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Abstract: Smoking is the world's biggest public health concern. In epidemiology, the mechanisms of smoking 
addiction play a crucial role in mathematical models. In this paper Evolutionary Padé Approximation (EPA) scheme 
has been implemented for the treatment of the non-linear epidemiological smoking model. The evolutionary Padé 
Approximation scheme transforms the nonlinear epidemiology smoking model into an optimization problem by using 
Padé-approximation. Sufficient parameter settings for EPA have been implemented through MATLAB. Simulations 
represent numerical solutions of the epidemiology smoking model by solving the established optimization problem. 
First, the convergence solution of EPA scheme on population; potential smokers occasional smokers, heavy smokers, 
temporary quitters, and smokers who quit permanently have been studied and found to be significant. Evolutionary 
Padé Approximation has provided a convergence solution regarding the relationship among the different population 
compartments for diseases free equilibrium, it has been observed that the results EPA scheme are more reliable and 
significant when a comparison is drawn with Non-Standard Finite Difference (NSFD) numerical scheme. Finally, 
the EPA scheme reduces the contaminated levels for disease-free equilibrium very rapidly and restricts the spread of 
smoking within the population.

Keywords: Optimization, Non-linear epidemiological smoking model, Padé approximation, Differential Evolution, 
Penalty function.

1.  INTRODUCTION 

Mathematics has a wide scope which includes 
esoteric mathematics and mathematical modeling. 
The flow of the process, work, predictions, and results 
can be judged and measured by implementing the 
theory and mathematical concepts. Consequently, 
biologists have become dependent on mathematics 
to find out the mysteries. Mathematical modeling of 
biological sciences has been executed by multiple 
dazzling and intelligent scientists [1-3]. There is a 
connection between simple mathematical modeling 
which includes integer order of biological system 
and differential equations that display their 
subtleties, dynamics, and complex system that 
shows their change of construction. Multi-scale 
and nonlinearity behaviors in this model define 
the mutual connection between parameters [4].  

Currently, many biological models have been 
studying completely by using classical derivatives 
[5-7].

Smoking is known as one of the main cause in 
the world which is harming the healthy community. 
It hurts the dissimilar organs of the human body. It 
has become the major cause of more than 1 million 
demises. Compared to non-smokers, the heart 
attack ratio in a smoker is more than 70 percent 
[8]. Similarly, lung cancer is 10% higher than in a 
non-smoker [9]. The visible diseases of short term 
smoking are stained teeth, bad breath, coughing, and 
high blood pressure.  So far as the main infections 
and diseases of a long term smoking are throat 
cancer, stomach ulcer, lung cancer, gum disease, 
heart disease, and mouth cancer in the current 
centuries smoker. Besides, the life of a smoker is 



quitters and permanent quitters are present. Finding 
reproductive number was used to analyze disease-
free equilibrium. Graphically, numerical findings 
are provided to demonstrate the model's dynamics.

The study presents an innovative scheme known 
as Padé-approximation [24] which is based on the 
Differential Evolution Algorithm to handle the 
numerical treatment of this model. This suggested 
computational framework includes the following 
characteristics: 1) by creating an equivalent 
problem of optimization by manipulating the Padé 
approximation extrapolation and interpolation 
techniques, 2) to maintain positivity through original 
boundaries and contract conditions by outlining 
issue limitations, 3) an indispensable prerequisite 
for building fitness/objective function by using the 
penalty function approach, 4) Differential Evolution 
introduction to optimize the fitness function.

This whole paper has been established on these 
grounds. Section 2 has a comprehensive detail 
of the nonlinear epidemiology smoking model. 
Section 3 is based on the fundamentals of Padé 
approximation, differential evolution, and penalty 
function developed in the structure of EPA scheme 
to solve the numerical treatment of the nonlinear 
epidemiological smoking model. While in section 
4, revolves around the analyses of the results 
which have been presented. Finally, in the last 
section concluding remarks and findings for future 
directions have been given.

2. MATHEMATICAL MODEL OF SMOKING 

The variables of the model at any time t are defined 
as P(t): potential smokers, L(t): occasional smokers, 
S(t): heavy smokers, Q(t): temporary quitters, and 
R(t): smokers who quit permanently. The smoking 
model referred to in [25] is in the form of a system 
of a nonlinear differential equation is:

not more than 13 or 14 years of age.

World Health Origination (WHO) reports 
proving that smoking is the cause of many 
individuals in this entire world. Each doctor, 
scientist, and mathematician is striving hard to 
confront the severe causes of smoking while 
mathematicians are trying to form different valuable 
models of smoking to eradicate the smoking effects. 
Various smoking models are found that the writers 
planned: examined the Caputo fractional derivative 
smoking model [10], the examination of optimal 
control models expresses the dynamics of smoking 
qualitative analysis [11], Lung cancer and tobacco 
smoking examination [9], describe recovery 
and decrease in the mathematical assessment of 
tobacco dynamics [12], examined a fractional 
smoking and many others [8]. The interpretations 
of the description of smoking global dynamics of a 
mathematical system of equations [13].

These epidemiological models are vital 
procedures to investigate and acquire improved 
information about the development with the help of 
Mathematical tools which are built on arithmetical 
and numerical analysis, influence, and the deriving 
mechanisms, particularly when there is not available 
any analytical solution. Thoughtful information 
and knowledge about these model aid in adopting 
preventive actions and to evaluate their efficiency 
and effectiveness to avert such infections.

Contemporary meta-heuristics are proposed 
to cope with the maximum hitches by changing 
them into optimization problems in recent times. 
As we know Meta-heuristic algorithms have 
been formulated by natural phenomena as swarm 
behaviors [14,15], evolution [16,17], sports 
strategies [18], water dynamics [19], food foraging 
behavior [20], etc. Consult the survey article for 
more detailed studies referred to in [21]. Meta-
heuristics is based on approaches that resolve 
differential equations associated with the non-
standard mesh-free methods class. Improvisation of 
these suggested heuristics to differential equations 
may also be discovered in [22,23], but here is an 
issue that these meta heuristics applications to 
extensive and epidemic models are really difficult to 
see. The complete population in this model is split 
into five compartments where prospective smokers, 
occasional smokers, heavy smokers, temporary 
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extrapolation and interpolation techniques, 2) to 
maintain positivity through original boundaries and 
contract conditions by outlining issue limitations, 3) an 
indispensable prerequisite for building fitness/objective 
function by using the penalty function approach, 4) 
Differential Evolution introduction to optimize the 
fitness function. 

This whole paper has been established on these 
grounds. Section 2 has a comprehensive detail of the 
nonlinear epidemiology smoking model. Section 3 is 
based on the fundamentals of Padé approximation, 
differential evolution, and penalty function developed 
in the structure of 𝐸𝐸𝐸𝐸𝐸𝐸 scheme to solve the numerical 
treatment of the nonlinear epidemiological smoking 
model. While in section 4, revolves around the analyses 
of the results which have been presented. Finally, in the 
last section concluding remarks and findings for future 
directions have been given. 

2. MATHEMATICAL MODEL OF SMOKING 

The variables of the model at any time t are defined as 
𝐸𝐸(𝑡𝑡): potential smokers, 𝐿𝐿(𝑡𝑡): occasional smokers, 
𝑆𝑆(𝑡𝑡): heavy smokers, 𝑄𝑄(𝑡𝑡): temporary quitters, and 
𝑅𝑅(𝑡𝑡): smokers who quit permanently. The smoking 
model referred to in [25] is in the form of a system of a 
nonlinear differential equation is: 

𝐸𝐸′(𝑡𝑡) =  𝑎𝑎�1 − 𝐸𝐸(𝑡𝑡)� − 𝑏𝑏𝐸𝐸(𝑡𝑡)𝑆𝑆(𝑡𝑡),
𝐿𝐿′(𝑡𝑡) = −𝑎𝑎𝐿𝐿(𝑡𝑡) + 𝑏𝑏𝐸𝐸(𝑡𝑡)𝑆𝑆(𝑡𝑡) − 𝑐𝑐𝐿𝐿(𝑡𝑡)𝑆𝑆(𝑡𝑡),
𝑆𝑆′(𝑡𝑡) = −(𝑎𝑎 + 𝑑𝑑𝑑𝑑)𝑆𝑆(𝑡𝑡) + 𝑐𝑐𝐿𝐿(𝑡𝑡)𝑆𝑆(𝑡𝑡) + 𝑓𝑓𝑄𝑄(𝑡𝑡)
𝑄𝑄′(𝑡𝑡) = −(𝑎𝑎 + 𝑓𝑓)𝑄𝑄(𝑡𝑡) + 𝑑𝑑𝑑𝑑(1 − 𝑒𝑒)𝑆𝑆(𝑡𝑡),

𝑅𝑅′(𝑡𝑡) = −𝑎𝑎𝑅𝑅(𝑡𝑡) + 𝑒𝑒𝑑𝑑𝑑𝑑𝑆𝑆(𝑡𝑡).

,

⎭
⎪
⎬

⎪
⎫

        

(1) 
𝐸𝐸(0)  ≥  0, 𝐿𝐿(0)  ≥  0, 𝑆𝑆(0)  ≥  0,𝑄𝑄(0)  ≥  0,𝑅𝑅(0)  

≥  0 
Where 𝑎𝑎 = rate of natural death, 𝑏𝑏 = contact rate 
between potential smokers and smokers who smoke 
occasionally, 𝑐𝑐 = contact rate between temporary 
quitters and smokers who smoke occasionally, 𝑑𝑑𝑑𝑑 = rate 
of giving up smoking, 𝑒𝑒 = remaining fraction of 
smokers who give up smoking permanently, 𝑓𝑓 = 
contact rate between smokers and temporary quitters 
who return to smoking, (1 − 𝑒𝑒) = fraction of smokers 
who temporarily give up smoking at a rate 𝑑𝑑𝑑𝑑. 
𝑇𝑇(𝑡𝑡) = 𝐸𝐸(𝑡𝑡) + 𝐿𝐿(𝑡𝑡) + 𝑆𝑆(𝑡𝑡) + 𝑄𝑄(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) = 1               (2) 

Suppose that: 
𝐸𝐸′(𝑡𝑡) = 𝑋𝑋1(𝑡𝑡) =  𝑎𝑎�1 − 𝐸𝐸(𝑡𝑡)� − 𝑏𝑏𝐸𝐸(𝑡𝑡)𝑆𝑆(𝑡𝑡),

𝐿𝐿′(𝑡𝑡) = 𝑋𝑋2(𝑡𝑡) = −𝑎𝑎𝐿𝐿(𝑡𝑡) + 𝑏𝑏𝐸𝐸(𝑡𝑡)𝑆𝑆(𝑡𝑡) − 𝑐𝑐𝐿𝐿(𝑡𝑡)𝑆𝑆(𝑡𝑡),
𝑆𝑆′(𝑡𝑡) = 𝑋𝑋3(𝑡𝑡) = −(𝑎𝑎 + 𝑑𝑑𝑑𝑑)𝑆𝑆(𝑡𝑡) + 𝑐𝑐𝐿𝐿(𝑡𝑡)𝑆𝑆(𝑡𝑡) + 𝑓𝑓𝑄𝑄(𝑡𝑡),
𝑄𝑄′(𝑡𝑡) = 𝑋𝑋4(𝑡𝑡) = −(𝑎𝑎 + 𝑓𝑓)𝑄𝑄(𝑡𝑡) + 𝑑𝑑𝑑𝑑(1 − 𝑒𝑒)𝑆𝑆(𝑡𝑡),

𝑅𝑅′(𝑡𝑡) = 𝑋𝑋5(𝑡𝑡) = −𝑎𝑎𝑅𝑅(𝑡𝑡) + 𝑒𝑒𝑑𝑑𝑑𝑑𝑆𝑆(𝑡𝑡). ⎭
⎪
⎬

⎪
⎫

   (3) 

Subject to the conditions                                  
𝐸𝐸0 = 𝐸𝐸(0) ≥  0, 𝐿𝐿0 = 𝐿𝐿(0) ≥  0 , 𝑆𝑆0 = 𝑆𝑆(0)  ≥  0 ,  
𝑄𝑄0 = 𝑄𝑄(0)  ≥ 0,𝑅𝑅0 = 𝑅𝑅(0)  ≥   0 

Reproductive number =  𝑅𝑅0 = 𝑑𝑑𝑑𝑑(1−𝑒𝑒)
(𝑎𝑎+𝑑𝑑)(𝑎𝑎+𝑑𝑑)

 

In the case of the disease-free equilibrium point, 
 𝑅𝑅0 < 1 This shows that the disease will die out 
 
Disease-free equilibrium: 𝐸𝐸0 = (1, 0, 0, 0, 0) 
In the case of endemic equilibrium, 𝑅𝑅0 > 1 which shows 
that the disease spreads in the population?  
Endemic equilibrium: 

𝐸𝐸1 = (
𝑎𝑎

𝑎𝑎 + 𝑏𝑏𝑆𝑆∗
,

𝑎𝑎𝑏𝑏
(𝑎𝑎 + 𝑏𝑏𝑆𝑆∗)(𝑎𝑎 + 𝑐𝑐𝑆𝑆∗)

,
𝑑𝑑𝑑𝑑(1 − 𝑒𝑒)𝑆𝑆∗

𝑎𝑎 + 𝑓𝑓
,
𝑒𝑒𝑑𝑑𝑑𝑑𝑆𝑆∗

𝑎𝑎
) 

Table 1 Exhibited the parameters [25] of the smoking 
model. 

Table 1. Values of physical parameters of the smoking 
model 

Parameters Value Parameters Value 

𝑎𝑎 0.04 𝑏𝑏 0.23 

𝑐𝑐 0.30 𝑑𝑑𝑑𝑑 0.20 

𝑒𝑒 0.40 𝑓𝑓 0.25 

 

3. EVOLUTIONARY PADÉ APPROXIMATION 
SCHEME 

The evolutionary Padé Approximation scheme was 
developed and implemented for the numerical treatment 
of the HIV/AIDS epidemic model with vertical 
transmission by using evolutionary Padé-approximation 
[26]. The design of this scheme is based on  Padé-
approximation [27], Differential Evolution [28],[29] 
and penalty function [30]. The evolutionary Padé 
Approximation scheme has been applied to a nonlinear 
epidemiology smoking model which involves the 
following steps. 

3.1. Padé-approximation  

The concept of a Padé-approximation was launched at 
the end of the 19th century through the classical theory 
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Where a = rate of natural death, b = contact rate 
between potential smokers and smokers who smoke 
occasionally, c = contact rate between temporary 
quitters and smokers who smoke occasionally, d = 
rate of giving up smoking, e = remaining fraction 
of smokers who give up smoking permanently, 
f = contact rate between smokers and temporary 
quitters who return to smoking, (1 - e) = fraction 
of smokers who temporarily give up smoking at a 
rate d.

T(t) = P(t) + L(t) + S(t) + Q(t) + R(t)=1               (2)

Suppose that:

Subject to the conditions 

                                

Reproductive number =

In the case of the disease-free equilibrium point,
 R0<1 This shows that the disease will die out

Disease-free equilibrium: E0=(1,0,0,0,0)

In the case of endemic equilibrium, R0>1 which 
shows that the disease spreads in the population? 
Endemic equilibrium:

Table 1 Exhibited the parameters [25] of the 
smoking model.
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extrapolation and interpolation techniques, 2) to 
maintain positivity through original boundaries and 
contract conditions by outlining issue limitations, 3) an 
indispensable prerequisite for building fitness/objective 
function by using the penalty function approach, 4) 
Differential Evolution introduction to optimize the 
fitness function. 

This whole paper has been established on these 
grounds. Section 2 has a comprehensive detail of the 
nonlinear epidemiology smoking model. Section 3 is 
based on the fundamentals of Padé approximation, 
differential evolution, and penalty function developed 
in the structure of 𝐸𝐸𝐸𝐸𝐸𝐸 scheme to solve the numerical 
treatment of the nonlinear epidemiological smoking 
model. While in section 4, revolves around the analyses 
of the results which have been presented. Finally, in the 
last section concluding remarks and findings for future 
directions have been given. 

2. MATHEMATICAL MODEL OF SMOKING 

The variables of the model at any time t are defined as 
𝐸𝐸(𝑡𝑡): potential smokers, 𝐿𝐿(𝑡𝑡): occasional smokers, 
𝑆𝑆(𝑡𝑡): heavy smokers, 𝑄𝑄(𝑡𝑡): temporary quitters, and 
𝑅𝑅(𝑡𝑡): smokers who quit permanently. The smoking 
model referred to in [25] is in the form of a system of a 
nonlinear differential equation is: 

𝐸𝐸′(𝑡𝑡) =  𝑎𝑎�1 − 𝐸𝐸(𝑡𝑡)� − 𝑏𝑏𝐸𝐸(𝑡𝑡)𝑆𝑆(𝑡𝑡),
𝐿𝐿′(𝑡𝑡) = −𝑎𝑎𝐿𝐿(𝑡𝑡) + 𝑏𝑏𝐸𝐸(𝑡𝑡)𝑆𝑆(𝑡𝑡) − 𝑐𝑐𝐿𝐿(𝑡𝑡)𝑆𝑆(𝑡𝑡),
𝑆𝑆′(𝑡𝑡) = −(𝑎𝑎 + 𝑑𝑑𝑑𝑑)𝑆𝑆(𝑡𝑡) + 𝑐𝑐𝐿𝐿(𝑡𝑡)𝑆𝑆(𝑡𝑡) + 𝑓𝑓𝑄𝑄(𝑡𝑡)
𝑄𝑄′(𝑡𝑡) = −(𝑎𝑎 + 𝑓𝑓)𝑄𝑄(𝑡𝑡) + 𝑑𝑑𝑑𝑑(1 − 𝑒𝑒)𝑆𝑆(𝑡𝑡),

𝑅𝑅′(𝑡𝑡) = −𝑎𝑎𝑅𝑅(𝑡𝑡) + 𝑒𝑒𝑑𝑑𝑑𝑑𝑆𝑆(𝑡𝑡).

,

⎭
⎪
⎬

⎪
⎫

        

(1) 
𝐸𝐸(0)  ≥  0, 𝐿𝐿(0)  ≥  0, 𝑆𝑆(0)  ≥  0,𝑄𝑄(0)  ≥  0,𝑅𝑅(0)  

≥  0 
Where 𝑎𝑎 = rate of natural death, 𝑏𝑏 = contact rate 
between potential smokers and smokers who smoke 
occasionally, 𝑐𝑐 = contact rate between temporary 
quitters and smokers who smoke occasionally, 𝑑𝑑𝑑𝑑 = rate 
of giving up smoking, 𝑒𝑒 = remaining fraction of 
smokers who give up smoking permanently, 𝑓𝑓 = 
contact rate between smokers and temporary quitters 
who return to smoking, (1 − 𝑒𝑒) = fraction of smokers 
who temporarily give up smoking at a rate 𝑑𝑑𝑑𝑑. 
𝑇𝑇(𝑡𝑡) = 𝐸𝐸(𝑡𝑡) + 𝐿𝐿(𝑡𝑡) + 𝑆𝑆(𝑡𝑡) + 𝑄𝑄(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) = 1               (2) 

Suppose that: 
𝐸𝐸′(𝑡𝑡) = 𝑋𝑋1(𝑡𝑡) =  𝑎𝑎�1 − 𝐸𝐸(𝑡𝑡)� − 𝑏𝑏𝐸𝐸(𝑡𝑡)𝑆𝑆(𝑡𝑡),

𝐿𝐿′(𝑡𝑡) = 𝑋𝑋2(𝑡𝑡) = −𝑎𝑎𝐿𝐿(𝑡𝑡) + 𝑏𝑏𝐸𝐸(𝑡𝑡)𝑆𝑆(𝑡𝑡) − 𝑐𝑐𝐿𝐿(𝑡𝑡)𝑆𝑆(𝑡𝑡),
𝑆𝑆′(𝑡𝑡) = 𝑋𝑋3(𝑡𝑡) = −(𝑎𝑎 + 𝑑𝑑𝑑𝑑)𝑆𝑆(𝑡𝑡) + 𝑐𝑐𝐿𝐿(𝑡𝑡)𝑆𝑆(𝑡𝑡) + 𝑓𝑓𝑄𝑄(𝑡𝑡),
𝑄𝑄′(𝑡𝑡) = 𝑋𝑋4(𝑡𝑡) = −(𝑎𝑎 + 𝑓𝑓)𝑄𝑄(𝑡𝑡) + 𝑑𝑑𝑑𝑑(1 − 𝑒𝑒)𝑆𝑆(𝑡𝑡),

𝑅𝑅′(𝑡𝑡) = 𝑋𝑋5(𝑡𝑡) = −𝑎𝑎𝑅𝑅(𝑡𝑡) + 𝑒𝑒𝑑𝑑𝑑𝑑𝑆𝑆(𝑡𝑡). ⎭
⎪
⎬

⎪
⎫

   (3) 

Subject to the conditions                                  
𝐸𝐸0 = 𝐸𝐸(0) ≥  0, 𝐿𝐿0 = 𝐿𝐿(0) ≥  0 , 𝑆𝑆0 = 𝑆𝑆(0)  ≥  0 ,  
𝑄𝑄0 = 𝑄𝑄(0)  ≥ 0,𝑅𝑅0 = 𝑅𝑅(0)  ≥   0 

Reproductive number =  𝑅𝑅0 = 𝑑𝑑𝑑𝑑(1−𝑒𝑒)
(𝑎𝑎+𝑑𝑑)(𝑎𝑎+𝑑𝑑)

 

In the case of the disease-free equilibrium point, 
 𝑅𝑅0 < 1 This shows that the disease will die out 
 
Disease-free equilibrium: 𝐸𝐸0 = (1, 0, 0, 0, 0) 
In the case of endemic equilibrium, 𝑅𝑅0 > 1 which shows 
that the disease spreads in the population?  
Endemic equilibrium: 

𝐸𝐸1 = (
𝑎𝑎

𝑎𝑎 + 𝑏𝑏𝑆𝑆∗
,

𝑎𝑎𝑏𝑏
(𝑎𝑎 + 𝑏𝑏𝑆𝑆∗)(𝑎𝑎 + 𝑐𝑐𝑆𝑆∗)

,
𝑑𝑑𝑑𝑑(1 − 𝑒𝑒)𝑆𝑆∗

𝑎𝑎 + 𝑓𝑓
,
𝑒𝑒𝑑𝑑𝑑𝑑𝑆𝑆∗

𝑎𝑎
) 

Table 1 Exhibited the parameters [25] of the smoking 
model. 

Table 1. Values of physical parameters of the smoking 
model 

Parameters Value Parameters Value 

𝑎𝑎 0.04 𝑏𝑏 0.23 

𝑐𝑐 0.30 𝑑𝑑𝑑𝑑 0.20 

𝑒𝑒 0.40 𝑓𝑓 0.25 

 

3. EVOLUTIONARY PADÉ APPROXIMATION 
SCHEME 

The evolutionary Padé Approximation scheme was 
developed and implemented for the numerical treatment 
of the HIV/AIDS epidemic model with vertical 
transmission by using evolutionary Padé-approximation 
[26]. The design of this scheme is based on  Padé-
approximation [27], Differential Evolution [28],[29] 
and penalty function [30]. The evolutionary Padé 
Approximation scheme has been applied to a nonlinear 
epidemiology smoking model which involves the 
following steps. 

3.1. Padé-approximation  

The concept of a Padé-approximation was launched at 
the end of the 19th century through the classical theory 
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indispensable prerequisite for building fitness/objective 
function by using the penalty function approach, 4) 
Differential Evolution introduction to optimize the 
fitness function. 

This whole paper has been established on these 
grounds. Section 2 has a comprehensive detail of the 
nonlinear epidemiology smoking model. Section 3 is 
based on the fundamentals of Padé approximation, 
differential evolution, and penalty function developed 
in the structure of 𝐸𝐸𝐸𝐸𝐸𝐸 scheme to solve the numerical 
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Where 𝑎𝑎 = rate of natural death, 𝑏𝑏 = contact rate 
between potential smokers and smokers who smoke 
occasionally, 𝑐𝑐 = contact rate between temporary 
quitters and smokers who smoke occasionally, 𝑑𝑑𝑑𝑑 = rate 
of giving up smoking, 𝑒𝑒 = remaining fraction of 
smokers who give up smoking permanently, 𝑓𝑓 = 
contact rate between smokers and temporary quitters 
who return to smoking, (1 − 𝑒𝑒) = fraction of smokers 
who temporarily give up smoking at a rate 𝑑𝑑𝑑𝑑. 
𝑇𝑇(𝑡𝑡) = 𝐸𝐸(𝑡𝑡) + 𝐿𝐿(𝑡𝑡) + 𝑆𝑆(𝑡𝑡) + 𝑄𝑄(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) = 1               (2) 

Suppose that: 
𝐸𝐸′(𝑡𝑡) = 𝑋𝑋1(𝑡𝑡) =  𝑎𝑎�1 − 𝐸𝐸(𝑡𝑡)� − 𝑏𝑏𝐸𝐸(𝑡𝑡)𝑆𝑆(𝑡𝑡),

𝐿𝐿′(𝑡𝑡) = 𝑋𝑋2(𝑡𝑡) = −𝑎𝑎𝐿𝐿(𝑡𝑡) + 𝑏𝑏𝐸𝐸(𝑡𝑡)𝑆𝑆(𝑡𝑡) − 𝑐𝑐𝐿𝐿(𝑡𝑡)𝑆𝑆(𝑡𝑡),
𝑆𝑆′(𝑡𝑡) = 𝑋𝑋3(𝑡𝑡) = −(𝑎𝑎 + 𝑑𝑑𝑑𝑑)𝑆𝑆(𝑡𝑡) + 𝑐𝑐𝐿𝐿(𝑡𝑡)𝑆𝑆(𝑡𝑡) + 𝑓𝑓𝑄𝑄(𝑡𝑡),
𝑄𝑄′(𝑡𝑡) = 𝑋𝑋4(𝑡𝑡) = −(𝑎𝑎 + 𝑓𝑓)𝑄𝑄(𝑡𝑡) + 𝑑𝑑𝑑𝑑(1 − 𝑒𝑒)𝑆𝑆(𝑡𝑡),

𝑅𝑅′(𝑡𝑡) = 𝑋𝑋5(𝑡𝑡) = −𝑎𝑎𝑅𝑅(𝑡𝑡) + 𝑒𝑒𝑑𝑑𝑑𝑑𝑆𝑆(𝑡𝑡). ⎭
⎪
⎬

⎪
⎫

   (3) 

Subject to the conditions                                  
𝐸𝐸0 = 𝐸𝐸(0) ≥  0, 𝐿𝐿0 = 𝐿𝐿(0) ≥  0 , 𝑆𝑆0 = 𝑆𝑆(0)  ≥  0 ,  
𝑄𝑄0 = 𝑄𝑄(0)  ≥ 0,𝑅𝑅0 = 𝑅𝑅(0)  ≥   0 

Reproductive number =  𝑅𝑅0 = 𝑑𝑑𝑑𝑑(1−𝑒𝑒)
(𝑎𝑎+𝑑𝑑)(𝑎𝑎+𝑑𝑑)

 

In the case of the disease-free equilibrium point, 
 𝑅𝑅0 < 1 This shows that the disease will die out 
 
Disease-free equilibrium: 𝐸𝐸0 = (1, 0, 0, 0, 0) 
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𝐸𝐸0 = 𝐸𝐸(0) ≥  0, 𝐿𝐿0 = 𝐿𝐿(0) ≥  0 , 𝑆𝑆0 = 𝑆𝑆(0)  ≥  0 ,  
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In the case of the disease-free equilibrium point, 
 𝑅𝑅0 < 1 This shows that the disease will die out 
 
Disease-free equilibrium: 𝐸𝐸0 = (1, 0, 0, 0, 0) 
In the case of endemic equilibrium, 𝑅𝑅0 > 1 which shows 
that the disease spreads in the population?  
Endemic equilibrium: 

𝐸𝐸1 = (
𝑎𝑎

𝑎𝑎 + 𝑏𝑏𝑆𝑆∗
,
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Table 1 Exhibited the parameters [25] of the smoking 
model. 

Table 1. Values of physical parameters of the smoking 
model 

Parameters Value Parameters Value 

𝑎𝑎 0.04 𝑏𝑏 0.23 
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3. EVOLUTIONARY PADÉ APPROXIMATION 
SCHEME 

The evolutionary Padé Approximation scheme was 
developed and implemented for the numerical treatment 
of the HIV/AIDS epidemic model with vertical 
transmission by using evolutionary Padé-approximation 
[26]. The design of this scheme is based on  Padé-
approximation [27], Differential Evolution [28],[29] 
and penalty function [30]. The evolutionary Padé 
Approximation scheme has been applied to a nonlinear 
epidemiology smoking model which involves the 
following steps. 

3.1. Padé-approximation  

The concept of a Padé-approximation was launched at 
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extrapolation and interpolation techniques, 2) to 
maintain positivity through original boundaries and 
contract conditions by outlining issue limitations, 3) an 
indispensable prerequisite for building fitness/objective 
function by using the penalty function approach, 4) 
Differential Evolution introduction to optimize the 
fitness function. 

This whole paper has been established on these 
grounds. Section 2 has a comprehensive detail of the 
nonlinear epidemiology smoking model. Section 3 is 
based on the fundamentals of Padé approximation, 
differential evolution, and penalty function developed 
in the structure of 𝐸𝐸𝐸𝐸𝐸𝐸 scheme to solve the numerical 
treatment of the nonlinear epidemiological smoking 
model. While in section 4, revolves around the analyses 
of the results which have been presented. Finally, in the 
last section concluding remarks and findings for future 
directions have been given. 

2. MATHEMATICAL MODEL OF SMOKING 

The variables of the model at any time t are defined as 
𝐸𝐸(𝑡𝑡): potential smokers, 𝐿𝐿(𝑡𝑡): occasional smokers, 
𝑆𝑆(𝑡𝑡): heavy smokers, 𝑄𝑄(𝑡𝑡): temporary quitters, and 
𝑅𝑅(𝑡𝑡): smokers who quit permanently. The smoking 
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𝑄𝑄′(𝑡𝑡) = −(𝑎𝑎 + 𝑓𝑓)𝑄𝑄(𝑡𝑡) + 𝑑𝑑𝑑𝑑(1 − 𝑒𝑒)𝑆𝑆(𝑡𝑡),

𝑅𝑅′(𝑡𝑡) = −𝑎𝑎𝑅𝑅(𝑡𝑡) + 𝑒𝑒𝑑𝑑𝑑𝑑𝑆𝑆(𝑡𝑡).

,

⎭
⎪
⎬

⎪
⎫

        

(1) 
𝐸𝐸(0)  ≥  0, 𝐿𝐿(0)  ≥  0, 𝑆𝑆(0)  ≥  0,𝑄𝑄(0)  ≥  0,𝑅𝑅(0)  

≥  0 
Where 𝑎𝑎 = rate of natural death, 𝑏𝑏 = contact rate 
between potential smokers and smokers who smoke 
occasionally, 𝑐𝑐 = contact rate between temporary 
quitters and smokers who smoke occasionally, 𝑑𝑑𝑑𝑑 = rate 
of giving up smoking, 𝑒𝑒 = remaining fraction of 
smokers who give up smoking permanently, 𝑓𝑓 = 
contact rate between smokers and temporary quitters 
who return to smoking, (1 − 𝑒𝑒) = fraction of smokers 
who temporarily give up smoking at a rate 𝑑𝑑𝑑𝑑. 
𝑇𝑇(𝑡𝑡) = 𝐸𝐸(𝑡𝑡) + 𝐿𝐿(𝑡𝑡) + 𝑆𝑆(𝑡𝑡) + 𝑄𝑄(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) = 1               (2) 

Suppose that: 
𝐸𝐸′(𝑡𝑡) = 𝑋𝑋1(𝑡𝑡) =  𝑎𝑎�1 − 𝐸𝐸(𝑡𝑡)� − 𝑏𝑏𝐸𝐸(𝑡𝑡)𝑆𝑆(𝑡𝑡),

𝐿𝐿′(𝑡𝑡) = 𝑋𝑋2(𝑡𝑡) = −𝑎𝑎𝐿𝐿(𝑡𝑡) + 𝑏𝑏𝐸𝐸(𝑡𝑡)𝑆𝑆(𝑡𝑡) − 𝑐𝑐𝐿𝐿(𝑡𝑡)𝑆𝑆(𝑡𝑡),
𝑆𝑆′(𝑡𝑡) = 𝑋𝑋3(𝑡𝑡) = −(𝑎𝑎 + 𝑑𝑑𝑑𝑑)𝑆𝑆(𝑡𝑡) + 𝑐𝑐𝐿𝐿(𝑡𝑡)𝑆𝑆(𝑡𝑡) + 𝑓𝑓𝑄𝑄(𝑡𝑡),
𝑄𝑄′(𝑡𝑡) = 𝑋𝑋4(𝑡𝑡) = −(𝑎𝑎 + 𝑓𝑓)𝑄𝑄(𝑡𝑡) + 𝑑𝑑𝑑𝑑(1 − 𝑒𝑒)𝑆𝑆(𝑡𝑡),

𝑅𝑅′(𝑡𝑡) = 𝑋𝑋5(𝑡𝑡) = −𝑎𝑎𝑅𝑅(𝑡𝑡) + 𝑒𝑒𝑑𝑑𝑑𝑑𝑆𝑆(𝑡𝑡). ⎭
⎪
⎬

⎪
⎫

   (3) 

Subject to the conditions                                  
𝐸𝐸0 = 𝐸𝐸(0) ≥  0, 𝐿𝐿0 = 𝐿𝐿(0) ≥  0 , 𝑆𝑆0 = 𝑆𝑆(0)  ≥  0 ,  
𝑄𝑄0 = 𝑄𝑄(0)  ≥ 0,𝑅𝑅0 = 𝑅𝑅(0)  ≥   0 

Reproductive number =  𝑅𝑅0 = 𝑑𝑑𝑑𝑑(1−𝑒𝑒)
(𝑎𝑎+𝑑𝑑)(𝑎𝑎+𝑑𝑑)

 

In the case of the disease-free equilibrium point, 
 𝑅𝑅0 < 1 This shows that the disease will die out 
 
Disease-free equilibrium: 𝐸𝐸0 = (1, 0, 0, 0, 0) 
In the case of endemic equilibrium, 𝑅𝑅0 > 1 which shows 
that the disease spreads in the population?  
Endemic equilibrium: 

𝐸𝐸1 = (
𝑎𝑎

𝑎𝑎 + 𝑏𝑏𝑆𝑆∗
,

𝑎𝑎𝑏𝑏
(𝑎𝑎 + 𝑏𝑏𝑆𝑆∗)(𝑎𝑎 + 𝑐𝑐𝑆𝑆∗)

,
𝑑𝑑𝑑𝑑(1 − 𝑒𝑒)𝑆𝑆∗

𝑎𝑎 + 𝑓𝑓
,
𝑒𝑒𝑑𝑑𝑑𝑑𝑆𝑆∗

𝑎𝑎
) 

Table 1 Exhibited the parameters [25] of the smoking 
model. 

Table 1. Values of physical parameters of the smoking 
model 

Parameters Value Parameters Value 

𝑎𝑎 0.04 𝑏𝑏 0.23 

𝑐𝑐 0.30 𝑑𝑑𝑑𝑑 0.20 

𝑒𝑒 0.40 𝑓𝑓 0.25 

 

3. EVOLUTIONARY PADÉ APPROXIMATION 
SCHEME 

The evolutionary Padé Approximation scheme was 
developed and implemented for the numerical treatment 
of the HIV/AIDS epidemic model with vertical 
transmission by using evolutionary Padé-approximation 
[26]. The design of this scheme is based on  Padé-
approximation [27], Differential Evolution [28],[29] 
and penalty function [30]. The evolutionary Padé 
Approximation scheme has been applied to a nonlinear 
epidemiology smoking model which involves the 
following steps. 

3.1. Padé-approximation  

The concept of a Padé-approximation was launched at 
the end of the 19th century through the classical theory 

3.   EVOLUTIONARY PADÉ            
      APPROXIMATION SCHEME

The evolutionary Padé Approximation scheme 
was developed and implemented for the numerical 
treatment of the HIV/AIDS epidemic model with 
vertical transmission by using evolutionary Padé-
approximation [26]. The design of this scheme is 
based on  Padé-approximation [27], Differential 
Evolution [28],[29] and penalty function [30]. 
The evolutionary Padé Approximation scheme has 
been applied to a nonlinear epidemiology smoking 
model which involves the following steps.

3.1  Padé-approximation 

The concept of a Padé-approximation was launched 
at the end of the 19th century through the classical 
theory of continuing fractions. The reasonable 
(N,M) order function of the approximation of Padé 
referred in [27]

The polynomials                                            are 
known as Padé approximants. By putting b0 ≠ 0 
normalizing the above expression and attain the 
following form:

The above expression contains (N + M + 1) 
undetermined coefficients, applying the Maclaurin 
series expansions of PN,M (t) to get the target referred 
to in [24].
Suppose that  P(t), L(t), S(t), Q(t) and R(t) are 
approximated by Padé rational functions as

Imposing initial conditions

It is obtained

 
The discrete-time steps are tq = t0 + qh; q = 
0,1,2,3,...,qmax, and the above system of equations 
(3) reduces as:

Muhammad Farhan Tabassum et al 

of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 
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of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 
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of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  

Muhammad Farhan Tabassum et al 

of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  
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of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  
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of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  
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Here ε1, ε2, ε3, ε4 and ε5 are the residuals defined by
ε1(tq )=

By solving system (5) having 5qmax nonlinear 
simultaneous equations the problem reduces to 
finding 5(M+N) coefficients of Padé approximants.

 
3.2. Problem Constraints

The equality constraints of the model are considered 
as stated in the system (4):

The inequality constraints (16) to (20) are related 
to positivity:

whereas (21) incorporates the bounded-ness of the 
numerical solution:

                                                              
3.3. Objective Function

Suppose that:
 

              by converting the system (5) into minimi-
zation problem as:
                        (22)

3.4. Penalty Function 

In penalty function, a large positive number 
depending on the degree of violation of constraints 
is added to the objective function. In the following 
relation, the objective function presented by 
ψ(x), and the penalty function is presented by 
ζ(x) describes penalized function φ(x) which was 
unconstrained defined as follows:

Here ζ(x)≥0 is used for minimization problem 
and ζ(x)≤0 for a maximization problem. By using 
the following penalty function unconstrained 
optimization model is obtained as:

Here scalar Pq is a large positive real number of qth 

discrete-time step acting as a penalty factor then the 
unconstrained objective function is:

Minimize ϖ(x)=ϕ(x)+ζ(x)            (23)

3.5. Optimization process with Differential 
       Evolution (DE)

Price and Storn have created DE as a function 
optimizer that is easy to use, safe, and flexible. The 
first published paper on DE appeared as a technical 
document in 1995. Like nearly all evolutionary 
algorithms, DE is a population-based optimizer that 
randomly chosen starting points. In this original 
population, the preset bound parameter describes 
the domain from which the Np vectors are chosen. 
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of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  
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of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  

Muhammad Farhan Tabassum et al 

of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  
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of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  
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of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 
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of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��
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𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 
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of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  

Muhammad Farhan Tabassum et al 

of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  
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of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 
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of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  
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of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  

Muhammad Farhan Tabassum et al 

of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  
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of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  
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𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 
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3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  
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In penalty function, a large positive number depending 
on the degree of violation of constraints is added to the 
objective function. In the following relation, the 
objective function presented by 𝜓𝜓(𝒙𝒙), and the penalty 
function is presented by 𝜁𝜁(𝑥𝑥) describes penalized 
function 𝜑𝜑(𝑥𝑥) which was unconstrained defined as 
follows: 

𝜑𝜑(𝑥𝑥) = �𝜓𝜓
(𝑥𝑥) + 𝜁𝜁(𝑥𝑥)                    if 𝒙𝒙 is infeasible
𝜓𝜓(𝑥𝑥)                                     if 𝒙𝒙 is feasible  

Here 𝜁𝜁(𝑥𝑥) ≥ 0 is used for minimization problem and 
𝜁𝜁(𝑥𝑥) ≤ 0 for a maximization problem. By using the 
following penalty function unconstrained optimization 
model is obtained as: 

𝜁𝜁(𝒙𝒙) = � 𝑃𝑃𝑞𝑞 × 𝑚𝑚𝑚𝑚𝑥𝑥�

0, (ℎ1)2, (ℎ2)2, (ℎ3)2, (ℎ4)2, (ℎ5)2,

−𝑔𝑔1𝑞𝑞,−𝑔𝑔2𝑞𝑞,−𝑔𝑔3𝑞𝑞,−𝑔𝑔4𝑞𝑞 ,−𝑔𝑔5𝑞𝑞 ,�𝑔𝑔𝑠𝑠𝑞𝑞 − 1
5

𝑠𝑠=1

�
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚

𝑞𝑞=1

 

Here scalar 𝑃𝑃𝑃𝑃 is a large positive real number of 
𝑃𝑃𝑡𝑡ℎdiscrete-time step acting as a penalty factor then the 
unconstrained objective function is 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀 𝜛𝜛(𝒙𝒙) = 𝜙𝜙(𝒙𝒙) + 𝜁𝜁(𝑥𝑥)        (23) 

3.5. Optimization process with Differential 
Evolution (DE) 

Price and Storn have created 𝐷𝐷𝐷𝐷 as a function 
optimizer that is easy to use, safe, and flexible. The first 
published paper on 𝐷𝐷𝐷𝐷 appeared as a technical 
document in 1995. Like nearly all evolutionary 
algorithms, 𝐷𝐷𝐷𝐷 is a population-based optimizer that 
randomly chosen starting points. In this original 
population, the preset bound parameter describes the 
domain from which the 𝑁𝑁𝑁𝑁 vectors are chosen. Each 
vector is indexed between 0 and 𝑁𝑁𝑁𝑁 − 1. 𝐷𝐷𝐷𝐷 Produces 
fresh points that interfere with current points. Instead, 
𝐷𝐷𝐷𝐷 disturbs vectors that have the scaled distinction 
with two randomly chosen population vectors. To 
generate the trial vector, 𝑢𝑢0  𝐷𝐷𝐷𝐷 adds the scaled, 
random vector difference to a third randomly chosen 
population vector. In the selection phase, the trial 
vector competes against the same index population 
vector, which is number 0 in this case. The step of 
selecting and saving that marks the vector as a next-
generation member with the reduced objective function 
value. The technique repeats until all vectors of the 𝑁𝑁𝑁𝑁 
population compete against a randomly generated trial 
vector. After testing the last test vector, the 𝑁𝑁𝑁𝑁 

survivors become siblings in the next generation's 
evolutionary process [28],[29].  
The following steps are involved to optimize objective 
function (23) through 𝐷𝐷𝑃𝑃𝐸𝐸 scheme as: 
 
Algorithm: Evolutionary Padé Approximation 

Step 1. Generate population randomly, the population of 𝐾𝐾 
solutions 𝑥𝑥𝑗𝑗 ∈ ℝ5(𝑀𝑀+𝑁𝑁); 1 ≤  j ≤  K. 

Step 2. Evaluate the value 𝜛𝜛𝑗𝑗  = 𝜛𝜛(𝐱𝐱𝒋𝒋) of each solution. 
Collect the best solution with the minimum value of 
the objective function. Initially set T = 0. 

Step 3. Set T = T + 1. 
Step 4. Choose three distinct solutions 𝒙𝒙𝐴𝐴, 𝒙𝒙𝐵𝐵 and 𝒙𝒙𝐶𝐶 

from the population excluding 𝒙𝒙𝑗𝑗 for each 
of 𝑗𝑗 =  1, 2, 3, . . . ,𝐾𝐾, Set y = 𝒙𝒙𝒋𝒋. 

Step 5. For each of the dimensions 
𝑀𝑀 =  1, 2, 3, . . . , 5(𝑀𝑀 +  𝑁𝑁), alter the 𝑀𝑀𝑡𝑡ℎ 
coordinate according to 

𝑦𝑦𝑖𝑖

= �
𝑥𝑥𝐴𝐴𝑖𝑖 + 𝐹𝐹 × (𝑥𝑥𝐵𝐵𝑖𝑖 − 𝑥𝑥𝐶𝐶𝑖𝑖)         𝑀𝑀𝑖𝑖 𝑟𝑟𝑚𝑚𝑀𝑀𝑟𝑟𝑟𝑟𝑖𝑖𝑗𝑗[0,1] < 𝐶𝐶𝐶𝐶

𝑥𝑥𝑗𝑗𝑖𝑖                                                   𝑜𝑜𝑜𝑜ℎ𝑀𝑀𝑟𝑟𝑒𝑒𝑀𝑀𝑒𝑒𝑀𝑀
            

Step 6. If 𝜛𝜛(𝑦𝑦) < 𝜛𝜛𝑗𝑗 then 𝑥𝑥𝑗𝑗 ← 𝑦𝑦, otherwise discard 𝑦𝑦. 
Step 7. The best solution must be updated. 
Step 8. If T > number of iterations, finish with the best 

solution, otherwise repeat the entire process 
from step 3. 

4. NUMERICAL RESULTS AND DISCUSSION 

Set parameters of 𝐷𝐷𝐷𝐷 algorithm for numerical 
illustrations 

: 𝑁𝑁 = 50;  𝐹𝐹 = 0.55;𝐶𝐶𝐶𝐶 = 0.91 
and 𝑚𝑚𝑚𝑚𝑥𝑥𝑀𝑀𝑚𝑚𝑢𝑢𝑚𝑚 𝑀𝑀𝑜𝑜𝑀𝑀𝑟𝑟𝑚𝑚𝑜𝑜𝑀𝑀𝑜𝑜𝑀𝑀𝑒𝑒 =  2000. 

The approximation order for Padé is set 
to (𝑁𝑁,𝑀𝑀)  =  (2, 2). The 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 the parameter is set to 
2000. The penalty factor for all 𝑃𝑃 is set to𝐿𝐿𝑞𝑞 =  1010. 
The optimized smoking model parameters are shown in 
Table 1. In all simulations 10 independent runs have 
been taken and chosen the best one, Intel Core i3 with 
4GB RAM computer was used for experimentation 
with Microsoft windows 10. The source code was 
executed by using MATLAB (R2015b). The 
mathematical analysis of the non-linear epidemic 
smoking model was provided. To notice the sound 
effects of the 𝐷𝐷𝑃𝑃𝐸𝐸 algorithm on potential smokers, 
occasional smokers, heavy smokers, temporary quitters, 
and smokers who quit permanently population, 
comparison with 𝑁𝑁𝑁𝑁𝐹𝐹𝐷𝐷 having the property of 
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In penalty function, a large positive number depending 
on the degree of violation of constraints is added to the 
objective function. In the following relation, the 
objective function presented by 𝜓𝜓(𝒙𝒙), and the penalty 
function is presented by 𝜁𝜁(𝑥𝑥) describes penalized 
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The optimized smoking model parameters are shown in 
Table 1. In all simulations 10 independent runs have 
been taken and chosen the best one, Intel Core i3 with 
4GB RAM computer was used for experimentation 
with Microsoft windows 10. The source code was 
executed by using MATLAB (R2015b). The 
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smoking model was provided. To notice the sound 
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of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  

Muhammad Farhan Tabassum et al 

of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
⎬

⎪⎪
⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  

Muhammad Farhan Tabassum et al 

of continuing fractions. The reasonable (𝑁𝑁,𝑀𝑀) order 
function of the approximation of Padé referred in [27] 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=0

 

The polynomials ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0  and ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀

𝑗𝑗=0   are known as 
Padé approximants. By putting 𝑏𝑏0 ≠ 0 normalizing the 
above expression and attain the following form: 

𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑁𝑁
𝑖𝑖=0

1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

The above expression contains (𝑁𝑁 +  𝑀𝑀 +  1) 
undetermined coefficients, applying the Maclaurin 
series expansions of 𝑃𝑃𝑁𝑁,𝑀𝑀(𝑡𝑡) to get the target referred to 
in [24]. 
Suppose that  𝑃𝑃(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑆𝑆(𝑡𝑡),𝑄𝑄(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅(𝑡𝑡) are 
approximated by Padé rational functions as 

𝑃𝑃(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝐿𝐿(𝑡𝑡) = ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

, 𝑆𝑆(𝑡𝑡) = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

 

𝑄𝑄(𝑡𝑡) = ∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,𝑅𝑅(𝑡𝑡) = ∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑗𝑗𝑀𝑀
𝑗𝑗=1

,    

Imposing initial conditions 
𝑃𝑃(𝑡𝑡0) = 𝑃𝑃0 = 0.5, 𝐿𝐿(𝑡𝑡0) = 𝐿𝐿0 = 0.3, 𝑆𝑆(𝑡𝑡0) = 𝑆𝑆0 = 0.1,

𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 = 0.05,𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 = 0.05 �   (4) 

It is obtained 
𝑎𝑎0  =  𝑃𝑃0, 𝑐𝑐0  =  𝐿𝐿0, 𝑒𝑒0  =  𝑆𝑆0, 𝑔𝑔0 = 𝑄𝑄0, 𝑘𝑘0  =  𝑅𝑅0  
The discrete-time steps are 𝑡𝑡𝑞𝑞 =  𝑡𝑡0 + 𝑞𝑞ℎ;  𝑞𝑞 =
 0, 1, 2, 3, . . . , 𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚, and the above system of equations 
(3) reduces as: 
𝜀𝜀1�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀2�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀3�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀4�𝑡𝑡𝑞𝑞� = 0
𝜀𝜀5�𝑡𝑡𝑞𝑞� = 0⎭

⎪⎪
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⎫

            (5) 

Here 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝜀𝜀4 and 𝜀𝜀5 are the residuals defined by 
𝜀𝜀1�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋1�𝑡𝑡𝑞𝑞��1 + ∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (6) 

𝜀𝜀2�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋2�𝑡𝑡𝑞𝑞��1 + ∑ 𝑎𝑎𝑎𝑎𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (7) 

𝜀𝜀3�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋3�𝑡𝑡𝑞𝑞��1 + ∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (8) 

𝜀𝜀4�𝑡𝑡𝑞𝑞� =
�1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋4�𝑡𝑡𝑞𝑞��1 + ∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �        (9) 

𝜀𝜀5�𝑡𝑡𝑞𝑞� =
�1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 ��∑ 𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖−1𝑁𝑁

𝑖𝑖=0 � −

�∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=0 ��∑ 𝑗𝑗𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗−1𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋5�𝑡𝑡𝑞𝑞��1 + ∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞

𝑗𝑗𝑀𝑀
𝑗𝑗=1 �      (10) 

By solving system (5) having 5𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 nonlinear 
simultaneous equations the problem reduces to finding 
5(𝑀𝑀 + 𝑁𝑁) coefficients of Padé approximants.  

3.2. Problem Constraints 

The equality constraints of the model are considered as 
stated in the system (4): 
ℎ1(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑃𝑃0 = 0         (11) 
ℎ2(𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝐿𝐿0 = 0         (12) 
 ℎ3(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) − 𝑆𝑆0 = 0         (13) 
 ℎ4(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0 = 0         (14) 
 ℎ5(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0 = 0         (15) 
The inequality constraints (16) to (20) are related to 
positivity 

𝑔𝑔1𝑞𝑞 =
∑ 𝑎𝑎𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑏𝑏𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (16) 

 𝑔𝑔2𝑞𝑞 =
∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑑𝑑𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (17) 

 𝑔𝑔3𝑞𝑞 =
∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑓𝑓𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (18) 

 𝑔𝑔4𝑞𝑞 =
∑ 𝑔𝑔𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ ℎ𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (19) 

 𝑔𝑔5𝑞𝑞 =
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑞𝑞𝑖𝑖
𝑁𝑁
𝑖𝑖=0

1+∑ 𝑙𝑙𝑗𝑗𝑡𝑡𝑞𝑞
𝑗𝑗𝑀𝑀

𝑗𝑗=1
≥ 0,         (20) 

whereas (21) incorporates the bounded-ness of the 
numerical solution. 
𝑔𝑔1𝑞𝑞 + 𝑔𝑔2𝑞𝑞 + 𝑔𝑔3𝑞𝑞 + 𝑔𝑔4𝑞𝑞 + 𝑔𝑔5𝑞𝑞 ≤ 1        (21) 

3.3. Objective Function 

Suppose that 
 𝒙𝒙 =

�𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑀𝑀, 𝑏𝑏1, 𝑏𝑏2,⋯ , 𝑏𝑏𝑁𝑁 , 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑀𝑀 ,𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎2,⋯ ,𝑎𝑎𝑎𝑎𝑁𝑁 , 𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒𝑀𝑀,
𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑁𝑁 ,𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑀𝑀, ℎ1, ℎ2,⋯ , ℎ𝑁𝑁 , 𝑘𝑘1, 𝑘𝑘2,⋯ , 𝑘𝑘𝑀𝑀, 𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑁𝑁

�
𝑡𝑡

ℝ5(𝑀𝑀+𝑁𝑁), by converting the system (5) into minimization 
problem as: 
𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑒𝑒 𝜙𝜙(𝒙𝒙) = 1

5
∑ ∑ �𝜀𝜀𝑧𝑧�𝑡𝑡𝑞𝑞��

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞=0

5
𝑧𝑧=1  

      (22) 

3.4. Penalty Function  
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uniqueness and positivity represent in Figure 1-5. 
Figures show convergence solution with the 
relationship between the different population 
compartments for diseases free equilibrium by using 
𝐸𝐸𝐸𝐸𝐸𝐸 scheme and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 scheme, here it can be easily 
observed that the results 𝐸𝐸𝐸𝐸𝐸𝐸 scheme are more reliable 
and better convergence as with numerical scheme. In 
Figure 6 represents the impact of population 
compartments for diseases free equilibrium by 
using 𝐸𝐸𝐸𝐸𝐸𝐸. The results of different simulations through 
𝐸𝐸𝐸𝐸𝐸𝐸 are represented in Figure 7. 

 
Fig 1. Dynamical behavior of population 𝑷𝑷(𝒕𝒕) in a time 𝒕𝒕 
with 𝑬𝑬𝑷𝑷𝑬𝑬 and 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 
 

 
Fig 2. Dynamical behavior of population 𝑳𝑳(𝒕𝒕) in a time 𝒕𝒕 
with 𝑬𝑬𝑷𝑷𝑬𝑬 and 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 

 
Fig 3. Dynamical behavior of population 𝑵𝑵(𝒕𝒕) in a time 𝒕𝒕 
with 𝑬𝑬𝑷𝑷𝑬𝑬 and 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 
 

 
Fig 4. Dynamical behavior of population 𝑸𝑸(𝒕𝒕) in a time 𝒕𝒕 
with 𝑬𝑬𝑷𝑷𝑬𝑬 and 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 

 
Fig 5. Dynamical behavior of population 𝑹𝑹(𝒕𝒕) in a time 𝒕𝒕 
with 𝑬𝑬𝑷𝑷𝑬𝑬 and 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 

Each vector is indexed between 0 and Np-1. DE 
Produces fresh points that interfere with current 
points. Instead, DE disturbs vectors that have 
the scaled distinction with two randomly chosen 
population vectors. To generate the trial vector, 
u0 DE adds the scaled, random vector difference 
to a third randomly chosen population vector. 
In the selection phase, the trial vector competes 
against the same index population vector, which 
is number 0 in this case. The step of selecting and 
saving that marks the vector as a next-generation 
member with the reduced objective function value. 
The technique repeats until all vectors of the Np 
population compete against a randomly generated 
trial vector. After testing the last test vector, the Np 
survivors become siblings in the next generation's 
evolutionary process [28],[29]. 

The following steps are involved to optimize 
objective function (23) through EPA scheme as:

4.  NUMERICAL RESULTS AND DISCUSSION   

Set parameters of DE algorithm for numerical 
illustrations:

  N=50; F=0.55;CR=0.91 
 and maximum iterations = 2000.

The approximation order for Padé is set to                
(N , M) = (2 , 2). The qmax the parameter is set to 
2000. The penalty factor for all q is set to Lq= 1010. 
The optimized smoking model parameters are 
shown in Table 1. In all simulations 10 independent 
runs have been taken and chosen the best one, 
Intel Core i3 with 4GB RAM computer was used 
for experimentation with Microsoft windows 10. 
The source code was executed by using MATLAB 
(R2015b). The mathematical analysis of the non-
linear epidemic smoking model was provided. 
To notice the sound effects of the EPA algorithm 
on potential smokers, occasional smokers, heavy 
smokers, temporary quitters, and smokers who 
quit permanently population, comparison with 
NSFD having the property of uniqueness and 
positivity represent in Figure 1-5. Figures show 
convergence solution with the relationship between 
the different population compartments for diseases 
free equilibrium by using EPA scheme and NSFD 
scheme, here it can be easily observed that the 
results EPA scheme are more reliable and better 
convergence as with numerical scheme. In Figure 6 
represents the impact of population compartments 
for diseases free equilibrium by using EPA. The 
results of different simulations through EPA are 
represented in Figure 7.
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In penalty function, a large positive number depending 
on the degree of violation of constraints is added to the 
objective function. In the following relation, the 
objective function presented by 𝜓𝜓(𝒙𝒙), and the penalty 
function is presented by 𝜁𝜁(𝑥𝑥) describes penalized 
function 𝜑𝜑(𝑥𝑥) which was unconstrained defined as 
follows: 

𝜑𝜑(𝑥𝑥) = �𝜓𝜓
(𝑥𝑥) + 𝜁𝜁(𝑥𝑥)                    if 𝒙𝒙 is infeasible
𝜓𝜓(𝑥𝑥)                                     if 𝒙𝒙 is feasible  

Here 𝜁𝜁(𝑥𝑥) ≥ 0 is used for minimization problem and 
𝜁𝜁(𝑥𝑥) ≤ 0 for a maximization problem. By using the 
following penalty function unconstrained optimization 
model is obtained as: 

𝜁𝜁(𝒙𝒙) = � 𝑃𝑃𝑞𝑞 × 𝑚𝑚𝑚𝑚𝑥𝑥�

0, (ℎ1)2, (ℎ2)2, (ℎ3)2, (ℎ4)2, (ℎ5)2,

−𝑔𝑔1𝑞𝑞,−𝑔𝑔2𝑞𝑞,−𝑔𝑔3𝑞𝑞,−𝑔𝑔4𝑞𝑞 ,−𝑔𝑔5𝑞𝑞 ,�𝑔𝑔𝑠𝑠𝑞𝑞 − 1
5

𝑠𝑠=1

�
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚

𝑞𝑞=1

 

Here scalar 𝑃𝑃𝑃𝑃 is a large positive real number of 
𝑃𝑃𝑡𝑡ℎdiscrete-time step acting as a penalty factor then the 
unconstrained objective function is 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀 𝜛𝜛(𝒙𝒙) = 𝜙𝜙(𝒙𝒙) + 𝜁𝜁(𝑥𝑥)        (23) 

3.5. Optimization process with Differential 
Evolution (DE) 

Price and Storn have created 𝐷𝐷𝐷𝐷 as a function 
optimizer that is easy to use, safe, and flexible. The first 
published paper on 𝐷𝐷𝐷𝐷 appeared as a technical 
document in 1995. Like nearly all evolutionary 
algorithms, 𝐷𝐷𝐷𝐷 is a population-based optimizer that 
randomly chosen starting points. In this original 
population, the preset bound parameter describes the 
domain from which the 𝑁𝑁𝑁𝑁 vectors are chosen. Each 
vector is indexed between 0 and 𝑁𝑁𝑁𝑁 − 1. 𝐷𝐷𝐷𝐷 Produces 
fresh points that interfere with current points. Instead, 
𝐷𝐷𝐷𝐷 disturbs vectors that have the scaled distinction 
with two randomly chosen population vectors. To 
generate the trial vector, 𝑢𝑢0  𝐷𝐷𝐷𝐷 adds the scaled, 
random vector difference to a third randomly chosen 
population vector. In the selection phase, the trial 
vector competes against the same index population 
vector, which is number 0 in this case. The step of 
selecting and saving that marks the vector as a next-
generation member with the reduced objective function 
value. The technique repeats until all vectors of the 𝑁𝑁𝑁𝑁 
population compete against a randomly generated trial 
vector. After testing the last test vector, the 𝑁𝑁𝑁𝑁 

survivors become siblings in the next generation's 
evolutionary process [28],[29].  
The following steps are involved to optimize objective 
function (23) through 𝐷𝐷𝑃𝑃𝐸𝐸 scheme as: 
 
Algorithm: Evolutionary Padé Approximation 

Step 1. Generate population randomly, the population of 𝐾𝐾 
solutions 𝑥𝑥𝑗𝑗 ∈ ℝ5(𝑀𝑀+𝑁𝑁); 1 ≤  j ≤  K. 

Step 2. Evaluate the value 𝜛𝜛𝑗𝑗  = 𝜛𝜛(𝐱𝐱𝒋𝒋) of each solution. 
Collect the best solution with the minimum value of 
the objective function. Initially set T = 0. 

Step 3. Set T = T + 1. 
Step 4. Choose three distinct solutions 𝒙𝒙𝐴𝐴, 𝒙𝒙𝐵𝐵 and 𝒙𝒙𝐶𝐶 

from the population excluding 𝒙𝒙𝑗𝑗 for each 
of 𝑗𝑗 =  1, 2, 3, . . . ,𝐾𝐾, Set y = 𝒙𝒙𝒋𝒋. 

Step 5. For each of the dimensions 
𝑀𝑀 =  1, 2, 3, . . . , 5(𝑀𝑀 +  𝑁𝑁), alter the 𝑀𝑀𝑡𝑡ℎ 
coordinate according to 

𝑦𝑦𝑖𝑖

= �
𝑥𝑥𝐴𝐴𝑖𝑖 + 𝐹𝐹 × (𝑥𝑥𝐵𝐵𝑖𝑖 − 𝑥𝑥𝐶𝐶𝑖𝑖)         𝑀𝑀𝑖𝑖 𝑟𝑟𝑚𝑚𝑀𝑀𝑟𝑟𝑟𝑟𝑖𝑖𝑗𝑗[0,1] < 𝐶𝐶𝐶𝐶

𝑥𝑥𝑗𝑗𝑖𝑖                                                   𝑜𝑜𝑜𝑜ℎ𝑀𝑀𝑟𝑟𝑒𝑒𝑀𝑀𝑒𝑒𝑀𝑀
            

Step 6. If 𝜛𝜛(𝑦𝑦) < 𝜛𝜛𝑗𝑗 then 𝑥𝑥𝑗𝑗 ← 𝑦𝑦, otherwise discard 𝑦𝑦. 
Step 7. The best solution must be updated. 
Step 8. If T > number of iterations, finish with the best 

solution, otherwise repeat the entire process 
from step 3. 

4. NUMERICAL RESULTS AND DISCUSSION 

Set parameters of 𝐷𝐷𝐷𝐷 algorithm for numerical 
illustrations 

: 𝑁𝑁 = 50;  𝐹𝐹 = 0.55;𝐶𝐶𝐶𝐶 = 0.91 
and 𝑚𝑚𝑚𝑚𝑥𝑥𝑀𝑀𝑚𝑚𝑢𝑢𝑚𝑚 𝑀𝑀𝑜𝑜𝑀𝑀𝑟𝑟𝑚𝑚𝑜𝑜𝑀𝑀𝑜𝑜𝑀𝑀𝑒𝑒 =  2000. 

The approximation order for Padé is set 
to (𝑁𝑁,𝑀𝑀)  =  (2, 2). The 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 the parameter is set to 
2000. The penalty factor for all 𝑃𝑃 is set to𝐿𝐿𝑞𝑞 =  1010. 
The optimized smoking model parameters are shown in 
Table 1. In all simulations 10 independent runs have 
been taken and chosen the best one, Intel Core i3 with 
4GB RAM computer was used for experimentation 
with Microsoft windows 10. The source code was 
executed by using MATLAB (R2015b). The 
mathematical analysis of the non-linear epidemic 
smoking model was provided. To notice the sound 
effects of the 𝐷𝐷𝑃𝑃𝐸𝐸 algorithm on potential smokers, 
occasional smokers, heavy smokers, temporary quitters, 
and smokers who quit permanently population, 
comparison with 𝑁𝑁𝑁𝑁𝐹𝐹𝐷𝐷 having the property of 

Fig 1. Dynamical behavior of population P(t) in a time t with EPA and NSFD
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uniqueness and positivity represent in Figure 1-5. 
Figures show convergence solution with the 
relationship between the different population 
compartments for diseases free equilibrium by using 
𝐸𝐸𝐸𝐸𝐸𝐸 scheme and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 scheme, here it can be easily 
observed that the results 𝐸𝐸𝐸𝐸𝐸𝐸 scheme are more reliable 
and better convergence as with numerical scheme. In 
Figure 6 represents the impact of population 
compartments for diseases free equilibrium by 
using 𝐸𝐸𝐸𝐸𝐸𝐸. The results of different simulations through 
𝐸𝐸𝐸𝐸𝐸𝐸 are represented in Figure 7. 

 
Fig 1. Dynamical behavior of population 𝑷𝑷(𝒕𝒕) in a time 𝒕𝒕 
with 𝑬𝑬𝑷𝑷𝑬𝑬 and 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 
 

 
Fig 2. Dynamical behavior of population 𝑳𝑳(𝒕𝒕) in a time 𝒕𝒕 
with 𝑬𝑬𝑷𝑷𝑬𝑬 and 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 

 
Fig 3. Dynamical behavior of population 𝑵𝑵(𝒕𝒕) in a time 𝒕𝒕 
with 𝑬𝑬𝑷𝑷𝑬𝑬 and 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 
 

 
Fig 4. Dynamical behavior of population 𝑸𝑸(𝒕𝒕) in a time 𝒕𝒕 
with 𝑬𝑬𝑷𝑷𝑬𝑬 and 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 

 
Fig 5. Dynamical behavior of population 𝑹𝑹(𝒕𝒕) in a time 𝒕𝒕 
with 𝑬𝑬𝑷𝑷𝑬𝑬 and 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 
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uniqueness and positivity represent in Figure 1-5. 
Figures show convergence solution with the 
relationship between the different population 
compartments for diseases free equilibrium by using 
𝐸𝐸𝐸𝐸𝐸𝐸 scheme and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 scheme, here it can be easily 
observed that the results 𝐸𝐸𝐸𝐸𝐸𝐸 scheme are more reliable 
and better convergence as with numerical scheme. In 
Figure 6 represents the impact of population 
compartments for diseases free equilibrium by 
using 𝐸𝐸𝐸𝐸𝐸𝐸. The results of different simulations through 
𝐸𝐸𝐸𝐸𝐸𝐸 are represented in Figure 7. 

 
Fig 1. Dynamical behavior of population 𝑷𝑷(𝒕𝒕) in a time 𝒕𝒕 
with 𝑬𝑬𝑷𝑷𝑬𝑬 and 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 
 

 
Fig 2. Dynamical behavior of population 𝑳𝑳(𝒕𝒕) in a time 𝒕𝒕 
with 𝑬𝑬𝑷𝑷𝑬𝑬 and 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 

 
Fig 3. Dynamical behavior of population 𝑵𝑵(𝒕𝒕) in a time 𝒕𝒕 
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uniqueness and positivity represent in Figure 1-5. 
Figures show convergence solution with the 
relationship between the different population 
compartments for diseases free equilibrium by using 
𝐸𝐸𝐸𝐸𝐸𝐸 scheme and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 scheme, here it can be easily 
observed that the results 𝐸𝐸𝐸𝐸𝐸𝐸 scheme are more reliable 
and better convergence as with numerical scheme. In 
Figure 6 represents the impact of population 
compartments for diseases free equilibrium by 
using 𝐸𝐸𝐸𝐸𝐸𝐸. The results of different simulations through 
𝐸𝐸𝐸𝐸𝐸𝐸 are represented in Figure 7. 
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5. CONCLUSIONS 

This work proposes an evolutionary Padé 
approximation scheme for the solution of a nonlinear 
epidemiological smoking model. The 𝐸𝐸𝐸𝐸𝐸𝐸 scheme 
efficiently applies to the highly nonlinear smoking 
model; this scheme produces excellent approximations 
of state variables that are highly accurate to the 
governing equations. Initial conditions are converted 
into problem constraints and then the constraint 
problem is converted into an unconstraint problem by 
using the penalty function. The 𝐸𝐸𝐸𝐸𝐸𝐸 scheme has 
provided a convergence solution regarding the 
relationship among the different population 
compartments for diseases free equilibrium, it has been 
observed that the results 𝐸𝐸𝐸𝐸𝐸𝐸 scheme are more reliable 
and significant when a comparison is drawn with 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 numerical scheme. Finally, we have presented 

the numerical simulation and verified all the analytical 
results numerically by using 𝐸𝐸𝐸𝐸𝐸𝐸 to reduce the infected 
rates very fast for disease-free equilibria. Further, in 
strong contrast to 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, this technique has eliminated 
the need to provide step size and control the spreading 
of smoking in the community. 
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5.   CONCLUSIONS

This work proposes an evolutionary Padé 
approximation scheme for the solution of a 
nonlinear epidemiological smoking model. The 
EPA scheme efficiently applies to the highly 
nonlinear smoking model; this scheme produces 
excellent approximations of state variables that are 
highly accurate to the governing equations. Initial 
conditions are converted into problem constraints 
and then the constraint problem is converted into an 
unconstraint problem by using the penalty function. 
The EPA scheme has provided a convergence 
solution regarding the relationship among the 
different population compartments for diseases free 
equilibrium, it has been observed that the results 
EPA scheme are more reliable and significant 
when a comparison is drawn with NSFD numerical 
scheme. Finally, we have presented the numerical 
simulation and verified all the analytical results 
numerically by using EPA to reduce the infected 
rates very fast for disease-free equilibria. Further, 
in strong contrast to NFSD, this technique has 
eliminated the need to provide step size and control 
the spreading of smoking in the community.
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