
Research Article

Proceedings of the Pakistan Academy of Sciences:  Pakistan Academy of Sciences
A. Physical and Computational Sciences: 57 (2): 81-88 (2020)
Copyright © Pakistan Academy of Sciences
ISSN: 2518-4245 (print), 2518-4253 (online)

————————————————
Received: March 2019; Accpeted: June 2020
*Corresponding Author: Ali Nasir <a.nasir@ucp.edu.pk>

Discrete Time Stochastic Root-finding with Forced  Stopping Time

Ali Nasir1* and Huma Rehman Baig2

1Department of Electrical Engineering, University of Central Punjab, Lahore, Pakistan
2Directorate of Research, University of Central Punjab, Lahore, Pakistan

Abstract: In this paper, we present a Markov Decision Process (MDP) based formulation for solving the stochastic 
root-finding problem with predefined stopping time. In the problem that we pose, we need to find only one root of 
a given finite valued function f (p,u,h). Here, p is a known Markov chain, u is the adjustable variable, and h is the 
unknown random variable with known distribution. Hence we cannot measure the true value of the function because 
h is unknown. We assume that we have a way of measuring whether or not f is within some bound ε from zero. We 
also present a formulation for the problem where f (p,u) is measurable but the adjustment of u is stochastic with 
known distribution. Another challenge in our problem is the introduction of finite stopping time. This means that the 
MDP policy has only a predefined finite number of actions available for adjusting u to find the root (or bring | f | < ε). 
We have included a price control example in the paper to demonstrate the behavior of the resulting MDP policy in 
response to the available time steps and the variable values of u and p. The results show reasonable trajectories for our 
simulated environment.
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1.  INTRODUCTION 

Stochastic root-finding is a well-researched problem 
in mathematics and engineering. The problem that 
we consider in this paper however is different from 
the standard stochastic root-finding problem in 
the literature. One of the main differences is the 
discrete and finite nature of the unknown function 
and consideration of known but arbitrary functional 
form. Another major difference is the inclusion of a 
finite time step limit for finding the root. Formally, 
the problem can be posed in two ways:

i. Given a discrete finite-value function f (p,u,h) 
where p is known and changes at regular 
intervals according to a known Markov chain, u 
is adjustable and known, and h is unknown with 
a known distribution, find the control policy 
𝜑 ( p , u ) for u that can compensate changes 
in p and the unknown value of h such that the 
function value is driven to within a bound ε 
from 0 in less than or equal to n steps.

ii. Given a discrete finite-value function f (p,h(u)) 

where p is known and changes at regular 
intervals according to a known Markov 
chain, u is adjustable and known, and h is a 
random function of u with known conditional 
distribution given the values of u, find the 
control policy 𝜑 (p,u) for u that can compensate 
changes in p and the value of h such that the 
function value is driven to within a bound ε 
from 0 in less than or equal to n steps.

This type of problem has abundant applications 
in planning under uncertainty and fault detection. 
For example, consider a problem of elevator 
assignment in a building where the number of 
passengers is bounded by the floor capacity but their 
appearance at each floor at any given time follows 
a known distribution. In this problem, we would 
like to bring the average waiting time for each 
passenger close enough to a pre-specified optimal 
time. Similar problems arise in the assignment of 
vehicles in the problems involving transportation, 
assignment of labor in the problems involving 
demand and production, selection of price, selection 
of thresholds in fault detection, selection of vehicle 



to a lack of history dependence in Markov process-
based modeling. To avoid deadlocks and live locks, 
appropriate history has to be included in the state 
information. There is a class of problems though, 
which naturally exhibits Markov property and for 
those problems, our formulation works fine without 
any additional information in the state space. 
We have discussed the properties of conditional 
distribution that can ensure that the system obeys 
Markov property i.e. no history is required to find 
the root.

For an illustration of our proposed framework, 
we have also included a simulation-based example 
of the price control problem. The resulting optimal 
policy yields reasonable results and has some 
important characteristics that are briefly discussed. 
The paper is organized as follows. In Section 3 we 
present an appropriate background for MDPs. Our 
formulations are discussed in Section 4. Section 
5 presents the simulation example and Section 6 
includes conclusions and future work.

2. BACKGROUND ON MDP

An MDP is a controlled Markov chain that is solved 
using a discrete stochastic dynamic programming 
algorithm e.g. value iteration or policy iteration 
[8-10]. Value iterations are applied to the optimal 
control problem that maximizes an expected 
discounted reward function of the form.
        
                 (1)

Here, st represents state after t actions, and µt is the 
action applied in state st according to a policy Pol  (st 
is a random variable). V is the expected discounted 
reward function of states of the Markov chain (also 
called the value function of the state). The discount 
factor γ (γ ϵ (0, 1)), indicates that future rewards 
have a lower value. We assume that R is bounded 
from above and below. The policy that selects the 
optimal action may be found as:

      
                 (2)
 
There is a direct relationship between the value of 
a state and the values of all the states that can be 
reached from that state in a single optimal action. 
This relationship can be expressed using the 

speed on the road (speed bounded by road speed 
limits), etc. The traditional stochastic root-finding 
problem has been studied extensively in the past. 
Some of the early contributions include the work 
of Robbins and Monro [1] where a non-parametric 
approach similar to the Newton-Raphson method 
is proposed. Wu has shown that the knowledge of 
the distribution of measurement noise can greatly 
improve the convergence rate [2]. Similarly, Yazidi 
[3] has proposed a novel approach for stochastic 
root-finding which is based on adaptive d-ary 
search. The solution shrinks the search by a factor 
of 2d/3, where d ≥2 is user-defined. Glimsdal [5] has 
proposed a Thompson sampling-based stochastic 
searching solution for deceptive environments. 
The proposed solution is also applicable to the 
root-finding problem. Similarly, Zhang [6] has 
presented a symmetrical, hierarchical stochastic 
searching on a 1-D line by operating a controlled 
random walk and obtaining information from the 
stochastic environment. Also, Vahidipour [4] has 
presented the shortest path in stochastic graphs 
using Learning Automata and Adaptive Stochastic 
Petri Nets (APSN-LA). The proposed solution has 
been validated on six different stochastic graphs 
and it has been reported as a relatively shortest 
path solution compared to other algorithms. 
Similarly, Pfeffer [7] a stochastic root-finding 
solution based on homotopy analysis which is 
applied to Schwinger equations. The author has 
reported a mathematical formulation that shows 
superior convergence properties compared to the 
bold diagrammatic Monte Carlo approach. A good 
review of the available solutions for the stochastic 
root-finding problem is found in [11].

In this work, we assume the distribution of 
the unknown part of the function is known. Our 
formulation is based on the Markov Decision 
Process (MDP) modeling. We present two modeling 
approaches. In our first approach, the function has 
some unknown element. In our second approach, 
the actions to change the function have uncertainty 
involved. The first approach corresponds to the 
problems with noisy sensors and perfect actuators. 
The second approach corresponds to the problems 
with perfect sensors and noisy actuators.

We have discussed the possibilities of deadlocks 
and live locks while using the formulation presented 
in this paper. These situations basically can arise due 
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policy yields reasonable results and has some 
important characteristics that are briefly discussed. 
The paper is organized as follows. In Section 3 we 
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includes conclusions and future work. 

2. BACKGROUND ON MDP 
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Here, st represents state after t actions, and µt is 
the action applied in state st according to a policy Pol 
(st is a random variable). V is the expected 
discounted reward function of states of the Markov 
chain (also called the value function of the state). 
The discount factor γ (γ ϵ (0, 1)), indicates that future 
rewards have a lower value. We assume that R is 
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bounded from above and below. The policy that 
selects the optimal action may be found as: 

( )* ( ) arg max , ( | , ) ( ) .i k i j k i j
k j S

Pol s R s T s s V sµ γ µ
∈

 
∈ + 

 
∑

       (2) 

There is a direct relationship between the value 
of a state and the values of all the states that can be 
reached from that state in a single optimal action. 
This relationship can be expressed using the Bellman 
equation: 

1( ) ( ) max ( | , ) ( )t i i j k i t jk j S
V s R s T s s V sγ µ+

∈

 
= +  

 
∑        

(3) 

where Vt+1(si) is the value of state si at iteration 
t+1. R(si) is the immediate reward of state si. T (sj |μk, 
si) is the probability of transitioning from state si to sj 
by executing action μk. Value iterations converge and 
one can bind the number of iterations (Itr) to reach 
an error bound of ε as: 

max2 1log / log .
(1 )

R
Itr

γ ε γ
    

=     −    
                  (4) 

Here ε is the required tolerance of the solution 
satisfying, 

1( ) ( ) , .t i iV V iς ς ε+ − < ∀                     (5) 

The inequality (5) is ensured by 

1
1( ) ( ) .t i t iV V γς ς ε
γ+

 −
− <  

 
                (6) 

The computational complexity of value iteration 
is of the order O(N2k), where, N is the number of 
states and k is the number of actions in the MDP. As 
described in the book by Kumar and Varaiya [8], 
Equation (3) converges to a unique solution. The 
solution of Equation (3) achieves its maximum value 
of the right-hand side in Equation (1). If the policy is 
calculated using (2) with a solution of (3), it will be 
optimal concerning (1). One of the algorithms to 
solve (3) and find an optimal policy from (2) is 
called value iteration; it is shown in Fig. 1. 

 
Fig. 1. Value Iteration Algorithm 

3. STOCHASTIC ROOT FINDING 
FORMULATION 

In this section, we formulate the MDP models for the 
two problems discussed in Section 1. 

3.1 Known Action and Unknown Function 

The objective of root finding in this subsection is to 
achieve | f | < ε where f is a function of three 
variables, i.e., known but uncontrollable variable p, 
known and controllable variable u, and unknown and 
uncontrollable variable h. For stochastic root-finding 
formulation where the function f is not measurable 
(due to h) and actions of changing u have a 
deterministic effect on u, the states of the MDP are 
defined as, 
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               (7) 

where, Bi is the binary flag in state si indicating 
whether or not | f | < ε (B = 0 when | f | < ε). Also qi 
indicates how many steps have passed since | f | < ε. 
All the states with qi = n are considered as failed 
states and are absorbing, i.e., no action is available 
from these states. P and U are finite sets of discrete 
values that variables p and u can take. Note that, we 
do not assume any particular property about the form 
of the function f; we just assume that we know that 
form. 

The set of actions is defined as 

{ }1 1, ,..., , ,m mM NOOPµ µ µ µ+ − + −=                 (8) 
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to achieve | f | < ε where f is a function of three 
variables, i.e., known but uncontrollable variable p, 
known and controllable variable u, and unknown 
and uncontrollable variable h. For stochastic root-
finding formulation where the function f is not 
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                 (7)

where, Bi is the binary flag in state si indicating 
whether or not | f | < ε (B = 0 when | f | < ε). Also 
qi indicates how many steps have passed since               
| f | < ε. All the states with qi = n are considered 
as failed states and are absorbing, i.e., no action is 
available from these states. P and U are finite sets 
of discrete values that variables p and u can take. 
Note that, we do not assume any particular property 
about the form of the function f; we just assume that 
we know that form.

The set of actions is defined as
                     

where µ+i increases u by the amount defined by 
increment step i. Similarly, µ-i decreases u by the 
amount defined by decrement step i. There is also 
a NOOP action for the situations where we do not 
wish to change u.

The reward function for the problem is defined as:

here, the reward is a negative exponential of a 
penalty function that increases with a decreasing 
number of allowable time steps (n - q).

The transition probabilities are computed from the 
distribution of h.
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where µ+i increases u by the amount defined by 
increment step i. Similarly, µ-i decreases u by the 
amount defined by decrement step i. There is also a 
NOOP action for the situations where we do not 
wish to change u. 

The reward function for the problem is defined 
as, 

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐵𝐵𝑖𝑖𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖: 𝑞𝑞𝑖𝑖 < 𝑛𝑛
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

                    (9) 

here, the reward is a negative exponential of a 
penalty function that increases with a decreasing 
number of allowable time steps (n - q). 

The transition probabilities are computed from 
the distribution of h. 

𝑇𝑇�𝑠𝑠𝑖𝑖 , 𝜇𝜇𝑘𝑘 , 𝑠𝑠𝑗𝑗�

= �
𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒: 𝐵𝐵𝑗𝑗 = 0,𝑞𝑞𝑗𝑗 = 1

1 − 𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒:𝐵𝐵𝑗𝑗 = 1,𝑞𝑞𝑗𝑗 = 𝑞𝑞𝑖𝑖 + 1
 

(10) 

T(si,µk,sj) represents the transition function from 
state si to state sj when action µk is applied. Here, δ1 
and δ2 are computed from the functional form of 
f(p,u,h) to find the range of h such that | f | < ε. Also, 
the above equation is for the states si other than the 
failure states, i.e., qi < n in Equation (10). Finally, 
the values of p and u in the next state sj in Equation 
(10) are such that pj = pi and uj = ui + µk. 

With the above formulation, we can use values 
iteration to find the optimal policy for adjusting u. 
next we discuss a slightly different formulation for a 
similar problem with a different point of view. 

3.2 Known Function and Unknown Action 

The objective of root finding in this subsection is to 
achieve | f | < ε where f is a function of two variables, 
i.e., known but uncontrollable variable p and 
controllable but unknown variable u, here u is 
assumed to be a function of h where h is unknown 
except for its probability distribution. For the case 
where the function is computable but the effects of 
changing the control variable are stochastic with a 
known distribution, we assume f is of the form f(p,u). 
The states can now be defined as 
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here, F is a finite set for values of f and all other 
symbols have the same meaning as before. The set of 
actions remain the same. The reward function is 
technically the same but has a slightly different form 

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐼𝐼(𝑓𝑓𝑖𝑖≥𝜀𝜀)𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖:𝑞𝑞𝑖𝑖 < 𝑛𝑛
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               (12) 

here, we have used the indicator function I(x) 
which is 1 when x is true and 0 otherwise. The 
transition function will now depend upon the 
distribution of the effect of actions on variable u. 
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        (13) 

here, the distribution of u is assumed to be 
Markov and known. Similar to Equation (10), 
Equation (13) assumes qi < n. since the variable p 
does not change during the execution of the action, fj 
is computed from fi, ui, and uj. 

3.3 Deadlocks and Live Locks 

So far in the above formulations, we have not 
assumed any specific relation between f and u. All 
we know is that f depends upon u. This can lead to 
deadlocks and live locks. By deadlocks we mean the 
situations where the policy is stuck with one action 
and that action is not working (i.e. not ensuring | f | < 
ε). By live lock, we mean the situation where the 
policy is oscillating between two actions (or more 
actions) that are not working. The example of a 
deadlock is as follows. Suppose that f = 
sin(p)+cos(u)+h, ε = 0.01, p = 0, h = 1, and u = π/2. 
Also, suppose that h is uniformly distributed 
between -1 and 1. According to the distribution of h, 
the best action computed by the MDP could be 
NOOP (since h is unknown for the MDP). Hence, 
the MDP policy will keep on suggesting NOOP and 
the root will never be found. If the NOOP is defined 
in such a way that it cannot change f, even, in that 
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where µ+i increases u by the amount defined by 
increment step i. Similarly, µ-i decreases u by the 
amount defined by decrement step i. There is also a 
NOOP action for the situations where we do not 
wish to change u. 

The reward function for the problem is defined 
as, 

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐵𝐵𝑖𝑖𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖: 𝑞𝑞𝑖𝑖 < 𝑛𝑛
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

                    (9) 

here, the reward is a negative exponential of a 
penalty function that increases with a decreasing 
number of allowable time steps (n - q). 

The transition probabilities are computed from 
the distribution of h. 

𝑇𝑇�𝑠𝑠𝑖𝑖 , 𝜇𝜇𝑘𝑘 , 𝑠𝑠𝑗𝑗�

= �
𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒: 𝐵𝐵𝑗𝑗 = 0,𝑞𝑞𝑗𝑗 = 1

1 − 𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒:𝐵𝐵𝑗𝑗 = 1,𝑞𝑞𝑗𝑗 = 𝑞𝑞𝑖𝑖 + 1
 

(10) 

T(si,µk,sj) represents the transition function from 
state si to state sj when action µk is applied. Here, δ1 
and δ2 are computed from the functional form of 
f(p,u,h) to find the range of h such that | f | < ε. Also, 
the above equation is for the states si other than the 
failure states, i.e., qi < n in Equation (10). Finally, 
the values of p and u in the next state sj in Equation 
(10) are such that pj = pi and uj = ui + µk. 

With the above formulation, we can use values 
iteration to find the optimal policy for adjusting u. 
next we discuss a slightly different formulation for a 
similar problem with a different point of view. 

3.2 Known Function and Unknown Action 

The objective of root finding in this subsection is to 
achieve | f | < ε where f is a function of two variables, 
i.e., known but uncontrollable variable p and 
controllable but unknown variable u, here u is 
assumed to be a function of h where h is unknown 
except for its probability distribution. For the case 
where the function is computable but the effects of 
changing the control variable are stochastic with a 
known distribution, we assume f is of the form f(p,u). 
The states can now be defined as 
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here, F is a finite set for values of f and all other 
symbols have the same meaning as before. The set of 
actions remain the same. The reward function is 
technically the same but has a slightly different form 

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐼𝐼(𝑓𝑓𝑖𝑖≥𝜀𝜀)𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖:𝑞𝑞𝑖𝑖 < 𝑛𝑛

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒
               (12) 

here, we have used the indicator function I(x) 
which is 1 when x is true and 0 otherwise. The 
transition function will now depend upon the 
distribution of the effect of actions on variable u. 
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here, the distribution of u is assumed to be 
Markov and known. Similar to Equation (10), 
Equation (13) assumes qi < n. since the variable p 
does not change during the execution of the action, fj 
is computed from fi, ui, and uj. 

3.3 Deadlocks and Live Locks 

So far in the above formulations, we have not 
assumed any specific relation between f and u. All 
we know is that f depends upon u. This can lead to 
deadlocks and live locks. By deadlocks we mean the 
situations where the policy is stuck with one action 
and that action is not working (i.e. not ensuring | f | < 
ε). By live lock, we mean the situation where the 
policy is oscillating between two actions (or more 
actions) that are not working. The example of a 
deadlock is as follows. Suppose that f = 
sin(p)+cos(u)+h, ε = 0.01, p = 0, h = 1, and u = π/2. 
Also, suppose that h is uniformly distributed 
between -1 and 1. According to the distribution of h, 
the best action computed by the MDP could be 
NOOP (since h is unknown for the MDP). Hence, 
the MDP policy will keep on suggesting NOOP and 
the root will never be found. If the NOOP is defined 
in such a way that it cannot change f, even, in that 
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T(si,µk,sj) represents the transition function from 
state si to state sj when action µk is applied. Here, 
δ1 and δ2 are computed from the functional form of 
f(p,u,h) to find the range of h such that | f | < ε. Also, 
the above equation is for the states si other than the 
failure states, i.e., qi < n in Equation (10). Finally, 
the values of p and u in the next state sj in Equation 
(10) are such that pj = pi and uj = ui + uk.

With the above formulation, we can use values 
iteration to find the optimal policy for adjusting u. 
next we discuss a slightly different formulation for 
a similar problem with a different point of view.

3.2  Known Function and Unknown Action

The objective of root finding in this subsection 
is to achieve | f | < ε where f is a function of two 
variables, i.e., known but uncontrollable variable p 
and controllable but unknown variable u, here u is 
assumed to be a function of h where h is unknown 
except for its probability distribution. For the case 
where the function is computable but the effects of 
changing the control variable are stochastic with 
a known distribution, we assume f is of the form 
f(p,u). The states can now be defined as:
                        

               

here, F is a finite set for values of f and all other 
symbols have the same meaning as before. The set 
of actions remain the same. The reward function 
is technically the same but has a slightly different 
form:

here, we have used the indicator function 
I(x) which is 1 when x is true and 0 otherwise. 
The transition function will now depend upon the 
distribution of the effect of actions on variable u.

        

here, the distribution of u is assumed to be 
Markov and known. Similar to Equation (10), 

Equation (13) assumes qi < n. since the variable p 
does not change during the execution of the action, 
fj is computed from fi, ui, and uj.

3.3  Deadlocks and Live Locks

So far in the above formulations, we have not 
assumed any specific relation between f and u. 
All we know is that f depends upon u. This can 
lead to deadlocks and live locks. By deadlocks 
we mean the situations where the policy is stuck 
with one action and that action is not working (i.e. 
not ensuring | f | < ε). By live lock, we mean the 
situation where the policy is oscillating between 
two actions (or more actions) that are not working. 
The example of a deadlock is as follows. Suppose 
that f = sin(p)+cos(u)+h, ε = 0.01, p = 0, h = 1, and                
u = π/2. Also, suppose that h is uniformly distributed 
between -1 and 1. According to the distribution of 
h, the best action computed by the MDP could be 
NOOP (since h is unknown for the MDP). Hence, 
the MDP policy will keep on suggesting NOOP 
and the root will never be found. If the NOOP is 
defined in such a way that it cannot change f, even, 
in that case, the policy may only fluctuate between 
two best values of u closest to π/2. Similarly, for the 
second formulation, if f = sin(p)+cos(u), ε = 0.01, 
p = 0, u = π/2-0.1, and distribution of change in 
u conditioned upon applied actions is such that a 
particular action µ has the highest probability of 
increasing µ by 0.1, the MDP policy, in this case, 
could keep on applying the action µ and in reality, 
it might never change µ at all. Livelock situations 
could also arise in both formulations. To avoid 
these unwanted situations, MDP needs to have a 
record of past actions so that the actions that do 
not work may not be tried again. This will increase 
the state space depending upon how many values 
µ can assume. For example, if µ can take on 10 
possible values and we incorporate binary flags for 
indicating which of the 10 values have been used in 
the past, then the size of the state space will grow 
by a factor of 210. We can also incorporate copies 
of µ instead of binary flags for each of the finite 
number of past actions. For example, if we want to 
incorporate the history of the last 3 actions, then we 
need 3 copies of variable u in the state space which 
will increase the state space by a factor of 103. In 
either case, the reward function and the transition 
function would have to be adjusted accordingly to 
make use of the additional available information in 
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where µ+i increases u by the amount defined by 
increment step i. Similarly, µ-i decreases u by the 
amount defined by decrement step i. There is also a 
NOOP action for the situations where we do not 
wish to change u. 

The reward function for the problem is defined 
as, 

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐵𝐵𝑖𝑖𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖: 𝑞𝑞𝑖𝑖 < 𝑛𝑛
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

                    (9) 

here, the reward is a negative exponential of a 
penalty function that increases with a decreasing 
number of allowable time steps (n - q). 

The transition probabilities are computed from 
the distribution of h. 

𝑇𝑇�𝑠𝑠𝑖𝑖 , 𝜇𝜇𝑘𝑘 , 𝑠𝑠𝑗𝑗�

= �
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1 − 𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒:𝐵𝐵𝑗𝑗 = 1,𝑞𝑞𝑗𝑗 = 𝑞𝑞𝑖𝑖 + 1
 

(10) 

T(si,µk,sj) represents the transition function from 
state si to state sj when action µk is applied. Here, δ1 
and δ2 are computed from the functional form of 
f(p,u,h) to find the range of h such that | f | < ε. Also, 
the above equation is for the states si other than the 
failure states, i.e., qi < n in Equation (10). Finally, 
the values of p and u in the next state sj in Equation 
(10) are such that pj = pi and uj = ui + µk. 

With the above formulation, we can use values 
iteration to find the optimal policy for adjusting u. 
next we discuss a slightly different formulation for a 
similar problem with a different point of view. 

3.2 Known Function and Unknown Action 

The objective of root finding in this subsection is to 
achieve | f | < ε where f is a function of two variables, 
i.e., known but uncontrollable variable p and 
controllable but unknown variable u, here u is 
assumed to be a function of h where h is unknown 
except for its probability distribution. For the case 
where the function is computable but the effects of 
changing the control variable are stochastic with a 
known distribution, we assume f is of the form f(p,u). 
The states can now be defined as 
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here, F is a finite set for values of f and all other 
symbols have the same meaning as before. The set of 
actions remain the same. The reward function is 
technically the same but has a slightly different form 

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐼𝐼(𝑓𝑓𝑖𝑖≥𝜀𝜀)𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖:𝑞𝑞𝑖𝑖 < 𝑛𝑛

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒
               (12) 

here, we have used the indicator function I(x) 
which is 1 when x is true and 0 otherwise. The 
transition function will now depend upon the 
distribution of the effect of actions on variable u. 
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here, the distribution of u is assumed to be 
Markov and known. Similar to Equation (10), 
Equation (13) assumes qi < n. since the variable p 
does not change during the execution of the action, fj 
is computed from fi, ui, and uj. 

3.3 Deadlocks and Live Locks 

So far in the above formulations, we have not 
assumed any specific relation between f and u. All 
we know is that f depends upon u. This can lead to 
deadlocks and live locks. By deadlocks we mean the 
situations where the policy is stuck with one action 
and that action is not working (i.e. not ensuring | f | < 
ε). By live lock, we mean the situation where the 
policy is oscillating between two actions (or more 
actions) that are not working. The example of a 
deadlock is as follows. Suppose that f = 
sin(p)+cos(u)+h, ε = 0.01, p = 0, h = 1, and u = π/2. 
Also, suppose that h is uniformly distributed 
between -1 and 1. According to the distribution of h, 
the best action computed by the MDP could be 
NOOP (since h is unknown for the MDP). Hence, 
the MDP policy will keep on suggesting NOOP and 
the root will never be found. If the NOOP is defined 
in such a way that it cannot change f, even, in that 
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where µ+i increases u by the amount defined by 
increment step i. Similarly, µ-i decreases u by the 
amount defined by decrement step i. There is also a 
NOOP action for the situations where we do not 
wish to change u. 

The reward function for the problem is defined 
as, 

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐵𝐵𝑖𝑖𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖: 𝑞𝑞𝑖𝑖 < 𝑛𝑛
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

                    (9) 

here, the reward is a negative exponential of a 
penalty function that increases with a decreasing 
number of allowable time steps (n - q). 

The transition probabilities are computed from 
the distribution of h. 

𝑇𝑇�𝑠𝑠𝑖𝑖 , 𝜇𝜇𝑘𝑘 , 𝑠𝑠𝑗𝑗�

= �
𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒: 𝐵𝐵𝑗𝑗 = 0,𝑞𝑞𝑗𝑗 = 1

1 − 𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒:𝐵𝐵𝑗𝑗 = 1,𝑞𝑞𝑗𝑗 = 𝑞𝑞𝑖𝑖 + 1
 

(10) 

T(si,µk,sj) represents the transition function from 
state si to state sj when action µk is applied. Here, δ1 
and δ2 are computed from the functional form of 
f(p,u,h) to find the range of h such that | f | < ε. Also, 
the above equation is for the states si other than the 
failure states, i.e., qi < n in Equation (10). Finally, 
the values of p and u in the next state sj in Equation 
(10) are such that pj = pi and uj = ui + µk. 

With the above formulation, we can use values 
iteration to find the optimal policy for adjusting u. 
next we discuss a slightly different formulation for a 
similar problem with a different point of view. 

3.2 Known Function and Unknown Action 

The objective of root finding in this subsection is to 
achieve | f | < ε where f is a function of two variables, 
i.e., known but uncontrollable variable p and 
controllable but unknown variable u, here u is 
assumed to be a function of h where h is unknown 
except for its probability distribution. For the case 
where the function is computable but the effects of 
changing the control variable are stochastic with a 
known distribution, we assume f is of the form f(p,u). 
The states can now be defined as 
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here, F is a finite set for values of f and all other 
symbols have the same meaning as before. The set of 
actions remain the same. The reward function is 
technically the same but has a slightly different form 

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐼𝐼(𝑓𝑓𝑖𝑖≥𝜀𝜀)𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖:𝑞𝑞𝑖𝑖 < 𝑛𝑛

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒
               (12) 

here, we have used the indicator function I(x) 
which is 1 when x is true and 0 otherwise. The 
transition function will now depend upon the 
distribution of the effect of actions on variable u. 
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here, the distribution of u is assumed to be 
Markov and known. Similar to Equation (10), 
Equation (13) assumes qi < n. since the variable p 
does not change during the execution of the action, fj 
is computed from fi, ui, and uj. 

3.3 Deadlocks and Live Locks 

So far in the above formulations, we have not 
assumed any specific relation between f and u. All 
we know is that f depends upon u. This can lead to 
deadlocks and live locks. By deadlocks we mean the 
situations where the policy is stuck with one action 
and that action is not working (i.e. not ensuring | f | < 
ε). By live lock, we mean the situation where the 
policy is oscillating between two actions (or more 
actions) that are not working. The example of a 
deadlock is as follows. Suppose that f = 
sin(p)+cos(u)+h, ε = 0.01, p = 0, h = 1, and u = π/2. 
Also, suppose that h is uniformly distributed 
between -1 and 1. According to the distribution of h, 
the best action computed by the MDP could be 
NOOP (since h is unknown for the MDP). Hence, 
the MDP policy will keep on suggesting NOOP and 
the root will never be found. If the NOOP is defined 
in such a way that it cannot change f, even, in that 
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where µ+i increases u by the amount defined by 
increment step i. Similarly, µ-i decreases u by the 
amount defined by decrement step i. There is also a 
NOOP action for the situations where we do not 
wish to change u. 

The reward function for the problem is defined 
as, 

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
−𝐵𝐵𝑖𝑖𝑞𝑞𝑖𝑖 𝑖𝑖𝑖𝑖: 𝑞𝑞𝑖𝑖 < 𝑛𝑛
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

                    (9) 

here, the reward is a negative exponential of a 
penalty function that increases with a decreasing 
number of allowable time steps (n - q). 

The transition probabilities are computed from 
the distribution of h. 

𝑇𝑇�𝑠𝑠𝑖𝑖 , 𝜇𝜇𝑘𝑘 , 𝑠𝑠𝑗𝑗�

= �
𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒: 𝐵𝐵𝑗𝑗 = 0,𝑞𝑞𝑗𝑗 = 1

1 − 𝑃𝑃 �𝛿𝛿1�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗� < ℎ < 𝛿𝛿2�𝑝𝑝𝑗𝑗 ,𝑢𝑢𝑗𝑗�� 𝑖𝑖𝑜𝑜𝑒𝑒:𝐵𝐵𝑗𝑗 = 1,𝑞𝑞𝑗𝑗 = 𝑞𝑞𝑖𝑖 + 1
 

(10) 

T(si,µk,sj) represents the transition function from 
state si to state sj when action µk is applied. Here, δ1 
and δ2 are computed from the functional form of 
f(p,u,h) to find the range of h such that | f | < ε. Also, 
the above equation is for the states si other than the 
failure states, i.e., qi < n in Equation (10). Finally, 
the values of p and u in the next state sj in Equation 
(10) are such that pj = pi and uj = ui + µk. 

With the above formulation, we can use values 
iteration to find the optimal policy for adjusting u. 
next we discuss a slightly different formulation for a 
similar problem with a different point of view. 

3.2 Known Function and Unknown Action 

The objective of root finding in this subsection is to 
achieve | f | < ε where f is a function of two variables, 
i.e., known but uncontrollable variable p and 
controllable but unknown variable u, here u is 
assumed to be a function of h where h is unknown 
except for its probability distribution. For the case 
where the function is computable but the effects of 
changing the control variable are stochastic with a 
known distribution, we assume f is of the form f(p,u). 
The states can now be defined as 
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here, F is a finite set for values of f and all other 
symbols have the same meaning as before. The set of 
actions remain the same. The reward function is 
technically the same but has a slightly different form 

𝑅𝑅(𝑠𝑠𝑖𝑖) = �𝑒𝑒
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here, we have used the indicator function I(x) 
which is 1 when x is true and 0 otherwise. The 
transition function will now depend upon the 
distribution of the effect of actions on variable u. 
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here, the distribution of u is assumed to be 
Markov and known. Similar to Equation (10), 
Equation (13) assumes qi < n. since the variable p 
does not change during the execution of the action, fj 
is computed from fi, ui, and uj. 

3.3 Deadlocks and Live Locks 

So far in the above formulations, we have not 
assumed any specific relation between f and u. All 
we know is that f depends upon u. This can lead to 
deadlocks and live locks. By deadlocks we mean the 
situations where the policy is stuck with one action 
and that action is not working (i.e. not ensuring | f | < 
ε). By live lock, we mean the situation where the 
policy is oscillating between two actions (or more 
actions) that are not working. The example of a 
deadlock is as follows. Suppose that f = 
sin(p)+cos(u)+h, ε = 0.01, p = 0, h = 1, and u = π/2. 
Also, suppose that h is uniformly distributed 
between -1 and 1. According to the distribution of h, 
the best action computed by the MDP could be 
NOOP (since h is unknown for the MDP). Hence, 
the MDP policy will keep on suggesting NOOP and 
the root will never be found. If the NOOP is defined 
in such a way that it cannot change f, even, in that 
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calculating the policy.

There is a class of problems for which the 
deadlocks and live locks do not occur. The problems 
of this class exhibit a strictly monotonic relation in 
distribution between f and u. For example, if the 
conditional distribution of the change in f given 
change in u is such that f changes only directly 
or only inversely with u and f does not change if 
u does not change, then we have a monotonic 
relation in distribution between f and u. Additional 
information required here is the sign of f. So the 
flag B in the earlier formulation should have three 
possible values, indicating f > ε, f < -ε, and | f | < 
ε. The second formulation where we already know 
f, the strictly monotonic relation in conditional 
distribution should exist between u and the action 
to change u which is the same as the strictly 
monotonic conditional distribution between change 
in f and deterministic action to change u in the 
earlier formulation. This is because in both cases, 
we effectively try to change f, but the effect of our 
action follows a known distribution. In this sense, 
both formulations represent the same problem is 
conditional independence. Fortunately, we have a 
way to determine conditional independence and 
that is the Bayesian network. The Bayesian network 
for a single target-neighbor pair is shown in Fig. 2. 
There are a few things to note here. First, a target 
status is random only when it is submitted to a 
neighboring spacecraft for exploration. Otherwise, 
an idle target remains idle unless submitted for and 
an explored target remains explored indefinitely. 
Second, the target status depends only on the 
status of the neighboring spacecraft to which it is 
submitted and it is independent of the status of all 
other neighboring spacecraft. Third, the status of 
each neighbor is independent of the status of other 
neighbors. Under these considerations, there is one 
Bayesian network for each target-neighbor pair.

4.  SIMULATION EXAMPLE  

In this section, we present a simulation example 
for a price control problem where f (p,h(u)) is the 
difference between production p and demand h. 
Our control variable is price u that is assumed to 
have indirect but strictly monotonic stochastic 
relation with the demand, i.e., the demand increases 
when the price is reduced and vice versa but the 
increase or decrease in demand follows a known 

distribution. Also, if the price does not change, the 
demand does not change with probability 1. The 
state space is represented as:

Note that the value of f ranges between -10 
and 10 in the above equation. The value of the 
controllable variable u ranges from 1 to 5 with 
the smallest possible increment of 0.1, i.e., u can 
assume values such as 1, 1.1, 1.2, and up to so on 5. 
Finally, the number of steps (q) ranges from 1 to 6. 
The action space is defined as:

Equation (15) presents 13 possible actions 
where the smallest possible nonzero change in u is 
0.1 and the largest possible change in u is 4. Note 
that these actions are context-dependent, i.e., if u 
is already equal to 5 in the current state, then any 
action requiring a positive change in u shall result 
in NOOP. Similarly, reduction in u is not allowed 
when u is at its minimum value. The reward 
function is represented by Equation (12) with                              
n = 6. To avoid big transitions in u, we also used a 
cost function where the cost of changing the price 
was proportional to the magnitude of the change. 

Stochastic Root Finding with Markov Decision Process 

 5  
 

case, the policy may only fluctuate between two best 
values of u closest to π/2. Similarly, for the second 
formulation, if f = sin(p)+cos(u), ε = 0.01, p = 0, u = 
π/2-0.1, and distribution of change in u conditioned 
upon applied actions is such that a particular action µ 
has the highest probability of increasing u by 0.1, the 
MDP policy, in this case, could keep on applying the 
action µ and in reality, it might never change u at all. 
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formulations. To avoid these unwanted situations, 
MDP needs to have a record of past actions so that 
the actions that do not work may not be tried again. 
This will increase the state space depending upon 
how many values u can assume. For example, if u 
can take on 10 possible values and we incorporate 
binary flags for indicating which of the 10 values 
have been used in the past, then the size of the state 
space will grow by a factor of 210. We can also 
incorporate copies of u instead of binary flags for 
each of the finite number of past actions. For 
example, if we want to incorporate the history of the 
last 3 actions, then we need 3 copies of variable u in 
the state space which will increase the state space by 
a factor of 103. In either case, the reward function 
and the transition function would have to be adjusted 
accordingly to make use of the additional available 
information in calculating the policy. 

There is a class of problems for which the 
deadlocks and live locks do not occur. The problems 
of this class exhibit a strictly monotonic relation in 
distribution between f and u. For example, if the 
conditional distribution of the change in f given 
change in u is such that f changes only directly or 
only inversely with u and f does not change if u does 
not change, then we have a monotonic relation in 
distribution between f and u. Additional information 
required here is the sign of f. So the flag B in the 
earlier formulation should have three possible 
values, indicating f > ε, f < -ε, and | f | < ε. The 
second formulation where we already know f, the 
strictly monotonic relation in conditional distribution 
should exist between u and the action to change u 
which is the same as the strictly monotonic 
conditional distribution between change in f and 
deterministic action to change u in the earlier 

formulation. This is because in both cases, we 
effectively try to change f, but the effect of our 
action follows a known distribution. In this sense, 
both formulations represent the same problem is 
conditional independence. Fortunately, we have a 
way to determine conditional independence and that 
is the Bayesian network. The Bayesian network for a 
single target-neighbor pair is shown in Fig. 2. There 
are a few things to note here. First, a target status is 
random only when it is submitted to a neighboring 
spacecraft for exploration. Otherwise, an idle target 
remains idle unless submitted for and an explored 
target remains explored indefinitely. Second, the 
target status depends only on the status of the 
neighboring spacecraft to which it is submitted and it 
is independent of the status of all other neighboring 
spacecraft. Third, the status of each neighbor is 
independent of the status of other neighbors. Under 
these considerations, there is one Bayesian network 
for each target-neighbor pair. 

 

Fig. 2. Conditional Distribution of Change in f given 
Initial value of f and Change in u. 

4. SIMULATION EXAMPLE  

In this section, we present a simulation example for a 
price control problem where f (p,h(u)) is the 
difference between production p and demand h. Our 
control variable is price u that is assumed to have 
indirect but strictly monotonic stochastic relation 
with the demand, i.e., the demand increases when the 
price is reduced and vice versa but the increase or 
decrease in demand follows a known distribution. 
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Also, if the price does not change, the demand does 
not change with probability 1. The state space is 
represented as 
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Note that the value of f ranges between -10 and 
10 in the above equation. The value of the 
controllable variable u ranges from 1 to 5 with the 
smallest possible increment of 0.1, i.e., u can assume 
values such as 1, 1.1, 1.2, and up to so on 5. Finally, 
the number of steps (q) ranges from 1 to 6. The 
action space is defined as, 

𝑀𝑀

= �
𝜇𝜇+0.1, 𝜇𝜇−0.1,𝜇𝜇+0.5,𝜇𝜇−0.5, 𝜇𝜇+1, 𝜇𝜇−1, 𝜇𝜇+2, 𝜇𝜇−2, 𝜇𝜇+3, 𝜇𝜇−3,

𝜇𝜇+4, 𝜇𝜇−4,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 � 

(15) 
Equation (15) presents 13 possible actions where 

the smallest possible nonzero change in u is 0.1 and 
the largest possible change in u is 4. Note that these 
actions are context-dependent, i.e., if u is already 
equal to 5 in the current state, then any action 
requiring a positive change in u shall result in 
NOOP. Similarly, reduction in u is not allowed when 
u is at its minimum value. The reward function is 
represented by Equation (12) with n = 6. To avoid 
big transitions in u, we also used a cost function 
where the cost of changing the price was 
proportional to the magnitude of the change. The 
transition function is given as 
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(16) 

In Equation (16), r is the range of values fj can 
take given fi and µk. Φ is the function that determines 
the most likely value for the result of applying µk 
from fi. NC is the normalization constant. For 
elaboration purposes, the distribution curve for r = 
16, fi = -5, µk = 4, and Φ = 0 is shown as a function 
of possible values of fj in Fig. 2. Note that, since µk > 
0, f can only increase. The results in Fig. 2 indicate 
that the value of µ is large whenever the value of f is 
large. Note that µ is negative for positive values of f 
and positive for the negative values of f.

 

We calculated the optimal policy for the above 
example and the results are shown in Fig. 3 and Fig. 
4. In Fig. 3, the optimal policy is to increase the 
price whenever demand exceeds production (i.e. f < 
0) and decrease the price in the opposite situation. 
The change in price depends upon the magnitude of f 
and available price change such that the price 
remains in the range of 1 to 5. In Fig. 4, the policy is 
plotted for u = 1.5 which means the decrease in price 
is not available. Note that in Fig. 4, the change in 
price not only depends upon f but is also dependent 
upon q. As can be seen in Fig. 4, for larger q the 
change in price is more aggressive for the same 
value of f. 

Finally, we include an example of a trajectory of 
f generated using our optimal policy in a random 
environment where p jumps randomly after every 7-
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Also, if the price does not change, the demand does 
not change with probability 1. The state space is 
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Note that the value of f ranges between -10 and 
10 in the above equation. The value of the 
controllable variable u ranges from 1 to 5 with the 
smallest possible increment of 0.1, i.e., u can assume 
values such as 1, 1.1, 1.2, and up to so on 5. Finally, 
the number of steps (q) ranges from 1 to 6. The 
action space is defined as, 
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(15) 
Equation (15) presents 13 possible actions where 

the smallest possible nonzero change in u is 0.1 and 
the largest possible change in u is 4. Note that these 
actions are context-dependent, i.e., if u is already 
equal to 5 in the current state, then any action 
requiring a positive change in u shall result in 
NOOP. Similarly, reduction in u is not allowed when 
u is at its minimum value. The reward function is 
represented by Equation (12) with n = 6. To avoid 
big transitions in u, we also used a cost function 
where the cost of changing the price was 
proportional to the magnitude of the change. The 
transition function is given as 
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In Equation (16), r is the range of values fj can 
take given fi and µk. Φ is the function that determines 
the most likely value for the result of applying µk 
from fi. NC is the normalization constant. For 
elaboration purposes, the distribution curve for r = 
16, fi = -5, µk = 4, and Φ = 0 is shown as a function 
of possible values of fj in Fig. 2. Note that, since µk > 
0, f can only increase. The results in Fig. 2 indicate 
that the value of µ is large whenever the value of f is 
large. Note that µ is negative for positive values of f 
and positive for the negative values of f.

 

We calculated the optimal policy for the above 
example and the results are shown in Fig. 3 and Fig. 
4. In Fig. 3, the optimal policy is to increase the 
price whenever demand exceeds production (i.e. f < 
0) and decrease the price in the opposite situation. 
The change in price depends upon the magnitude of f 
and available price change such that the price 
remains in the range of 1 to 5. In Fig. 4, the policy is 
plotted for u = 1.5 which means the decrease in price 
is not available. Note that in Fig. 4, the change in 
price not only depends upon f but is also dependent 
upon q. As can be seen in Fig. 4, for larger q the 
change in price is more aggressive for the same 
value of f. 

Finally, we include an example of a trajectory of 
f generated using our optimal policy in a random 
environment where p jumps randomly after every 7-

Fig 2. Conditional Distribution of Change in  f  given 
Initial value of  f  and Change in u.

 Stochastic Root Finding with Markov Decision Process 85



The transition function is given as:
 

               (16)
In Equation (16), r is the range of values fj can 

take given fi and µk. Φ is the function that determines 
the most likely value for the result of applying 
µk from fi. NC is the normalization constant. For 
elaboration purposes, the distribution curve for r = 
16, fi = -5, µk = 4, and Φ = 0 is shown as a function 
of possible values of fj in Fig 2. Note that, since µk 
> 0, f can only increase. The results in Fig 2 indicate 
that the value of µ is large whenever the value of f is 
large. Note that µ is negative for positive values of f 
and positive for the negative values of f.

We calculated the optimal policy for the above 
example and the results are shown in Fig. 3 and 

Fig 4. In Fig 3, the optimal policy is to increase 
the price whenever demand exceeds production 
(i.e. f < 0) and decrease the price in the opposite 
situation. The change in price depends upon the 
magnitude of f and available price change such that 
the price remains in the range of 1 to 5. In Fig 4, 
the policy is plotted for u = 1.5 which means the 
decrease in price is not available. Note that in Fig. 
4, the change in price not only depends upon f but 
is also dependent upon q. As can be seen in Fig. 4, 
for larger q the change in price is more aggressive 
for the same value of f.

Finally, we include an example of a trajectory 
of f generated using our optimal policy in a random 
environment where p jumps randomly after every 
7-time steps. Fig 5 shows the results. Note that, 
our policy was able to bring f within the allowable 
range i.e., [-1 1] in maximum 5-time steps (without 
failing).

We have also presented the statistics of the 
results of Fig 5 in Table 1. Table 1 indicates that the 
number of steps to bring the function f within the 
threshold range from 1 to 5 with an average value 
of 2.58. The standard deviation of 1.43 indicates 
that the function f is brought within the threshold in 
four steps for most cases. 

Nasir Ali and Huma Rehman Baig 

6 
 

Also, if the price does not change, the demand does 
not change with probability 1. The state space is 
represented as 

{ }

{ }

1 2, ,...,
,
, ,

[ 10 :10], [1: 0.1: 5], [1: 6]

N

i i i i

i i i

S s s s
where
s f u q
f u q

=

=

∈ − ∈ ∈

          (14) 

Note that the value of f ranges between -10 and 
10 in the above equation. The value of the 
controllable variable u ranges from 1 to 5 with the 
smallest possible increment of 0.1, i.e., u can assume 
values such as 1, 1.1, 1.2, and up to so on 5. Finally, 
the number of steps (q) ranges from 1 to 6. The 
action space is defined as, 
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(15) 
Equation (15) presents 13 possible actions where 

the smallest possible nonzero change in u is 0.1 and 
the largest possible change in u is 4. Note that these 
actions are context-dependent, i.e., if u is already 
equal to 5 in the current state, then any action 
requiring a positive change in u shall result in 
NOOP. Similarly, reduction in u is not allowed when 
u is at its minimum value. The reward function is 
represented by Equation (12) with n = 6. To avoid 
big transitions in u, we also used a cost function 
where the cost of changing the price was 
proportional to the magnitude of the change. The 
transition function is given as 
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In Equation (16), r is the range of values fj can 
take given fi and µk. Φ is the function that determines 
the most likely value for the result of applying µk 
from fi. NC is the normalization constant. For 
elaboration purposes, the distribution curve for r = 
16, fi = -5, µk = 4, and Φ = 0 is shown as a function 
of possible values of fj in Fig. 2. Note that, since µk > 
0, f can only increase. The results in Fig. 2 indicate 
that the value of µ is large whenever the value of f is 
large. Note that µ is negative for positive values of f 
and positive for the negative values of f.

 

We calculated the optimal policy for the above 
example and the results are shown in Fig. 3 and Fig. 
4. In Fig. 3, the optimal policy is to increase the 
price whenever demand exceeds production (i.e. f < 
0) and decrease the price in the opposite situation. 
The change in price depends upon the magnitude of f 
and available price change such that the price 
remains in the range of 1 to 5. In Fig. 4, the policy is 
plotted for u = 1.5 which means the decrease in price 
is not available. Note that in Fig. 4, the change in 
price not only depends upon f but is also dependent 
upon q. As can be seen in Fig. 4, for larger q the 
change in price is more aggressive for the same 
value of f. 

Finally, we include an example of a trajectory of 
f generated using our optimal policy in a random 
environment where p jumps randomly after every 7-
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time steps. Fig. 5 shows the results. Note that, our 
policy was able to bring f within the allowable range 
i.e., [-1 1] in maximum 5-time steps (without 
failing). 

We have also presented the statistics of the 
results of Fig. 5 in Table 1. Table 1 indicates that the 
number of steps to bring the function f within the 
threshold range from 1 to 5 with an average value of 
2.58. The standard deviation of 1.43 indicates that 
the function f is brought within the threshold in four 
steps for most cases.  

 
Fig. 3. Optimal Policy for q = 5 

 
    Fig. 4 Optimal Policy for u = 1.5 

 
Fig. 5. The trajectory of f in a Random Environment 

         

Table 1. Statistics Regarding Number of Steps 

Statistical Measure Number of Steps 
Mean 2.58 
Min 1 
Max 5 
Mode 2 
Standard Deviation 1.43 

 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, we have shown that by using MDP 
formulations, it is possible to calculate optimal 
policies for the stochastic root-finding problem with 
a finite number of allowable steps. The root-finding 
problem discussed in this paper is discrete where the 
function can take on only a finite number of values. 
The problem of deadlocks and live locks for a 
general class of problems has been discussed and 
possible ways of avoiding such situations along with 
the consequences have been mentioned. Also, the 
specific class of problems for which the deadlocks 
and live locks do not occur has been identified. The 
behavior of optimal policy for a simulation example 
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time steps. Fig. 5 shows the results. Note that, our 
policy was able to bring f within the allowable range 
i.e., [-1 1] in maximum 5-time steps (without 
failing). 

We have also presented the statistics of the 
results of Fig. 5 in Table 1. Table 1 indicates that the 
number of steps to bring the function f within the 
threshold range from 1 to 5 with an average value of 
2.58. The standard deviation of 1.43 indicates that 
the function f is brought within the threshold in four 
steps for most cases.  
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5.  CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that by using MDP 
formulations, it is possible to calculate optimal 
policies for the stochastic root-finding problem with 
a finite number of allowable steps. The root-finding 
problem discussed in this paper is discrete where 
the function can take on only a finite number of 
values. The problem of deadlocks and live locks for 
a general class of problems has been discussed and 
possible ways of avoiding such situations along with 
the consequences have been mentioned. Also, the 
specific class of problems for which the deadlocks 
and live locks do not occur has been identified. The 
behavior of optimal policy for a simulation example 
has been included to show how the policy responds 
to the available time steps as well as the available 
change in the controlled variable. We have also 
included the trajectory of f using our policy. The 
results show good performance in terms of keeping 
the function within its allowable range for our 
simulated environment.
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