
values such as 1, 1.1, 1.2, and up to so on 5. Finally,
the number of steps (q) ranges from 1 to 6. The
action space is defined as,

𝑀𝑀

= �
𝜇𝜇+0.1, 𝜇𝜇−0.1,𝜇𝜇+0.5,𝜇𝜇−0.5, 𝜇𝜇+1, 𝜇𝜇−1, 𝜇𝜇+2, 𝜇𝜇−2, 𝜇𝜇+3, 𝜇𝜇−3,

𝜇𝜇+4, 𝜇𝜇−4,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 �

(15)
Equation (15) presents 13 possible actions where

the smallest possible nonzero change in u is 0.1 and
the largest possible change in u is 4. Note that these
actions are context-dependent, i.e., if u is already
equal to 5 in the current state, then any action
requiring a positive change in u shall result in
NOOP. Similarly, reduction in u is not allowed when
u is at its minimum value. The reward function is
represented by Equation (12) with n = 6. To avoid
big transitions in u, we also used a cost function
where the cost of changing the price was
proportional to the magnitude of the change. The
transition function is given as

()

()

()
[]

() { }

min

max

min max

, , (| ,)

1 :

1

,
(| ,)

1 : 0
1 : 0

2 : 0.5, 2 ,
, : 1, 2,3, 4 ,

i k j j i k j i

j
j

i

j i k
j i k j i

i k

i k

i k k i k

i i k k k i

T s s P f f f f u u

if f
q

q otherwise

r f f
P f f f f u u

NC
f f if

r
f f if

f if f f f
f f sign if f

µ µ

ε

µ
µ

µ
µ

µ µ µ
µ µ µ µ

+

+

= = = = −

 <=
+

− −Φ
= = = − =

− + <
= − + >

+ = + ∈
Φ = + + ∈ () []

() ()()

min max,

(1), 1 ,
2

k k

i

i k i k

sign f f
f otherwise

r rNC f r f

µ µ

µ µ

 + + ∈

−
= Φ + −Φ +

(16)

In Equation (16), r is the range of values fj can
take given fi and µk. Φ is the function that determines
the most likely value for the result of applying µk
from fi. NC is the normalization constant. For
elaboration purposes, the distribution curve for r =
16, fi = -5, µk = 4, and Φ = 0 is shown as a function
of possible values of fj in Fig. 2. Note that, since µk >
0, f can only increase. The results in Fig. 2 indicate
that the value of µ is large whenever the value of f is
large. Note that µ is negative for positive values of f
and positive for the negative values of f.

We calculated the optimal policy for the above
example and the results are shown in Fig. 3 and Fig.
4. In Fig. 3, the optimal policy is to increase the
price whenever demand exceeds production (i.e. f <
0) and decrease the price in the opposite situation.
The change in price depends upon the magnitude of f
and available price change such that the price
remains in the range of 1 to 5. In Fig. 4, the policy is
plotted for u = 1.5 which means the decrease in price
is not available. Note that in Fig. 4, the change in
price not only depends upon f but is also dependent
upon q. As can be seen in Fig. 4, for larger q the
change in price is more aggressive for the same
value of f.

Finally, we include an example of a trajectory of
f generated using our optimal policy in a random
environment where p jumps randomly after every 7-

Stochastic Root Finding with Markov Decision Process

 7

time steps. Fig. 5 shows the results. Note that, our
policy was able to bring f within the allowable range
i.e., [-1 1] in maximum 5-time steps (without
failing).

We have also presented the statistics of the
results of Fig. 5 in Table 1. Table 1 indicates that the
number of steps to bring the function f within the
threshold range from 1 to 5 with an average value of
2.58. The standard deviation of 1.43 indicates that
the function f is brought within the threshold in four
steps for most cases.

Fig. 3. Optimal Policy for q = 5

 Fig. 4 Optimal Policy for u = 1.5

Fig. 5. The trajectory of f in a Random Environment

Table 1. Statistics Regarding Number of Steps

Statistical Measure Number of Steps
Mean 2.58
Min 1
Max 5
Mode 2
Standard Deviation 1.43

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that by using MDP
formulations, it is possible to calculate optimal
policies for the stochastic root-finding problem with
a finite number of allowable steps. The root-finding
problem discussed in this paper is discrete where the
function can take on only a finite number of values.
The problem of deadlocks and live locks for a
general class of problems has been discussed and
possible ways of avoiding such situations along with
the consequences have been mentioned. Also, the
specific class of problems for which the deadlocks
and live locks do not occur has been identified. The
behavior of optimal policy for a simulation example
has been included to show how the policy responds
to the available time steps as well as the available
change in the controlled variable. We have also
included the trajectory of f using our policy. The
results show good performance in terms of keeping
the function within its allowable range for our
simulated environment.

1

2

3

4

5

6

-10
-5

0
5

10
-1

0

1

2

3

q

u = 1.5

f

m
u

0 50 100 150 200 250 300
-10

0

10

t

f

0 50 100 150 200 250 300
0

2

4

t

u

0 50 100 150 200 250
0

5

t

q

Fig 3. Optimal Policy for q = 5

86 Nasir Ali and Huma Rehman Baig

Stochastic Root Finding with Markov Decision Process

 7

time steps. Fig. 5 shows the results. Note that, our
policy was able to bring f within the allowable range
i.e., [-1 1] in maximum 5-time steps (without
failing).

We have also presented the statistics of the
results of Fig. 5 in Table 1. Table 1 indicates that the
number of steps to bring the function f within the
threshold range from 1 to 5 with an average value of
2.58. The standard deviation of 1.43 indicates that
the function f is brought within the threshold in four
steps for most cases.

Fig. 3. Optimal Policy for q = 5

 Fig. 4 Optimal Policy for u = 1.5

Fig. 5. The trajectory of f in a Random Environment

Table 1. Statistics Regarding Number of Steps

Statistical Measure Number of Steps
Mean 2.58
Min 1
Max 5
Mode 2
Standard Deviation 1.43

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that by using MDP
formulations, it is possible to calculate optimal
policies for the stochastic root-finding problem with
a finite number of allowable steps. The root-finding
problem discussed in this paper is discrete where the
function can take on only a finite number of values.
The problem of deadlocks and live locks for a
general class of problems has been discussed and
possible ways of avoiding such situations along with
the consequences have been mentioned. Also, the
specific class of problems for which the deadlocks
and live locks do not occur has been identified. The
behavior of optimal policy for a simulation example
has been included to show how the policy responds
to the available time steps as well as the available
change in the controlled variable. We have also
included the trajectory of f using our policy. The
results show good performance in terms of keeping
the function within its allowable range for our
simulated environment.

1

2

3

4

5

6

-10
-5

0
5

10
-1

0

1

2

3

q

u = 1.5

f

m
u

0 50 100 150 200 250 300
-10

0

10

t

f

0 50 100 150 200 250 300
0

2

4

t

u

0 50 100 150 200 250
0

5

t

q

Stochastic Root Finding with Markov Decision Process

 7

time steps. Fig. 5 shows the results. Note that, our
policy was able to bring f within the allowable range
i.e., [-1 1] in maximum 5-time steps (without
failing).

We have also presented the statistics of the
results of Fig. 5 in Table 1. Table 1 indicates that the
number of steps to bring the function f within the
threshold range from 1 to 5 with an average value of
2.58. The standard deviation of 1.43 indicates that
the function f is brought within the threshold in four
steps for most cases.

Fig. 3. Optimal Policy for q = 5

 Fig. 4 Optimal Policy for u = 1.5

Fig. 5. The trajectory of f in a Random Environment

Table 1. Statistics Regarding Number of Steps

Statistical Measure Number of Steps
Mean 2.58
Min 1
Max 5
Mode 2
Standard Deviation 1.43

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that by using MDP
formulations, it is possible to calculate optimal
policies for the stochastic root-finding problem with
a finite number of allowable steps. The root-finding
problem discussed in this paper is discrete where the
function can take on only a finite number of values.
The problem of deadlocks and live locks for a
general class of problems has been discussed and
possible ways of avoiding such situations along with
the consequences have been mentioned. Also, the
specific class of problems for which the deadlocks
and live locks do not occur has been identified. The
behavior of optimal policy for a simulation example
has been included to show how the policy responds
to the available time steps as well as the available
change in the controlled variable. We have also
included the trajectory of f using our policy. The
results show good performance in terms of keeping
the function within its allowable range for our
simulated environment.

1

2

3

4

5

6

-10
-5

0
5

10
-1

0

1

2

3

q

u = 1.5

f

m
u

0 50 100 150 200 250 300
-10

0

10

t

f

0 50 100 150 200 250 300
0

2

4

t

u

0 50 100 150 200 250
0

5

t

q

Stochastic Root Finding with Markov Decision Process

 7

time steps. Fig. 5 shows the results. Note that, our
policy was able to bring f within the allowable range
i.e., [-1 1] in maximum 5-time steps (without
failing).

We have also presented the statistics of the
results of Fig. 5 in Table 1. Table 1 indicates that the
number of steps to bring the function f within the
threshold range from 1 to 5 with an average value of
2.58. The standard deviation of 1.43 indicates that
the function f is brought within the threshold in four
steps for most cases.

Fig. 3. Optimal Policy for q = 5

 Fig. 4 Optimal Policy for u = 1.5

Fig. 5. The trajectory of f in a Random Environment

Table 1. Statistics Regarding Number of Steps

Statistical Measure Number of Steps
Mean 2.58
Min 1
Max 5
Mode 2
Standard Deviation 1.43

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that by using MDP
formulations, it is possible to calculate optimal
policies for the stochastic root-finding problem with
a finite number of allowable steps. The root-finding
problem discussed in this paper is discrete where the
function can take on only a finite number of values.
The problem of deadlocks and live locks for a
general class of problems has been discussed and
possible ways of avoiding such situations along with
the consequences have been mentioned. Also, the
specific class of problems for which the deadlocks
and live locks do not occur has been identified. The
behavior of optimal policy for a simulation example
has been included to show how the policy responds
to the available time steps as well as the available
change in the controlled variable. We have also
included the trajectory of f using our policy. The
results show good performance in terms of keeping
the function within its allowable range for our
simulated environment.

1

2

3

4

5

6

-10
-5

0
5

10
-1

0

1

2

3

q

u = 1.5

f

m
u

0 50 100 150 200 250 300
-10

0

10

t

f

0 50 100 150 200 250 300
0

2

4

t

u

0 50 100 150 200 250
0

5

t

q

Fig 4. Optimal Policy for u = 1.5

Fig 5. The trajectory of f in a Random Environment

 Stochastic Root Finding with Markov Decision Process 87

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that by using MDP
formulations, it is possible to calculate optimal
policies for the stochastic root-finding problem with
a finite number of allowable steps. The root-finding
problem discussed in this paper is discrete where
the function can take on only a finite number of
values. The problem of deadlocks and live locks for
a general class of problems has been discussed and
possible ways of avoiding such situations along with
the consequences have been mentioned. Also, the
specific class of problems for which the deadlocks
and live locks do not occur has been identified. The
behavior of optimal policy for a simulation example
has been included to show how the policy responds
to the available time steps as well as the available
change in the controlled variable. We have also
included the trajectory of f using our policy. The
results show good performance in terms of keeping
the function within its allowable range for our
simulated environment.

5. REFERENCES

1. H. Robbins, and S. Monro. A stochastic
approximation method. Annals of Mathematics and
Statistics 29, 373-405 (1951).

2. C.F.J. Wu. Efficient sequential designs with binary
data. Journal of American Statistical Association 80
974-984 (1985).

3. A. Yazidi, and B.J. Oommen. A novel technique for
stochastic root-finding: Enhancing the search with
the adaptive d-ary search. Information Sciences,

393: 108-129 (2017).
4. S.M.Vahidipour., M.R. Meybodi, and M. Esnaashari.

Finding the shortest path in stochastic graphs using
learning automata and adaptive stochastic petri nets.
International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 25(03) 427-455 (2017).

5. S. Glimsdal, and O.C. Granmo, Thompson Sampling
Guided Stochastic Searching on the Line for
Deceptive Environments with Applications to Root-
Finding Problems. arXiv preprint arXiv:1708.01791
(2017).

6. J. Zhang., Y. Wang., C. Wang, and M. Zhou.
Symmetrical hierarchical stochastic searching on
the line in informative and deceptive environments.
IEEE transactions on cybernetics, 47(3) 626-635
(2017).

7. T. Pfeffer, and L. Pollet. A stochastic root finding
approach: the homotopy analysis method applied
to Dyson–Schwinger equations. New Journal of
Physics. 19(4): (2017).

8. P.R. Kumar, and P. Varaiya, Stochastic Systems:
Estimation, Identification, and Adaptive Control,
Prentice Hall Inc., Englewood Cliffs, New Jersey
07632, 1986.

9. M.L. Puterman. Markov Decision Processes:
Discrete Stochastic Dynamic Programming, © John
Wiley and Sons Inc. (1994).

10. S. Russell, and P. Norvig. Artificial Intelligence: A
Modern Approach, 2nd Edition, Prentice-Hall, Upper
Saddle River, New Jersey 07458, (2005).

11. P. Raghu, and S. Kim. The stochastic root-finding
problem: Overview, solutions, and open questions.
ACM Transactions on Modeling and Computer
Simulation (TOMACS) 21(3) 1-23 (2011).

88 Nasir Ali and Huma Rehman Baig

