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Abstract: This paper aims to construct a numerical iterated method of open methods to find a single root of application 
problems. The proposed numerical iterated method is the sixth order of convergence, and which is based on Steffensen 
Method and Newton Raphson Method.  The proposed sixth-order numerical iterated method is compared with the 
Modified Efficient Iterative Method and Generalize Newton Raphson Method [16-17]. C++/MATLAB is used on a 
few examples for justification of the proposed method based on the number of evolutions, accuracy, and iterations. 
From numerical results, it has been observed that the sixth order numerical iterated method is good accuracy with good 
convergence criteria as the assessment of existing methods for solving the root of nonlinear applications problems. 
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1.  INTRODUCTION 

For estimating a root of nonlinear equations has 
wide applications in numerous branches of pure 
science and applied science has been deliberated 
in the general framework [1-5], such as non-linear 
equations:

f(x)=0

Due to the importance of  f(x)=0, greatest 
researchers and scientists have been taken attention 
and lots of variants of accelerated methods had 
been given by using different techniques, such 
as Taylor series, quadrature formulas, homotopy 
perturbation method, Adomian’s decomposition, 
and variationally iteration technique [6-10]. 
Similarly, Newton Raphson method is an important 
and basic method, which is fast converging 
numerical techniques but are not reliable because 
keeping a kind of pitfall, however, it converges 

quadratically [11-12], such as: 

Furthermore, in numerical analysis order of 
convergence and computational efficiency become 
an efficient way to obtain the approximate solution 
and it has been a vigorous field of research.  
Whereas Order of convergence is a speed at which 
a given iterated sequence converges to the root 
and computational efficiency show the economy 
of the iterated method. To improve the order 
of convergence and computational efficiency 
numerous methods have been proposed with the help 
of the Newton Raphson method [13-15]. Similarly, 
in this paper, a sixth-order iterated method has been 
recommended for finding a single root of a nonlinear 
equation. The proposed sixth-order iterated method 
is a combination of the classical Steffensen method 
and the Newton Raphson Method. The proposed 
method has been compared with Modified Efficient 

Received: March 2020; Accepted: June 2020  
* Corresponding Author: Umair Khalid <umair.khalid_sng@sbbusba.edu.pk> 

Sixth Order Numerical Iterated Method of Open Methods for Solving 
Nonlinear Applications Problems 

Umair Khalid Qureshi1*, and Zubair Ahmed kalhoro2 
 

1Department of Business Administration, Shaheed Benazir Bhutto University, Sanghar, Sindh, Pakistan 
2Institute Mathematics and Computer Science, University of Sindh Jamshoro, Pakistan  

 
Abstract: This paper aims to construct a numerical iterated method of open methods to find a single root of application 
problems. The proposed numerical iterated method is the sixth order of convergence, and which is based on Steffensen 
Method and Newton Raphson Method.  The proposed sixth-order numerical iterated method is compared with the Modified 
Efficient Iterative Method and Generalize Newton Raphson Method [16-17]. C++/MATLAB is used on a few examples for 
justification of the proposed method based on the number of evolutions, accuracy, and iterations. From numerical results, it 
has been observed that the sixth order numerical iterated method is good accuracy with good convergence criteria as the 
assessment of existing methods for solving the root of nonlinear applications problems.  
 

Keywords: Non-linear application problems, Open methods, Sixth order methods, Convergence analysis. 

1. INTRODUCTION 
For estimating a root of nonlinear equations has wide 
applications in numerous branches of pure science 
and applied science has been deliberated in the 
general framework [1-5], such as non-linear equations 

 ( )    
Due to the importance of  ( )   , greatest 

researchers and scientists have been taken attention and 
lots of variants of accelerated methods had been given 
by using different techniques, such as Taylor series, 
quadrature formulas, homotopy perturbation method, 
Adomian’s decomposition, and variationally iteration 
technique [6-10]. Similarly, Newton Raphson method 
is an important and basic method, which is fast 
converging numerical techniques but are not reliable 
because keeping a kind of pitfall, however, it converges 
quadratically [11-12], such as  

          (  )
  (  ) 

Furthermore, in numerical analysis order of 
convergence and computational efficiency become an 
efficient way to obtain the approximate solution and it 
has been a vigorous field of research.  Whereas Order 
of convergence is a speed at which a given iterated 
sequence converges to the root and computational 
efficiency show the economy of the iterated method. To 
improve the order of convergence and computational 
efficiency numerous methods have been proposed with 

the help of the Newton Raphson method [13-15]. 
Similarly, in this paper, a sixth-order iterated method 
has been recommended for finding a single root of a 
nonlinear equation. The proposed sixth-order iterated 
method is a combination of the classical Steffensen 
method and the Newton Raphson Method. The 
proposed method has been compared with Modified 
Efficient Iterative Method [16]: 

        (  )
  (  ) 

          (  )    (  ) (  )
  (  )    (  )  (  )  

           (  )    (  ) (  )
  (  )    (  )  (  )  

 
and Generalize Newton Raphson Method [17] 
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  (  ) 

          (  )  √  (  )      (  ) (  )
   (  )  

The sixth order numerical iterated method of open 
methods is performing well and more competent in 
approaching the root of nonlinear applications 
equations. 
 
2. PROPOSED METHODOLOGY 

The idea of the proposed iterated method comes from 
different references [4, 10, 11, 15, 16]. The proposed 



Where  

                         xn+2 =  xn+1 + h                               (3)

By using numerical condition such as h =            
∆ (xn+1) = f (xn+1) in (3), then substitute in (2), we get

or

                 (5)

Henceforth, (5) is a six order of convergence 
iterated 

3.  CONVERGENCE CRITERIA 

The following section will be shown that the 
Numerical Iterated Method is keeping six order of 
convergence, such as:

Proof:

Using the relation en= xn- a in Taylor series, 
therefore from Taylor series we estimate f(xn ),f`(xn)  
and                       with using this condition c=  (f``(a)) 
/(2f`(a) ) and ignoring higher-order term for easy to 
solve, such as:

    

Iterative Method [16]:

and Generalize Newton Raphson Method [17]

The sixth order numerical iterated method of open 
methods is performing well and more competent 
in approaching the root of nonlinear applications 
equations.

2. PROPOSED METHODOLOGY

The idea of the proposed iterated method comes 
from different references [4, 10, 11, 15, 16]. The 
proposed iterated method is developed with the 
help of point-slope form, numerical technique, and 
open methods. Consider the non-linear equation

f(x)=0

where `x` be a root of it and f is a function on 
under consideration interval containing `x`, and we 
suppose that | f(x) | > 0 for the root of a nonlinear 
equation. By using the point-slope form,

To find the root of this line, the value of x such 
that f(x)=0 by solving the following equation for x:

For the solution of `x` than the above equation 
become as 

In general,  
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Abstract: This paper aims to construct a numerical iterated method of open methods to find a single root of application 
problems. The proposed numerical iterated method is the sixth order of convergence, and which is based on Steffensen 
Method and Newton Raphson Method.  The proposed sixth-order numerical iterated method is compared with the Modified 
Efficient Iterative Method and Generalize Newton Raphson Method [16-17]. C++/MATLAB is used on a few examples for 
justification of the proposed method based on the number of evolutions, accuracy, and iterations. From numerical results, it 
has been observed that the sixth order numerical iterated method is good accuracy with good convergence criteria as the 
assessment of existing methods for solving the root of nonlinear applications problems.  
 

Keywords: Non-linear application problems, Open methods, Sixth order methods, Convergence analysis. 

1. INTRODUCTION 
For estimating a root of nonlinear equations has wide 
applications in numerous branches of pure science 
and applied science has been deliberated in the 
general framework [1-5], such as non-linear equations 

 ( )    
Due to the importance of  ( )   , greatest 

researchers and scientists have been taken attention and 
lots of variants of accelerated methods had been given 
by using different techniques, such as Taylor series, 
quadrature formulas, homotopy perturbation method, 
Adomian’s decomposition, and variationally iteration 
technique [6-10]. Similarly, Newton Raphson method 
is an important and basic method, which is fast 
converging numerical techniques but are not reliable 
because keeping a kind of pitfall, however, it converges 
quadratically [11-12], such as  

          (  )
  (  ) 

Furthermore, in numerical analysis order of 
convergence and computational efficiency become an 
efficient way to obtain the approximate solution and it 
has been a vigorous field of research.  Whereas Order 
of convergence is a speed at which a given iterated 
sequence converges to the root and computational 
efficiency show the economy of the iterated method. To 
improve the order of convergence and computational 
efficiency numerous methods have been proposed with 

the help of the Newton Raphson method [13-15]. 
Similarly, in this paper, a sixth-order iterated method 
has been recommended for finding a single root of a 
nonlinear equation. The proposed sixth-order iterated 
method is a combination of the classical Steffensen 
method and the Newton Raphson Method. The 
proposed method has been compared with Modified 
Efficient Iterative Method [16]: 
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  (  ) 

          (  )    (  ) (  )
  (  )    (  )  (  )  

           (  )    (  ) (  )
  (  )    (  )  (  )  

 
and Generalize Newton Raphson Method [17] 

        (  )
  (  ) 

          (  )  √  (  )      (  ) (  )
   (  )  

The sixth order numerical iterated method of open 
methods is performing well and more competent in 
approaching the root of nonlinear applications 
equations. 
 
2. PROPOSED METHODOLOGY 

The idea of the proposed iterated method comes from 
different references [4, 10, 11, 15, 16]. The proposed 
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By using (i) and (ii) in (2), we get:

By using (iii), (iv) and (vi) in the developed method, 
we get 

Henceforth, it has been proven that the proposed 
numerical iterated method is the sixth order of 
convergence.

4.  NUMERICAL OUTCOMES  

This section proposed sixth-order iterated method 
is applied to a few physical applications functions 
to illustrate the efficiency of the developed method, 
such as:

i. f(x) = Sinx - x + 1 with x = 2 (Mass of the 
jumper) 

ii. f(x) = ex – 4x with x = 0.5 (Volume of the gas 
depends on the temperatures)

iii. f(x) = ex + x - 20 with x = 2.5 (Anti-symmetric 
buckling of a beam)

iv. f(x) = x3  -9x + 1 with x = 0 (Projectile motion 
of any system)

v. f(x) = 2x - lnx - 7 with x = 4  (Pollutant bacteria 
concentration)

The developed method is equated with the 
Modified Efficient Iterative Method [16] 

and Generalize Newton Raphson Method [17]

C++/MATLAB is used to examine the proposed 
iterative method as shown in Table 1.

5.   CONCLUSIONS

This study has been considered and analyzed as a 
Numerical Iterated Method of open methods for 
solving nonlinear physical application problems. 
The order of convergence of the Proposed Iterated 
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we get  

    
     

 

     
   ( )(      

 )   
   ( )(      

 )
       ( )(        )  

 

         
      

 (       
      

 ) 
(        )  

 
         

     
 (       

 

     
 )(       

 )   
 

         
     

 (       
      

 )( 
      

 ) 
 
         

     
 (       

      
       

 

      
 ) 

         
     

 (       
 ) 

          
   (  

 ) 

Henceforth, it has been proven that the proposed 
numerical iterated method is the sixth order of 
convergence. 
 
4. NUMERICAL OUTCOMES 

This section proposed sixth-order iterated method is 
applied to a few physical applications functions to 
illustrate the efficiency of the developed method, such 
as: 

i.  ( )                    (Mass of the 
jumper)  

ii.  ( )                   (Volume of the gas 
depends on the temperatures) 

iii.  ( )                    (Anti-
symmetric buckling of a beam) 

iv.  ( )                    (Projectile 
motion of any system) 

v.  ( )                     (Pollutant 
bacteria concentration) 

The developed method is equated with the 
Modified Efficient Iterative Method [16]  

        (  )
  (  ) 

          (  )    (  ) (  )
  (  )    (  )  (  )  

           (  )    (  ) (  )
  (  )    (  )  (  )  

and Generalize Newton Raphson Method [17] 

        (  )
  (  ) 

          (  )  √  (  )      (  ) (  )
   (  )  

C++/MATLAB is used to examine the proposed 
iterative method as shown in Table 1.
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Method is six, and it has derived from Steffensen 
Method and Newton Raphson Method. From the 
fallouts in Table-1, it has been experiential that 
the developed technique is reducing the number 
of evolution, good in accuracy as well as iteration 
lookout by the assessment of the Modified Efficient 
Iterative Method; on the other hand, the Generalize 
Newton Raphson Method gives equally accuracy 
and number of iterations but good in the evolution 
with the assessment of the proposed method. Hence, 
throughout the research study, it has been observed 
that the proposed sixth order method iterative 
method is decent execution, more competent 
and performing supercilious as the assessment 
of existing six order iterated methods for solving 
the single root of physical application nonlinear 
problems.
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