
Research Article

Proceedings of the Pakistan Academy of Sciences: Pakistan Academy of Sciences
A. Physical and Computational Sciences: 57 (3): 47-60 (2020)
Copyright © Pakistan Academy of Sciences
ISSN: 2518-4245 (print), 2518-4253 (online)

————————————————
Received: November 2019; Accepted : September 2020
*Corresponding Author: Sabit Rahim <sabit.rahim@kiu.edu.pk>

An Optimization of Vulnerability Discovery Models
using Multiple Errors Iterative Analysis Method

Gul Jabeen1,2, Sabit Rahim1*, Gul Sahar1, Akber Aman Shah2, and Tehmina Bibi3

1Karakoram International University Gilgit, Pakistan
2Tsinghua University, Beijing, China

2School of Economics and Management, University of Chinese Academy of Science,
Beijing, China

3Institute of Geology, University of Azad Jammu & Kashmir Muzaffarabad, Pakistan

Abstract: A vulnerability discovery model (VDMs) play a central role to model the rate at which vulnerabilities
are discovered for software. Though, these models have various shortcomings viz., multi VDMs, changes in VDMs,
and development of new VDMS for different datasets due to diverse approaches and assumptions in their analytical
formation. There is a clear need for intensive investigation and extensive use of these models to enhance the predictive
accuracy of existing VDMs. In this paper, to enhance the predictive accuracy of existing VDMs, a multiple error
iterative analysis method (MEIAM) along with artificial neural network sign estimators has been proposed based on
the residual errors. Our findings reveal that the proposed method optimizes to fit historical vulnerability accurately and
helps to predict future trends of vulnerabilities across different datasets and models. Repeated calculations of residual
errors using these models are used to improve and adjust the forecast accuracy to the expected level. The experiment
performed by using real vulnerability data of three type’s popular software: Windows 10 (613), Android 7.0 (1018),
Internet Explorer 11 (60), and Firefox 20 (502), starting from the first day of the issue or the earliest available in NVD
database. The results demonstrate that the method is universally applicable to any of the VDMs to improve predictive
accuracy.

Keywords: Optimization, Vulnerability, HPEIAM, Discovery models, Artificial neural network.

1. INTRODUCTION

With the development of internet technology,
software systems have become larger and more
complex. Software vulnerabilities have also
increased rapidly, potentially causing an increasing
number of serious security threats. A critical
vulnerability provides an attacker with the ability to
access full control of software[1]. However, much
of the work on security has been qualitative, focused
on the detection and prediction of vulnerabilities
present in these systems. If the software developers
can make accurate quantitative predictions of the
vulnerability discovery, they can optimally assign
the needed resources that are likely to be required
for the patch management [2-4].

Several software vulnerability discovery
models (VDM) have been proposed during the
past few decades to model the vulnerabilities with
code attributes: text analysis and mining of source
code [5,6]. Code-attributes-based data models
have some disadvantages: the source code is not
available, especially for commercial software,
and the software developers continuously change
source code in the software. This continues until
the release of the software (repair or update),
thus predicting the future based on its static code
attributes is often not possible. Much of the current
research focuses on time-series-based vulnerability
discovery models [7, 8].

The first VDM model is proposed by anderson,
which is termed as Andeson Thermodynamic (AT)

parameters, there are always a set of assumptions
that have to be made. These assumptions generalize
the model, and their applicability becomes a critical
issue because there is no single model which can
be universally applied in all situations. VDMs
face challenges due to four assumptions: time,
operational environment, independence, and static
code [25].

Our purpose is to develop a technique that
improves the performance of any generic model
based on the expected accuracy that can be controlled
by the user. We aim to find a universal technique,
which is applicable to any data and model. Thus we
propose an optimized method called multiple error
iterative analysis method (MEIAM) that uses the
residual error values between actual and estimated
values iteratively to improve the fitting of historical
vulnerability data, which is controlled externally
by setting the expected accuracy for the specific
failure dataset. The repeated combination of
residual error modifications by using the proposed
method facilitates a better process of the fitting
model and provides a more accurate prediction
of future accruing vulnerabilities in the software
testing phase. An artificial neural network (ANN)
is used to estimate signs, which are associated
with residual errors. ANN facilitates the use of the
proposed technique because VDMs do not deal
with residual errors directly due to the randomly
fluctuated positive and negative signs associated
with them. The repeated computation of the same
data makes the prediction accuracy of existing
models significantly improved, and the expected
precision can be achieved, without concern about
the amount of data used.

The proposed technique applies to any of the
vulnerability prediction models, so it is considered
universal. Compared with VDMs, our technique
can globally enhance the performance of models
rather than locally change the functional attributes.
It is the only study where we have introduced the
expected accuracy, which can be controlled by the
user by giving the threshold value to any of the
specific data. We measure the performance of our
proposed optimized technique in conjunction with
the traditional statistical vulnerability discovery
models by using different vulnerability datasets. The
experimental results derived from the four datasets
illustrate that the proposed technique can better fit

model [9]. Many other statistical models are used
in literature, that either try to capture the underlying
processes or apply principles used in other fields
of science to discover vulnerabilities. Among
them, the exponential model is designed to fit the
real data [10]. In this model, two possible trends
were examined such as the quadratic model and the
exponential model. The logarithmic model shows
the total number of vulnerabilities as logarithmic
growth which was first proposed by poisson [11]
and is used by Rahimi [12] by fitting the model
to the vulnerabilities of a specific application.
Alhazmi et al. proposed a logistic model called the
AML model in [13] and examined it in [14]. The
predictive capabilities were evaluated in [15] and
[16] by using a different set of data. A multicycle
vulnerability discovery model was proposed by
Chan et al., which helps to extend the scope of
existing models [17]. Other studies focused on
increasing the accuracy of VDMs (weibull, normal,
beta, and gamma distribution) by examining the
skewness of the vulnerability data [18] or using the
Bayesian theorem[19, 20].

A recent study in [21] compared the
performance of the neural network and time-series
models for vulnerability prediction and found
that neural network outperforms in all the cases
[22] proposed models for software vulnerability
prediction and determine whether the software
reliability growth models can be used to predict
vulnerability discovery process and shows good
prediction results [23]. Analyses the vulnerability
data using the seasonal index and autocorrelation
function approach, which can be used to improve
the vulnerability discovery models. Sharma and
Singh [24] proposed a new vulnerability discovery
model based on the gamma distribution. Most of
the research defined above gained great success
in practice and attracted considerable attention.
However, very little research has focused on the
optimization of software vulnerability discovery
models. Optimization indicates that the actual
model property remains unchanged, but the
performance of the model can be enhanced to
fit better with the historical data and accurately
predict the future vulnerability occurrences. These
models use different physical approaches and
make assumptions in their analytic formulation.
Their parameters are defined explicitly and have
physical interpretations. In order to determine the

48 Gul Jabeen et al

the historical data and provides a more accurate
prediction of future vulnerabilities. Our results
demonstrate that our technique can work well with
every set of data and improves the performance
accuracy of every software vulnerability discovery
model. The rest of this paper is organized as follows.
In section 2, the proposed method is defined in
detail. Numerical illustrations are given in section
3. In section 4, the experimental evaluation and
performance analysis has been performed. Finally,
we conclude our work in section 5.

2. PROPOSED WORK

Statistical vulnerability models are generally
evaluated by using the fitting ability. However,
the primary purpose of VDMs is to achieve the
prediction accuracy precisely. We claim that the
method which is proposed (MEIAM) can enhance
the predicted accuracy of VDMs effectively. In
the following section, our proposed method is
described in detail.

2.1. Multiple Error Iterative Analysis Method
 (MEIAM)

To facilitate the description of our method, let us
introduce some notations first. Assume that a set of
known data v1(t),v2(t),...,vn(t) is used to develop a
mathematical model such as:

VDM
= f(v1(t),v2(t),…vn(t),p1,p2,…,pr,t1,t2,…,ts) (1)

Where a1, a2, a3,…an are parameters and t1, t2,…ts
are specific variables. In general, these quantitative
vulnerability discovery models are used to predict
future trend data: vn+1(t),vn+2(t),vn+3(t),…,vn+k(t). The
p1, p2, p3,…pn are unknown parameters that can be
determined by using any input sequences v1(t),v2
(t),…,vn(t) with different methods such as the least-
square method or the maximum likelihood method.

For convenience, this article discusses only one
argument which is denoted as t. We can write the
model Equation 1 as follows:

VDM = f(v1(t),v2(t),…,vn(t),p1,p2,…,pr,t) (2)

After applying the input data sequences:

in any quantitative VDM, the parameters are
estimated and also determine the approximation
solution, which is also used to evaluate the fitting
power of the model. The first approximation
solution is written as follow:

and its predicted values are defined as:

While the exact values corresponding to the
predicted values are assumed to be:

Suppose the error values can be determined as:

Which is referred to as the first error
sequence?
However, the errors obtained εn

(1)(t) may be positive
or negative depending on the predicted values. For
more simplicity, we omit t, for instance
vi(t),vi (t)

(1),εi
(1)(t) and Equation (1) is abbreviated

vi (t),vi(t)
(1),εi

(1)(t) and VDM=f(t) respectively. In
our proposed technique, we used the error values
εn

(1) to get more accurate results than previously
predicted solution vn+i

(1)(i=1,2,...,l) through multiple
iterations. Therefore, we analyze the error data
sequences ε1

(1),ε2
(1),...,εn

(1) same as vi
(1)(i= 1,2,….,n).

So, the mathematical VDM can be established as:

 (3)

Where the parameters p1
(1), p2

(1),…,pr
(1) are

determined by the input error data sequences: εi
(1),

i=1,2,…,n.

By using Equation 3, we obtained errors first
approximate solution as: ε1

(1),ε2
(1),…,εn

(1) and errors
predicted solution such as: ¯εn+1

(1),¯εn+2
(1) ,…,

¯εn+l
(1). As we have used statistical vulnerability

prediction models to estimate error approximation
and predicted solutions, however, these models can
use error inputs, but the signs associated with errors
always change (positive or negative). Parametric
VDMs only deals with positive input sequences,
therefore we have changed the obtained errors
sequences into positive values such as:

An Optimization of Vulnerability Discovery Models

𝑉𝑉𝑉𝑉𝑉𝑉
= 𝑓𝑓(𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡), 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑟𝑟, 𝑡𝑡)

 (2)

After applying the input data sequences:

𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡)

in any quantitative VDM, the parameters are
estimated and also determine the
approximation solution, which is also used to
evaluate the fitting power of the model. The
first approximation solution is written as
follow:

𝑣𝑣1(𝑡𝑡)
(1)

, 𝑣𝑣2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛(𝑡𝑡)
(1)

and its predicted values are defined as:

𝑣𝑣𝑛𝑛+1(𝑡𝑡)
(1)

, 𝑣𝑣𝑛𝑛+2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)
(1)

.
While the exact values corresponding to the
predicted values are assumed to be:

𝑣𝑣𝑛𝑛+1(𝑡𝑡)(1), 𝑣𝑣𝑛𝑛+2(𝑡𝑡)(1), … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)(1)
Suppose the error values can be determined as:

𝜀𝜀𝑛𝑛
(1)(𝑡𝑡) = 𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑣𝑣𝑛𝑛(𝑡𝑡)

(1)
(𝑛𝑛 = 1,2, …),

Which is referred to as the first error
sequence? However, the errors obtained
𝜀𝜀𝑛𝑛

(1)(𝑡𝑡) maybe positive or negative depending
on the predicted values. For more simplicity,

we omit t, for instance 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡)

and Equation (1) is abbreviated

𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡) and 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝑡𝑡)

respectively. In our proposed technique, we
used the error values𝜀𝜀𝑛𝑛

(1) to get more accurate
results than the previously predicted
solution 𝑣𝑣𝑛𝑛+𝑖𝑖

(1)(𝑖𝑖 = 1,2, ⋯ , 𝑙𝑙) through
multiple iterations. Therefore, we analyze the
error data sequences 𝜀𝜀1

(1), 𝜀𝜀2
(1), ⋯ , 𝜀𝜀𝑛𝑛

(1) same
as 𝑣𝑣𝑖𝑖(1)(𝑖𝑖 = 1,2, … . , 𝑛𝑛). So, the mathematical
VDM can be established as:

𝑉𝑉𝑉𝑉𝑉𝑉
= 𝑓𝑓(𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1), 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1), 𝑡𝑡)

 (3)

Where the parameters 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1) are

determined by the input error data sequences:
𝜀𝜀𝑖𝑖

(1), 𝑖𝑖 = 1,2, … , 𝑛𝑛.

By using Equation 3, we obtained errors
first approximate solution as:
𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1) and errors predicted
solution such as: 𝜀𝜀𝑛𝑛+1

(1), 𝜀𝜀𝑛𝑛+2
(1), … , 𝜀𝜀𝑛𝑛+𝑙𝑙

(1) .
As we have used statistical vulnerability
prediction models to estimate error
approximation and predicted solutions,
however, these models can use error inputs,
but the signs associated with errors always
change (positive or negative). Parametric
VDMs only deals with positive input
sequences, therefore we have changed the
obtained errors sequences into positive values
such as:

𝜀𝜀𝑛𝑛
(𝑖𝑖)(𝑖𝑖 = 1,2, … , 𝑙𝑙)

The positive and negative signs associated
with errors can be represented as s(i). We will
further describe it in the next section. Hence it
is obvious to get the second approximate
solution:

𝑣𝑣𝑖𝑖
(2) = 𝑣𝑣𝑖𝑖

(1) + 𝜀𝜀𝑖𝑖
(1)(𝑖𝑖 = 1,2, … , 𝑛𝑛)

by adding the first approximate solution and
the first error approximate solution.
We observe that 𝑣𝑣𝑖𝑖

(2) is a more close
approximate solution than that of first
approximation solution 𝑣𝑣𝑖𝑖

(1)(𝑖𝑖 = 1,2, … , 𝑙𝑙) to
the exact solution 𝑣𝑣𝑖𝑖(𝑖𝑖 = 1,2, … , 𝑛𝑛).

Similarly, the second error sequences obtained
by subtracting actual input sequences to a
second approximation solution: 𝜀𝜀𝑖𝑖

(2) =
𝑣𝑣𝑖𝑖

(1) − 𝑣𝑣𝑖𝑖
(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛) , which is known

as the second error.
By using the same method as defined above,
we can get the second error approximate
solution 𝜀𝜀𝑖𝑖

(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛) of the second
error 𝜀𝜀𝑖𝑖

(2) and its predicted values such as:

𝜀𝜀𝑛𝑛+1
(2), 𝜀𝜀𝑛𝑛+2

(2), … , 𝜀𝜀𝑛𝑛+𝑙𝑙
(2).

An Optimization of Vulnerability Discovery Models

𝑉𝑉𝑉𝑉𝑉𝑉
= 𝑓𝑓(𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡), 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑟𝑟, 𝑡𝑡)

 (2)

After applying the input data sequences:

𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡)

in any quantitative VDM, the parameters are
estimated and also determine the
approximation solution, which is also used to
evaluate the fitting power of the model. The
first approximation solution is written as
follow:

𝑣𝑣1(𝑡𝑡)
(1)

, 𝑣𝑣2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛(𝑡𝑡)
(1)

and its predicted values are defined as:

𝑣𝑣𝑛𝑛+1(𝑡𝑡)
(1)

, 𝑣𝑣𝑛𝑛+2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)
(1)

.
While the exact values corresponding to the
predicted values are assumed to be:

𝑣𝑣𝑛𝑛+1(𝑡𝑡)(1), 𝑣𝑣𝑛𝑛+2(𝑡𝑡)(1), … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)(1)
Suppose the error values can be determined as:

𝜀𝜀𝑛𝑛
(1)(𝑡𝑡) = 𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑣𝑣𝑛𝑛(𝑡𝑡)

(1)
(𝑛𝑛 = 1,2, …),

Which is referred to as the first error
sequence? However, the errors obtained
𝜀𝜀𝑛𝑛

(1)(𝑡𝑡) maybe positive or negative depending
on the predicted values. For more simplicity,

we omit t, for instance 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡)

and Equation (1) is abbreviated

𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡) and 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝑡𝑡)

respectively. In our proposed technique, we
used the error values𝜀𝜀𝑛𝑛

(1) to get more accurate
results than the previously predicted
solution 𝑣𝑣𝑛𝑛+𝑖𝑖

(1)(𝑖𝑖 = 1,2, ⋯ , 𝑙𝑙) through
multiple iterations. Therefore, we analyze the
error data sequences 𝜀𝜀1

(1), 𝜀𝜀2
(1), ⋯ , 𝜀𝜀𝑛𝑛

(1) same
as 𝑣𝑣𝑖𝑖(1)(𝑖𝑖 = 1,2, … . , 𝑛𝑛). So, the mathematical
VDM can be established as:

𝑉𝑉𝑉𝑉𝑉𝑉
= 𝑓𝑓(𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1), 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1), 𝑡𝑡)

 (3)

Where the parameters 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1) are

determined by the input error data sequences:
𝜀𝜀𝑖𝑖

(1), 𝑖𝑖 = 1,2, … , 𝑛𝑛.

By using Equation 3, we obtained errors
first approximate solution as:
𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1) and errors predicted
solution such as: 𝜀𝜀𝑛𝑛+1

(1), 𝜀𝜀𝑛𝑛+2
(1), … , 𝜀𝜀𝑛𝑛+𝑙𝑙

(1) .
As we have used statistical vulnerability
prediction models to estimate error
approximation and predicted solutions,
however, these models can use error inputs,
but the signs associated with errors always
change (positive or negative). Parametric
VDMs only deals with positive input
sequences, therefore we have changed the
obtained errors sequences into positive values
such as:

𝜀𝜀𝑛𝑛
(𝑖𝑖)(𝑖𝑖 = 1,2, … , 𝑙𝑙)

The positive and negative signs associated
with errors can be represented as s(i). We will
further describe it in the next section. Hence it
is obvious to get the second approximate
solution:

𝑣𝑣𝑖𝑖
(2) = 𝑣𝑣𝑖𝑖

(1) + 𝜀𝜀𝑖𝑖
(1)(𝑖𝑖 = 1,2, … , 𝑛𝑛)

by adding the first approximate solution and
the first error approximate solution.
We observe that 𝑣𝑣𝑖𝑖

(2) is a more close
approximate solution than that of first
approximation solution 𝑣𝑣𝑖𝑖

(1)(𝑖𝑖 = 1,2, … , 𝑙𝑙) to
the exact solution 𝑣𝑣𝑖𝑖(𝑖𝑖 = 1,2, … , 𝑛𝑛).

Similarly, the second error sequences obtained
by subtracting actual input sequences to a
second approximation solution: 𝜀𝜀𝑖𝑖

(2) =
𝑣𝑣𝑖𝑖

(1) − 𝑣𝑣𝑖𝑖
(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛) , which is known

as the second error.
By using the same method as defined above,
we can get the second error approximate
solution 𝜀𝜀𝑖𝑖

(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛) of the second
error 𝜀𝜀𝑖𝑖

(2) and its predicted values such as:

𝜀𝜀𝑛𝑛+1
(2), 𝜀𝜀𝑛𝑛+2

(2), … , 𝜀𝜀𝑛𝑛+𝑙𝑙
(2).

An Optimization of Vulnerability Discovery Models

𝑉𝑉𝑉𝑉𝑉𝑉
= 𝑓𝑓(𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡), 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑟𝑟, 𝑡𝑡)

 (2)

After applying the input data sequences:

𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡)

in any quantitative VDM, the parameters are
estimated and also determine the
approximation solution, which is also used to
evaluate the fitting power of the model. The
first approximation solution is written as
follow:

𝑣𝑣1(𝑡𝑡)
(1)

, 𝑣𝑣2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛(𝑡𝑡)
(1)

and its predicted values are defined as:

𝑣𝑣𝑛𝑛+1(𝑡𝑡)
(1)

, 𝑣𝑣𝑛𝑛+2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)
(1)

.
While the exact values corresponding to the
predicted values are assumed to be:

𝑣𝑣𝑛𝑛+1(𝑡𝑡)(1), 𝑣𝑣𝑛𝑛+2(𝑡𝑡)(1), … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)(1)
Suppose the error values can be determined as:

𝜀𝜀𝑛𝑛
(1)(𝑡𝑡) = 𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑣𝑣𝑛𝑛(𝑡𝑡)

(1)
(𝑛𝑛 = 1,2, …),

Which is referred to as the first error
sequence? However, the errors obtained
𝜀𝜀𝑛𝑛

(1)(𝑡𝑡) maybe positive or negative depending
on the predicted values. For more simplicity,

we omit t, for instance 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡)

and Equation (1) is abbreviated

𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡) and 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝑡𝑡)

respectively. In our proposed technique, we
used the error values𝜀𝜀𝑛𝑛

(1) to get more accurate
results than the previously predicted
solution 𝑣𝑣𝑛𝑛+𝑖𝑖

(1)(𝑖𝑖 = 1,2, ⋯ , 𝑙𝑙) through
multiple iterations. Therefore, we analyze the
error data sequences 𝜀𝜀1

(1), 𝜀𝜀2
(1), ⋯ , 𝜀𝜀𝑛𝑛

(1) same
as 𝑣𝑣𝑖𝑖(1)(𝑖𝑖 = 1,2, … . , 𝑛𝑛). So, the mathematical
VDM can be established as:

𝑉𝑉𝑉𝑉𝑉𝑉
= 𝑓𝑓(𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1), 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1), 𝑡𝑡)

 (3)

Where the parameters 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1) are

determined by the input error data sequences:
𝜀𝜀𝑖𝑖

(1), 𝑖𝑖 = 1,2, … , 𝑛𝑛.

By using Equation 3, we obtained errors
first approximate solution as:
𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1) and errors predicted
solution such as: 𝜀𝜀𝑛𝑛+1

(1), 𝜀𝜀𝑛𝑛+2
(1), … , 𝜀𝜀𝑛𝑛+𝑙𝑙

(1) .
As we have used statistical vulnerability
prediction models to estimate error
approximation and predicted solutions,
however, these models can use error inputs,
but the signs associated with errors always
change (positive or negative). Parametric
VDMs only deals with positive input
sequences, therefore we have changed the
obtained errors sequences into positive values
such as:

𝜀𝜀𝑛𝑛
(𝑖𝑖)(𝑖𝑖 = 1,2, … , 𝑙𝑙)

The positive and negative signs associated
with errors can be represented as s(i). We will
further describe it in the next section. Hence it
is obvious to get the second approximate
solution:

𝑣𝑣𝑖𝑖
(2) = 𝑣𝑣𝑖𝑖

(1) + 𝜀𝜀𝑖𝑖
(1)(𝑖𝑖 = 1,2, … , 𝑛𝑛)

by adding the first approximate solution and
the first error approximate solution.
We observe that 𝑣𝑣𝑖𝑖

(2) is a more close
approximate solution than that of first
approximation solution 𝑣𝑣𝑖𝑖

(1)(𝑖𝑖 = 1,2, … , 𝑙𝑙) to
the exact solution 𝑣𝑣𝑖𝑖(𝑖𝑖 = 1,2, … , 𝑛𝑛).

Similarly, the second error sequences obtained
by subtracting actual input sequences to a
second approximation solution: 𝜀𝜀𝑖𝑖

(2) =
𝑣𝑣𝑖𝑖

(1) − 𝑣𝑣𝑖𝑖
(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛) , which is known

as the second error.
By using the same method as defined above,
we can get the second error approximate
solution 𝜀𝜀𝑖𝑖

(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛) of the second
error 𝜀𝜀𝑖𝑖

(2) and its predicted values such as:

𝜀𝜀𝑛𝑛+1
(2), 𝜀𝜀𝑛𝑛+2

(2), … , 𝜀𝜀𝑛𝑛+𝑙𝑙
(2).

An Optimization of Vulnerability Discovery Models

𝑉𝑉𝑉𝑉𝑉𝑉
= 𝑓𝑓(𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡), 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑟𝑟, 𝑡𝑡)

 (2)

After applying the input data sequences:

𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡)

in any quantitative VDM, the parameters are
estimated and also determine the
approximation solution, which is also used to
evaluate the fitting power of the model. The
first approximation solution is written as
follow:

𝑣𝑣1(𝑡𝑡)
(1)

, 𝑣𝑣2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛(𝑡𝑡)
(1)

and its predicted values are defined as:

𝑣𝑣𝑛𝑛+1(𝑡𝑡)
(1)

, 𝑣𝑣𝑛𝑛+2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)
(1)

.
While the exact values corresponding to the
predicted values are assumed to be:

𝑣𝑣𝑛𝑛+1(𝑡𝑡)(1), 𝑣𝑣𝑛𝑛+2(𝑡𝑡)(1), … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)(1)
Suppose the error values can be determined as:

𝜀𝜀𝑛𝑛
(1)(𝑡𝑡) = 𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑣𝑣𝑛𝑛(𝑡𝑡)

(1)
(𝑛𝑛 = 1,2, …),

Which is referred to as the first error
sequence? However, the errors obtained
𝜀𝜀𝑛𝑛

(1)(𝑡𝑡) maybe positive or negative depending
on the predicted values. For more simplicity,

we omit t, for instance 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡)

and Equation (1) is abbreviated

𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡) and 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝑡𝑡)

respectively. In our proposed technique, we
used the error values𝜀𝜀𝑛𝑛

(1) to get more accurate
results than the previously predicted
solution 𝑣𝑣𝑛𝑛+𝑖𝑖

(1)(𝑖𝑖 = 1,2, ⋯ , 𝑙𝑙) through
multiple iterations. Therefore, we analyze the
error data sequences 𝜀𝜀1

(1), 𝜀𝜀2
(1), ⋯ , 𝜀𝜀𝑛𝑛

(1) same
as 𝑣𝑣𝑖𝑖(1)(𝑖𝑖 = 1,2, … . , 𝑛𝑛). So, the mathematical
VDM can be established as:

𝑉𝑉𝑉𝑉𝑉𝑉
= 𝑓𝑓(𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1), 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1), 𝑡𝑡)

 (3)

Where the parameters 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1) are

determined by the input error data sequences:
𝜀𝜀𝑖𝑖

(1), 𝑖𝑖 = 1,2, … , 𝑛𝑛.

By using Equation 3, we obtained errors
first approximate solution as:
𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1) and errors predicted
solution such as: 𝜀𝜀𝑛𝑛+1

(1), 𝜀𝜀𝑛𝑛+2
(1), … , 𝜀𝜀𝑛𝑛+𝑙𝑙

(1) .
As we have used statistical vulnerability
prediction models to estimate error
approximation and predicted solutions,
however, these models can use error inputs,
but the signs associated with errors always
change (positive or negative). Parametric
VDMs only deals with positive input
sequences, therefore we have changed the
obtained errors sequences into positive values
such as:

𝜀𝜀𝑛𝑛
(𝑖𝑖)(𝑖𝑖 = 1,2, … , 𝑙𝑙)

The positive and negative signs associated
with errors can be represented as s(i). We will
further describe it in the next section. Hence it
is obvious to get the second approximate
solution:

𝑣𝑣𝑖𝑖
(2) = 𝑣𝑣𝑖𝑖

(1) + 𝜀𝜀𝑖𝑖
(1)(𝑖𝑖 = 1,2, … , 𝑛𝑛)

by adding the first approximate solution and
the first error approximate solution.
We observe that 𝑣𝑣𝑖𝑖

(2) is a more close
approximate solution than that of first
approximation solution 𝑣𝑣𝑖𝑖

(1)(𝑖𝑖 = 1,2, … , 𝑙𝑙) to
the exact solution 𝑣𝑣𝑖𝑖(𝑖𝑖 = 1,2, … , 𝑛𝑛).

Similarly, the second error sequences obtained
by subtracting actual input sequences to a
second approximation solution: 𝜀𝜀𝑖𝑖

(2) =
𝑣𝑣𝑖𝑖

(1) − 𝑣𝑣𝑖𝑖
(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛) , which is known

as the second error.
By using the same method as defined above,
we can get the second error approximate
solution 𝜀𝜀𝑖𝑖

(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛) of the second
error 𝜀𝜀𝑖𝑖

(2) and its predicted values such as:

𝜀𝜀𝑛𝑛+1
(2), 𝜀𝜀𝑛𝑛+2

(2), … , 𝜀𝜀𝑛𝑛+𝑙𝑙
(2).

An Optimization of Vulnerability Discovery Models

𝑉𝑉𝑉𝑉𝑉𝑉
= 𝑓𝑓(𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡), 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑟𝑟, 𝑡𝑡)

 (2)

After applying the input data sequences:

𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡)

in any quantitative VDM, the parameters are
estimated and also determine the
approximation solution, which is also used to
evaluate the fitting power of the model. The
first approximation solution is written as
follow:

𝑣𝑣1(𝑡𝑡)
(1)

, 𝑣𝑣2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛(𝑡𝑡)
(1)

and its predicted values are defined as:

𝑣𝑣𝑛𝑛+1(𝑡𝑡)
(1)

, 𝑣𝑣𝑛𝑛+2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)
(1)

.
While the exact values corresponding to the
predicted values are assumed to be:

𝑣𝑣𝑛𝑛+1(𝑡𝑡)(1), 𝑣𝑣𝑛𝑛+2(𝑡𝑡)(1), … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)(1)
Suppose the error values can be determined as:

𝜀𝜀𝑛𝑛
(1)(𝑡𝑡) = 𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑣𝑣𝑛𝑛(𝑡𝑡)

(1)
(𝑛𝑛 = 1,2, …),

Which is referred to as the first error
sequence? However, the errors obtained
𝜀𝜀𝑛𝑛

(1)(𝑡𝑡) maybe positive or negative depending
on the predicted values. For more simplicity,

we omit t, for instance 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡)

and Equation (1) is abbreviated

𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡) and 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝑡𝑡)

respectively. In our proposed technique, we
used the error values𝜀𝜀𝑛𝑛

(1) to get more accurate
results than the previously predicted
solution 𝑣𝑣𝑛𝑛+𝑖𝑖

(1)(𝑖𝑖 = 1,2, ⋯ , 𝑙𝑙) through
multiple iterations. Therefore, we analyze the
error data sequences 𝜀𝜀1

(1), 𝜀𝜀2
(1), ⋯ , 𝜀𝜀𝑛𝑛

(1) same
as 𝑣𝑣𝑖𝑖(1)(𝑖𝑖 = 1,2, … . , 𝑛𝑛). So, the mathematical
VDM can be established as:

𝑉𝑉𝑉𝑉𝑉𝑉
= 𝑓𝑓(𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1), 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1), 𝑡𝑡)

 (3)

Where the parameters 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1) are

determined by the input error data sequences:
𝜀𝜀𝑖𝑖

(1), 𝑖𝑖 = 1,2, … , 𝑛𝑛.

By using Equation 3, we obtained errors
first approximate solution as:
𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1) and errors predicted
solution such as: 𝜀𝜀𝑛𝑛+1

(1), 𝜀𝜀𝑛𝑛+2
(1), … , 𝜀𝜀𝑛𝑛+𝑙𝑙

(1) .
As we have used statistical vulnerability
prediction models to estimate error
approximation and predicted solutions,
however, these models can use error inputs,
but the signs associated with errors always
change (positive or negative). Parametric
VDMs only deals with positive input
sequences, therefore we have changed the
obtained errors sequences into positive values
such as:

𝜀𝜀𝑛𝑛
(𝑖𝑖)(𝑖𝑖 = 1,2, … , 𝑙𝑙)

The positive and negative signs associated
with errors can be represented as s(i). We will
further describe it in the next section. Hence it
is obvious to get the second approximate
solution:

𝑣𝑣𝑖𝑖
(2) = 𝑣𝑣𝑖𝑖

(1) + 𝜀𝜀𝑖𝑖
(1)(𝑖𝑖 = 1,2, … , 𝑛𝑛)

by adding the first approximate solution and
the first error approximate solution.
We observe that 𝑣𝑣𝑖𝑖

(2) is a more close
approximate solution than that of first
approximation solution 𝑣𝑣𝑖𝑖

(1)(𝑖𝑖 = 1,2, … , 𝑙𝑙) to
the exact solution 𝑣𝑣𝑖𝑖(𝑖𝑖 = 1,2, … , 𝑛𝑛).

Similarly, the second error sequences obtained
by subtracting actual input sequences to a
second approximation solution: 𝜀𝜀𝑖𝑖

(2) =
𝑣𝑣𝑖𝑖

(1) − 𝑣𝑣𝑖𝑖
(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛) , which is known

as the second error.
By using the same method as defined above,
we can get the second error approximate
solution 𝜀𝜀𝑖𝑖

(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛) of the second
error 𝜀𝜀𝑖𝑖

(2) and its predicted values such as:

𝜀𝜀𝑛𝑛+1
(2), 𝜀𝜀𝑛𝑛+2

(2), … , 𝜀𝜀𝑛𝑛+𝑙𝑙
(2).

v1(t),v2(t),…,vn(t)

 An Optimization of Vulnerability Discovery Models 49

The positive and negative signs associated with
errors can be represented as s(i). We will further
describe it in the next section. Hence it is obvious
to get the second approximate solution:

By adding the first approximate solution and
the first error approximate solution.
We observe that vi ¯ (2) is a more close approximate
solution than that of first approximation
solution vi¯

(1) (i=1,2,…,l) to the exact solution
vi (i=1,2,…,n).

Similarly, the second error sequences
obtained by subtracting actual input sequences to
a second approximation solution: εi

(2)=vi
(1) _¯vi

(2)
(i=1,2,…,n), which is known as the second error.

By using the same method as defined above,
we can get the second error approximate solution
εi

(2) (i=1,2,…,n) of the second error εi
(2) and its

predicted values such as:

The third approximation solution can be obtained
as:

Therefore, by continuing the above multiple
error iterative process, we get the predicted values
closer to the exact values vi (i = 1,2,…,l). Similarly,
we get the kth approximate solution

by using the input sequences vi
(k) (i=1,2,…,l,

k=1,2,…,m) which will be considered as a more
exact approximate solution than vi

(k-1). Its predicted
solution v(n-1)

(k) (i = 1,2,…,n , k = 1,2,…,m) can also
be determined. The kth input error sequence εi

(k)
(i=1,2,…,n , k=1,2,…,m) is used to determine the
error approximate solution sequences εi

(k) (i=1,2,…
,n , k=1,2,…,m).

2.2. Basic Theorem

The following theorem describes how multiple
iterative analyses of residual errors obtained

through mathematical modeling can significantly
improve the predictive accuracy of software
vulnerability prediction models and help to achieve
expected results.

Theorem 1. Assume that a known data sequence
vi (i=1,2,…,l), which can be determined by function
VDM = f(v1,v2,…,vn , p1,p2,…,pr, t). By using our
proposed technique (HPEIAM), mth predictive
value vn+i

(m) can be obtained which is more close to
the exact solution vn+1 (i=1,2,…,l) than vn+i

(1).

Proof. For any value n, the following common
inequalities exist:

0 ≤ | vn
_ vn

(m) | = | εn
(m) | ≤ | εn

(m-1)) | ≤ ... ≤ | εn
(1) | =

| vn
_ vn

(1) |

Therefore, we consider M=max{ | vi
_ vi

(1) |,i=1,2,…
,n} and analyze the error sequence εi

(k) (i=1,2,...,n
, k=1,2,...,m). From the structure of εn

(k) and vn
(m),

we can see that for any values of n, the following
equations hold: εn

(1) = vn
_ vn

(1)

By continuing the same process we get:

εn
(m) = εn

(m-1) _ εn
(m-1) .

Now we prove that Equation 4 is true when
m→∞, and εn

(m) → 0. Therefore from

εn
(m) = vn

_ vn
(m)

we found that the solution v(n+i)
(m) (i=1,2,...,l) is

more closer to the exact solution v(n+i)(i=1,2,…,l)
than v(n+i)

(1) (i=1,2,…,l). Since 0 ≤ | εn
(1) | = | vn

_ vn
(1)

| ≤ M
then we obtain

 (4)

So the following inequality can be obtained:
0 ≤ | εn

(m) | ≤ | εn
(m-1) | ≤ ...≤ | εn

(1) | ≤ M as defined in
Equation (4), when m→∞ and εn

(m) → 0.

Dear Editor,

Please carefully consider our changes while composing.

Thank you very much for your time and support, below changes have been suggestion.

Need changes.

1. 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖(1)(𝑡𝑡)

2. 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖(1)(𝑡𝑡)

3. 𝑣𝑣𝑛𝑛+𝑖𝑖
(1)(𝑖𝑖 = 1,2,⋯ , 𝑙𝑙)

4. 𝜀𝜀𝑛𝑛(2) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(2) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛
(1) + 𝜀𝜀𝑛𝑛

(1)) = 𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛
(1)

𝜀𝜀𝑛𝑛(3) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(3) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛
(2) + 𝜀𝜀𝑛𝑛

(2)) = 𝜀𝜀𝑛𝑛(2) − 𝜀𝜀𝑛𝑛
(2)

5. 0 ≤ |𝜀𝜀𝑛𝑛(2)| = |𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(2)| = |𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛
(1)| ≤ |𝜀𝜀𝑛𝑛(1)| ≤ 𝑀𝑀

6. Need to change fig 5

Dear Editor,

Please carefully consider our changes while composing.

Thank you very much for your time and support, below changes have been suggestion.

Need changes.

1. 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖(1)(𝑡𝑡)

2. 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖(1)(𝑡𝑡)

3. 𝑣𝑣𝑛𝑛+𝑖𝑖
(1)(𝑖𝑖 = 1,2,⋯ , 𝑙𝑙)

4. 𝜀𝜀𝑛𝑛(2) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(2) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛
(1) + 𝜀𝜀𝑛𝑛

(1)) = 𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛
(1)

𝜀𝜀𝑛𝑛(3) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(3) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛
(2) + 𝜀𝜀𝑛𝑛

(2)) = 𝜀𝜀𝑛𝑛(2) − 𝜀𝜀𝑛𝑛
(2)

5. 0 ≤ |𝜀𝜀𝑛𝑛(2)| = |𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(2)| = |𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛
(1)| ≤ |𝜀𝜀𝑛𝑛(1)| ≤ 𝑀𝑀

6. Need to change fig 5

Dear Editor,

Please carefully consider our changes while composing.

Thank you very much for your time and support, below changes have been suggestion.

Need changes.

1. 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖(1)(𝑡𝑡)

2. 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖(1)(𝑡𝑡)

3. 𝑣𝑣𝑛𝑛+𝑖𝑖
(1)(𝑖𝑖 = 1,2,⋯ , 𝑙𝑙)

4. 𝜀𝜀𝑛𝑛(2) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(2) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛
(1) + 𝜀𝜀𝑛𝑛

(1)) = 𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛
(1)

𝜀𝜀𝑛𝑛(3) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(3) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛
(2) + 𝜀𝜀𝑛𝑛

(2)) = 𝜀𝜀𝑛𝑛(2) − 𝜀𝜀𝑛𝑛
(2)

5. 0 ≤ |𝜀𝜀𝑛𝑛(2)| = |𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(2)| = |𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛
(1)| ≤ |𝜀𝜀𝑛𝑛(1)| ≤ 𝑀𝑀

6. Need to change fig 5

An Optimization of Vulnerability Discovery Models

𝑉𝑉𝑉𝑉𝑉𝑉
= 𝑓𝑓(𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡), 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑟𝑟, 𝑡𝑡)

 (2)

After applying the input data sequences:

𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡)

in any quantitative VDM, the parameters are
estimated and also determine the
approximation solution, which is also used to
evaluate the fitting power of the model. The
first approximation solution is written as
follow:

𝑣𝑣1(𝑡𝑡)
(1)

, 𝑣𝑣2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛(𝑡𝑡)
(1)

and its predicted values are defined as:

𝑣𝑣𝑛𝑛+1(𝑡𝑡)
(1)

, 𝑣𝑣𝑛𝑛+2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)
(1)

.
While the exact values corresponding to the
predicted values are assumed to be:

𝑣𝑣𝑛𝑛+1(𝑡𝑡)(1), 𝑣𝑣𝑛𝑛+2(𝑡𝑡)(1), … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)(1)
Suppose the error values can be determined as:

𝜀𝜀𝑛𝑛
(1)(𝑡𝑡) = 𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑣𝑣𝑛𝑛(𝑡𝑡)

(1)
(𝑛𝑛 = 1,2, …),

Which is referred to as the first error
sequence? However, the errors obtained
𝜀𝜀𝑛𝑛

(1)(𝑡𝑡) maybe positive or negative depending
on the predicted values. For more simplicity,

we omit t, for instance 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡)

and Equation (1) is abbreviated

𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡) and 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝑡𝑡)

respectively. In our proposed technique, we
used the error values𝜀𝜀𝑛𝑛

(1) to get more accurate
results than the previously predicted
solution 𝑣𝑣𝑛𝑛+𝑖𝑖

(1)(𝑖𝑖 = 1,2, ⋯ , 𝑙𝑙) through
multiple iterations. Therefore, we analyze the
error data sequences 𝜀𝜀1

(1), 𝜀𝜀2
(1), ⋯ , 𝜀𝜀𝑛𝑛

(1) same
as 𝑣𝑣𝑖𝑖(1)(𝑖𝑖 = 1,2, … . , 𝑛𝑛). So, the mathematical
VDM can be established as:

𝑉𝑉𝑉𝑉𝑉𝑉
= 𝑓𝑓(𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1), 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1), 𝑡𝑡)

 (3)

Where the parameters 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1) are

determined by the input error data sequences:
𝜀𝜀𝑖𝑖

(1), 𝑖𝑖 = 1,2, … , 𝑛𝑛.

By using Equation 3, we obtained errors
first approximate solution as:
𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1) and errors predicted
solution such as: 𝜀𝜀𝑛𝑛+1

(1), 𝜀𝜀𝑛𝑛+2
(1), … , 𝜀𝜀𝑛𝑛+𝑙𝑙

(1) .
As we have used statistical vulnerability
prediction models to estimate error
approximation and predicted solutions,
however, these models can use error inputs,
but the signs associated with errors always
change (positive or negative). Parametric
VDMs only deals with positive input
sequences, therefore we have changed the
obtained errors sequences into positive values
such as:

𝜀𝜀𝑛𝑛
(𝑖𝑖)(𝑖𝑖 = 1,2, … , 𝑙𝑙)

The positive and negative signs associated
with errors can be represented as s(i). We will
further describe it in the next section. Hence it
is obvious to get the second approximate
solution:

𝑣𝑣𝑖𝑖
(2) = 𝑣𝑣𝑖𝑖

(1) + 𝜀𝜀𝑖𝑖
(1)(𝑖𝑖 = 1,2, … , 𝑛𝑛)

by adding the first approximate solution and
the first error approximate solution.
We observe that 𝑣𝑣𝑖𝑖

(2) is a more close
approximate solution than that of first
approximation solution 𝑣𝑣𝑖𝑖

(1)(𝑖𝑖 = 1,2, … , 𝑙𝑙) to
the exact solution 𝑣𝑣𝑖𝑖(𝑖𝑖 = 1,2, … , 𝑛𝑛).

Similarly, the second error sequences obtained
by subtracting actual input sequences to a
second approximation solution: 𝜀𝜀𝑖𝑖

(2) =
𝑣𝑣𝑖𝑖

(1) − 𝑣𝑣𝑖𝑖
(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛) , which is known

as the second error.
By using the same method as defined above,
we can get the second error approximate
solution 𝜀𝜀𝑖𝑖

(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛) of the second
error 𝜀𝜀𝑖𝑖

(2) and its predicted values such as:

𝜀𝜀𝑛𝑛+1
(2), 𝜀𝜀𝑛𝑛+2

(2), … , 𝜀𝜀𝑛𝑛+𝑙𝑙
(2).

An Optimization of Vulnerability Discovery Models

𝑉𝑉𝑉𝑉𝑉𝑉
= 𝑓𝑓(𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡), 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑟𝑟, 𝑡𝑡)

 (2)

After applying the input data sequences:

𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡)

in any quantitative VDM, the parameters are
estimated and also determine the
approximation solution, which is also used to
evaluate the fitting power of the model. The
first approximation solution is written as
follow:

𝑣𝑣1(𝑡𝑡)
(1)

, 𝑣𝑣2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛(𝑡𝑡)
(1)

and its predicted values are defined as:

𝑣𝑣𝑛𝑛+1(𝑡𝑡)
(1)

, 𝑣𝑣𝑛𝑛+2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)
(1)

.
While the exact values corresponding to the
predicted values are assumed to be:

𝑣𝑣𝑛𝑛+1(𝑡𝑡)(1), 𝑣𝑣𝑛𝑛+2(𝑡𝑡)(1), … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)(1)
Suppose the error values can be determined as:

𝜀𝜀𝑛𝑛
(1)(𝑡𝑡) = 𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑣𝑣𝑛𝑛(𝑡𝑡)

(1)
(𝑛𝑛 = 1,2, …),

Which is referred to as the first error
sequence? However, the errors obtained
𝜀𝜀𝑛𝑛

(1)(𝑡𝑡) maybe positive or negative depending
on the predicted values. For more simplicity,

we omit t, for instance 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡)

and Equation (1) is abbreviated

𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡) and 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝑡𝑡)

respectively. In our proposed technique, we
used the error values𝜀𝜀𝑛𝑛

(1) to get more accurate
results than the previously predicted
solution 𝑣𝑣𝑛𝑛+𝑖𝑖

(1)(𝑖𝑖 = 1,2, ⋯ , 𝑙𝑙) through
multiple iterations. Therefore, we analyze the
error data sequences 𝜀𝜀1

(1), 𝜀𝜀2
(1), ⋯ , 𝜀𝜀𝑛𝑛

(1) same
as 𝑣𝑣𝑖𝑖(1)(𝑖𝑖 = 1,2, … . , 𝑛𝑛). So, the mathematical
VDM can be established as:

𝑉𝑉𝑉𝑉𝑉𝑉
= 𝑓𝑓(𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1), 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1), 𝑡𝑡)

 (3)

Where the parameters 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1) are

determined by the input error data sequences:
𝜀𝜀𝑖𝑖

(1), 𝑖𝑖 = 1,2, … , 𝑛𝑛.

By using Equation 3, we obtained errors
first approximate solution as:
𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1) and errors predicted
solution such as: 𝜀𝜀𝑛𝑛+1

(1), 𝜀𝜀𝑛𝑛+2
(1), … , 𝜀𝜀𝑛𝑛+𝑙𝑙

(1) .
As we have used statistical vulnerability
prediction models to estimate error
approximation and predicted solutions,
however, these models can use error inputs,
but the signs associated with errors always
change (positive or negative). Parametric
VDMs only deals with positive input
sequences, therefore we have changed the
obtained errors sequences into positive values
such as:

𝜀𝜀𝑛𝑛
(𝑖𝑖)(𝑖𝑖 = 1,2, … , 𝑙𝑙)

The positive and negative signs associated
with errors can be represented as s(i). We will
further describe it in the next section. Hence it
is obvious to get the second approximate
solution:

𝑣𝑣𝑖𝑖
(2) = 𝑣𝑣𝑖𝑖

(1) + 𝜀𝜀𝑖𝑖
(1)(𝑖𝑖 = 1,2, … , 𝑛𝑛)

by adding the first approximate solution and
the first error approximate solution.
We observe that 𝑣𝑣𝑖𝑖

(2) is a more close
approximate solution than that of first
approximation solution 𝑣𝑣𝑖𝑖

(1)(𝑖𝑖 = 1,2, … , 𝑙𝑙) to
the exact solution 𝑣𝑣𝑖𝑖(𝑖𝑖 = 1,2, … , 𝑛𝑛).

Similarly, the second error sequences obtained
by subtracting actual input sequences to a
second approximation solution: 𝜀𝜀𝑖𝑖

(2) =
𝑣𝑣𝑖𝑖

(1) − 𝑣𝑣𝑖𝑖
(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛) , which is known

as the second error.
By using the same method as defined above,
we can get the second error approximate
solution 𝜀𝜀𝑖𝑖

(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛) of the second
error 𝜀𝜀𝑖𝑖

(2) and its predicted values such as:

𝜀𝜀𝑛𝑛+1
(2), 𝜀𝜀𝑛𝑛+2

(2), … , 𝜀𝜀𝑛𝑛+𝑙𝑙
(2).

8.

Correction: VDMs

Proposed work section

9.
Correction: subheading 2.1

10. Which is referred to as the first error sequence? Also need to change equation

Correction:

a) However, the errors obtained 𝜀𝜀𝑛𝑛
(1)(𝑡𝑡) may be positive or negative depending on the predicted

values. For more simplicity, we omit t, for instance 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡) and Equation (1) is

abbreviated 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡) and 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝑡𝑡) respectively. In our proposed technique, we

used the error values𝜀𝜀𝑛𝑛
(1) to get more accurate results than previously predicted

solution𝑣𝑣𝑛𝑛+𝑖𝑖
(1)(𝑖𝑖 = 1,2, ⋯ , 𝑙𝑙) through multiple iterations. Therefore, we analyze the error data

sequences 𝜀𝜀1
(1), 𝜀𝜀2

(1), ⋯ , 𝜀𝜀𝑛𝑛
(1) same as 𝑣𝑣𝑖𝑖(1)(𝑖𝑖 = 1,2, … . , 𝑛𝑛). So, the mathematical VDM can be

established as:

b) By using Equation 3, we obtained errors first approximate solution as: 𝜀𝜀1
(1), 𝜀𝜀2

(1), … , 𝜀𝜀𝑛𝑛
(1)and

errors predicted solution such as: 𝜀𝜀𝑛𝑛+1
(1), 𝜀𝜀𝑛𝑛+2

(1), … , 𝜀𝜀𝑛𝑛+𝑙𝑙
(1) .

Correction: remove? mark

11. Need correction.

Correction

𝜀𝜀𝑛𝑛
(𝑖𝑖)(𝑖𝑖 = 1,2, … , 𝑙𝑙)

Correction The third approximation solution can be obtained as:

(a) 𝑣𝑣𝑖𝑖
(3) = 𝑣𝑣𝑖𝑖(2) − 𝜀𝜀𝑖𝑖(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛).

(b) 𝑣𝑣𝑖𝑖
(𝑘𝑘) = 𝑣𝑣𝑖𝑖

(𝑘𝑘−1) − 𝜀𝜀𝑖𝑖
(𝑘𝑘−1)

(c) Solution 𝑣𝑣𝑛𝑛−1
(𝑘𝑘)(𝑖𝑖 = 1,2, … , 𝑛𝑛, 𝑘𝑘 = 1,2, … , 𝑚𝑚)

(d) sequences 𝜀𝜀𝑖𝑖

(𝑘𝑘)(𝑖𝑖 = 1,2, … , 𝑛𝑛, 𝑘𝑘 = 1,2, … , 𝑚𝑚).

8.

Correction: VDMs

Proposed work section

9.
Correction: subheading 2.1

10. Which is referred to as the first error sequence? Also need to change equation

Correction:

a) However, the errors obtained 𝜀𝜀𝑛𝑛
(1)(𝑡𝑡) may be positive or negative depending on the predicted

values. For more simplicity, we omit t, for instance 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡) and Equation (1) is

abbreviated 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡) and 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝑡𝑡) respectively. In our proposed technique, we

used the error values𝜀𝜀𝑛𝑛
(1) to get more accurate results than previously predicted

solution𝑣𝑣𝑛𝑛+𝑖𝑖
(1)(𝑖𝑖 = 1,2, ⋯ , 𝑙𝑙) through multiple iterations. Therefore, we analyze the error data

sequences 𝜀𝜀1
(1), 𝜀𝜀2

(1), ⋯ , 𝜀𝜀𝑛𝑛
(1) same as 𝑣𝑣𝑖𝑖(1)(𝑖𝑖 = 1,2, … . , 𝑛𝑛). So, the mathematical VDM can be

established as:

b) By using Equation 3, we obtained errors first approximate solution as: 𝜀𝜀1
(1), 𝜀𝜀2

(1), … , 𝜀𝜀𝑛𝑛
(1)and

errors predicted solution such as: 𝜀𝜀𝑛𝑛+1
(1), 𝜀𝜀𝑛𝑛+2

(1), … , 𝜀𝜀𝑛𝑛+𝑙𝑙
(1) .

Correction: remove? mark

11. Need correction.

Correction

𝜀𝜀𝑛𝑛
(𝑖𝑖)(𝑖𝑖 = 1,2, … , 𝑙𝑙)

Correction The third approximation solution can be obtained as:

(a) 𝑣𝑣𝑖𝑖
(3) = 𝑣𝑣𝑖𝑖(2) − 𝜀𝜀𝑖𝑖(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛).

(b) 𝑣𝑣𝑖𝑖
(𝑘𝑘) = 𝑣𝑣𝑖𝑖

(𝑘𝑘−1) − 𝜀𝜀𝑖𝑖
(𝑘𝑘−1)

(c) Solution 𝑣𝑣𝑛𝑛−1
(𝑘𝑘)(𝑖𝑖 = 1,2, … , 𝑛𝑛, 𝑘𝑘 = 1,2, … , 𝑚𝑚)

(d) sequences 𝜀𝜀𝑖𝑖

(𝑘𝑘)(𝑖𝑖 = 1,2, … , 𝑛𝑛, 𝑘𝑘 = 1,2, … , 𝑚𝑚).

8.

Correction: VDMs

Proposed work section

9.
Correction: subheading 2.1

10. Which is referred to as the first error sequence? Also need to change equation

Correction:

a) However, the errors obtained 𝜀𝜀𝑛𝑛
(1)(𝑡𝑡) may be positive or negative depending on the predicted

values. For more simplicity, we omit t, for instance 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡) and Equation (1) is

abbreviated 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡) and 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝑡𝑡) respectively. In our proposed technique, we

used the error values𝜀𝜀𝑛𝑛
(1) to get more accurate results than previously predicted

solution𝑣𝑣𝑛𝑛+𝑖𝑖
(1)(𝑖𝑖 = 1,2, ⋯ , 𝑙𝑙) through multiple iterations. Therefore, we analyze the error data

sequences 𝜀𝜀1
(1), 𝜀𝜀2

(1), ⋯ , 𝜀𝜀𝑛𝑛
(1) same as 𝑣𝑣𝑖𝑖(1)(𝑖𝑖 = 1,2, … . , 𝑛𝑛). So, the mathematical VDM can be

established as:

b) By using Equation 3, we obtained errors first approximate solution as: 𝜀𝜀1
(1), 𝜀𝜀2

(1), … , 𝜀𝜀𝑛𝑛
(1)and

errors predicted solution such as: 𝜀𝜀𝑛𝑛+1
(1), 𝜀𝜀𝑛𝑛+2

(1), … , 𝜀𝜀𝑛𝑛+𝑙𝑙
(1) .

Correction: remove? mark

11. Need correction.

Correction

𝜀𝜀𝑛𝑛
(𝑖𝑖)(𝑖𝑖 = 1,2, … , 𝑙𝑙)

Correction The third approximation solution can be obtained as:

(a) 𝑣𝑣𝑖𝑖
(3) = 𝑣𝑣𝑖𝑖(2) − 𝜀𝜀𝑖𝑖(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛).

(b) 𝑣𝑣𝑖𝑖
(𝑘𝑘) = 𝑣𝑣𝑖𝑖

(𝑘𝑘−1) − 𝜀𝜀𝑖𝑖
(𝑘𝑘−1)

(c) Solution 𝑣𝑣𝑛𝑛−1
(𝑘𝑘)(𝑖𝑖 = 1,2, … , 𝑛𝑛, 𝑘𝑘 = 1,2, … , 𝑚𝑚)

(d) sequences 𝜀𝜀𝑖𝑖

(𝑘𝑘)(𝑖𝑖 = 1,2, … , 𝑛𝑛, 𝑘𝑘 = 1,2, … , 𝑚𝑚).

(e) value 𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚) can be obtained which is more close to the exact solution 𝑣𝑣𝑛𝑛+1(𝑖𝑖 = 1,2,… , 𝑙𝑙) than

𝑣𝑣𝑛𝑛+𝑖𝑖
(1).

(f) Proof. For any value n, the following common inequalities exist:
Correction: 0 ≤ |𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(𝑚𝑚)| = |𝜀𝜀𝑛𝑛(𝑚𝑚)| ≤ |𝜀𝜀𝑛𝑛
(𝑚𝑚−1)| ≤ ⋯ ≤ |𝜀𝜀𝑛𝑛(1)| = |𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(1)|

13. Need correction of equation Therefore, we consider
Correction 𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚{ |𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖

(1)|, 𝑖𝑖 = 1,2,… , 𝑛𝑛}

14. Need correction of equation

Correction: and 𝑣𝑣𝑛𝑛
(𝑚𝑚),

15. the following equations hold:

correction: 𝜀𝜀𝑛𝑛(1) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛
(1)

16. Need to put this equation.

Correction :

𝜀𝜀𝑛𝑛(2) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛
(2) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛

(1) + 𝜀𝜀𝑛𝑛
(1)) = 𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛

(1)

𝜀𝜀𝑛𝑛(3) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛
(3) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛

(2) + 𝜀𝜀𝑛𝑛
(2)) = 𝜀𝜀𝑛𝑛(2) − 𝜀𝜀𝑛𝑛

(2)
17. Need correction of equation.

Correction: By continuing the same process, we get:
𝜀𝜀𝑛𝑛(𝑚𝑚) = 𝜀𝜀𝑛𝑛(𝑚𝑚−1) − 𝜀𝜀𝑛𝑛

(𝑚𝑚−1).

18. Therefore from
Correction: 𝜀𝜀𝑛𝑛(𝑚𝑚) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(𝑚𝑚),

19. Need to correctio the equation, we found that the solution

Correction: 𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚)(𝑖𝑖 = 1,2,⋯ , 𝑙𝑙)

20. Need to correct the equation than

Correction: 𝑣𝑣𝑛𝑛+𝑖𝑖
(1)(𝑖𝑖 = 1,2,… , 𝑙𝑙). Since 0 ≤ |𝜀𝜀𝑛𝑛(1)| = |𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(1)| ≤ 𝑀𝑀
then we obtain

21. Need to correct the equation then we obtain

Correction: 0 ≤ |𝜀𝜀𝑛𝑛(2)| = |𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛
(2)| = |𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛

(1)| ≤ |𝜀𝜀𝑛𝑛(1)| ≤ 𝑀𝑀

 (4)

22. Need to correct the equation: So the following inequality can be obtained:

50 Gul Jabeen et al

2.3. Detailed Diagram

The overall HPEIAM prediction method is
illustrated through a flow diagram in Fig. 1. The
HPEIAM follows the following steps:

Step 1: Input the number of vulnerabilities in time.
Step 2: Estimate the first approximation solution
using the selected VDM.
Step 3: By subtracting actual data with the
previous approximation solution, the error of the
approximation has been obtained.
Step 4: Estimate the root mean square values
(RMSE).
Step 5: Check the Expected accuracy as selected by
the user (RMSE<=M). If the condition is satisfied,
get final results otherwise continue to the next step.
Step 6: Estimate the error approximation solution
and error predicted solution using the same model.
Step 7: Get the next approximation solution and
predicted solution by adding the last approximation
and error approximation to the solution, which will
be a more accurate estimated result than the previous
estimation. After getting the next approximate

An Optimization of Vulnerability Discovery Models

Step 5: Check the Expected accuracy as
selected by the user (RMSE<=M). If the
condition is satisfied, get final results
otherwise continue to the next step.
Step 6: Estimate the error approximation
solution and error predicted solution using the
same model.

Step 7: Get the next approximation solution
and predicted solution by adding the last
approximation and error approximation to the
solution, which will be a more accurate
estimated result than the previous estimation.
After getting the next approximate solution,
move to step 3 to repeat the same process.

 Fig. 1. Overview of HPEIAM prediction method

1.4. Algorithm
The proposed method is presented through
algorithm 1 which shows the iterative process
to improve the accuracy of VDMs as follows:

Algorithm 1:High precision error iterative analysis algorithm

Input 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑣𝑣, 𝛿𝛿 ≥ 0

Create a model: 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛, 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑟𝑟, 𝑡𝑡)

Get the approximation solution: 𝑣𝑣𝑖𝑖
(1)(𝑖𝑖 = 1,2, … , 𝑙𝑙)

Get error values: 𝜀𝜀𝑖𝑖
(1) = 𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖

(1)(𝑖𝑖 = 1,2, … , 𝑣𝑣)

1. For 1i to m do
2. 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝜀𝜀1

(𝑖𝑖), 𝜀𝜀2
(𝑖𝑖), … , 𝜀𝜀𝑛𝑛

(𝑖𝑖), 𝑝𝑝1
(𝑖𝑖), 𝑝𝑝2

(𝑖𝑖), … , 𝑝𝑝𝑟𝑟
(𝑖𝑖), 𝑡𝑡)

3. If |𝜺𝜺(𝒊𝒊)| = {∑ |𝒗𝒗𝒗𝒗𝒏𝒏
𝒗𝒗−𝟏𝟏 − 𝒗𝒗𝒗𝒗−(𝒊𝒊)|} ≤ 𝜹𝜹 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭

4. Get the predicted solution
5. 𝑣𝑣𝑛𝑛+𝑖𝑖

(𝑚𝑚) = 𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚−1) + 𝑠𝑠(𝑠𝑠) 𝜀𝜀𝑛𝑛+𝑖𝑖

(𝑚𝑚−1)
6. Exit
7. Else of for some other condition then
8. Repeat for loop
9. end if
10. end for

solution, move to step 3 to repeat the same process.

2.4. Algorithm

The proposed method is presented through
algorithm 1 which shows the iterative process to
improve the accuracy of VDMs as follows:

Algorithm 1: High precision error iterative analysis
algorithm
Input v1,v2,…,vn, δ ≥ 0
Create a model: VDM = f (v1,v2, ..., vn , p1, p2, …, pr, t)
Get the approximation solution: vi

(1) (i=1,2,…,l)
Get error values: εi

(1) = vi
_ vi

(1) (i=1,2,…,n)
1. For i = 1 to m do
2. VDM = f(ε1

(i),ε2
(i),…,εn

(i),p1
(i),p2

(i)),…,pr
(i),t)

3. If | ε(i) | = { ∑j-1
 | vj _ vj (i) |} ≤ δ then

4. Get the predicted solution
5. vn+i

(m) = vn+i
(m-1) + s (s)εn+i

(m-1)

6. Exit
7. Else of for some other condition then
7. Repeat for loop
8. end if
9. end for

n

 An Optimization of Vulnerability Discovery Models 51

2.5. Residual error sign estimation (s(i))

The above HPEIAM method improves the
prediction accuracy of any model and gives an
optimal solution. The residual errors are responsible
for the prediction accuracy of error approximation
and the signs (s(i)) associated with these errors of
the given model. VDMs cannot deal with directly
residual errors because of their randomly fluctuated
positive and negative signals. Therefore, we used
an artificial neural network (ANN) to estimate the
signs of residual errors. Different types of neural
architectures are available. However, a multilayer
backpropagation (BP) neural network is the most
widely used. A BP network typically consists of
three or more layers: an input layer, an output layer,
and at least one hidden layer. The structure of the
ANN sign estimator is shown in Fig 2.

To predict the signs (s(i)) of predicted errors εn
(i),

we have used the two-state ANN model. For that,
we introduced a dummy variable d(i) to indicate the
sign of ith error. Assume that the sign of ith error is
negative, then d(i)=0, otherwise it is 1. Then we set
up an ANN model by using the values of d(n − 1)
and d(n) to estimate the values of d(n + 1).

The characteristic equation for the sign of ith
error, s(i), is as follows:

According to the above-illustrated equation, the
sign of estimated error can be predicted by using
the ANN sign estimator. The actual estimated
values can be shown as:

Next, we will proceed to the software vulnerability
prediction to examine the accuracy of our proposed
method by using different parametric software
vulnerability discovery models (VDMs).

3. NUMERICAL ILLUSTRATION

To demonstrate the effectiveness of the proposed
method, we use four different statistical
vulnerability discovery models as shown in Table 1.
The HPEIAM technique is applied to every model
to get a more accurate and optimal solution. To fit
the vulnerability data to the models, the parameters
are chosen in such a way that the sum of squared
error is minimized such as Such as, if a model has
parameters A, B, and C, they are optimized using
the equation below:

3.1. Data Description

To validate our model results, we collected
the vulnerability datasets from the National

An Optimization of Vulnerability Discovery Models

Residual error sign estimation (𝒔𝒔(𝒊𝒊))

The above HPEIAM method improves the
prediction accuracy of any model and gives an
optimal solution. The residual errors are
responsible for the prediction accuracy of error
approximation and the signs (())s i associated
with these errors of the given model. VDMs
cannot deal with directly residual errors
because of their randomly fluctuated positive

and negative signals. Therefore, we used an
artificial neural network (ANN) to estimate the
signs of residual errors. Different types of
neural architectures are available. However, a
multilayer backpropagation (BP) neural
network is the most widely used. A BP
network typically consists of three or more
layers: an input layer, an output layer, and at
least one hidden layer. The structure of the
ANN sign estimator is shown in Fig 2.

 Fig. 2.. Graphical representation of ANN sign estimator

To predict the signs (𝑠𝑠(𝑖𝑖)) of predicted

errors 𝜀𝜀𝑛𝑛
(𝑖𝑖), we have used the two-state ANN

model. For that, we introduced a dummy
variable d(i) to indicate the sign of ith error.
Assume that the sign of ith error is negative,
then d(i)=0, otherwise it is 1. Then we set up
an ANN model by using the values of d(n − 1)
and d(n) to estimate the values of d(n + 1).

The characteristic equation for the sign of
ith error, s(i), is as follows:

𝑠𝑠(𝑖𝑖) = {+1−1
 d(i)=1
 d(i)=0

if
if

 𝑖𝑖 = 1,2,3,… . , 𝑛𝑛

According to the above-illustrated equation,
the sign of estimated error can be predicted by
using the ANN sign estimator. The actual
estimated values can be shown as:

𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚)

= 𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚−1) + 𝑠𝑠(𝑖𝑖)𝜀𝜀𝑛𝑛+1

(𝑚𝑚−1)(𝑖𝑖 = 1,2,… , 𝑙𝑙)

Next, we will proceed to the software
vulnerability prediction to examine the
accuracy of our proposed method by using
different parametric software vulnerability
discovery models (VDMs).

4. NUMERICAL ILLUSTRATION

To demonstrate the effectiveness of the
proposed method, we use four different
statistical vulnerability discovery models as
shown in Table 1. The HPEIAM technique is
applied to every model to get a more accurate
and optimal solution. To fit the vulnerability
data to the models, the parameters are chosen
in such a way that the sum of squared error is
minimized such as Such as, if a model has
parameters A, B, and C, they are optimized
using the equation below:

Fig. 2. Graphical representation of ANN sign estimator

An Optimization of Vulnerability Discovery Models

Residual error sign estimation (𝒔𝒔(𝒊𝒊))

The above HPEIAM method improves the
prediction accuracy of any model and gives an
optimal solution. The residual errors are
responsible for the prediction accuracy of error
approximation and the signs (())s i associated
with these errors of the given model. VDMs
cannot deal with directly residual errors
because of their randomly fluctuated positive

and negative signals. Therefore, we used an
artificial neural network (ANN) to estimate the
signs of residual errors. Different types of
neural architectures are available. However, a
multilayer backpropagation (BP) neural
network is the most widely used. A BP
network typically consists of three or more
layers: an input layer, an output layer, and at
least one hidden layer. The structure of the
ANN sign estimator is shown in Fig 2.

 Fig. 2.. Graphical representation of ANN sign estimator

To predict the signs (𝑠𝑠(𝑖𝑖)) of predicted

errors 𝜀𝜀𝑛𝑛
(𝑖𝑖), we have used the two-state ANN

model. For that, we introduced a dummy
variable d(i) to indicate the sign of ith error.
Assume that the sign of ith error is negative,
then d(i)=0, otherwise it is 1. Then we set up
an ANN model by using the values of d(n − 1)
and d(n) to estimate the values of d(n + 1).

The characteristic equation for the sign of
ith error, s(i), is as follows:

𝑠𝑠(𝑖𝑖) = {+1−1
 d(i)=1
 d(i)=0

if
if

 𝑖𝑖 = 1,2,3,… . , 𝑛𝑛

According to the above-illustrated equation,
the sign of estimated error can be predicted by
using the ANN sign estimator. The actual
estimated values can be shown as:

𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚)

= 𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚−1) + 𝑠𝑠(𝑖𝑖)𝜀𝜀𝑛𝑛+1

(𝑚𝑚−1)(𝑖𝑖 = 1,2,… , 𝑙𝑙)

Next, we will proceed to the software
vulnerability prediction to examine the
accuracy of our proposed method by using
different parametric software vulnerability
discovery models (VDMs).

4. NUMERICAL ILLUSTRATION

To demonstrate the effectiveness of the
proposed method, we use four different
statistical vulnerability discovery models as
shown in Table 1. The HPEIAM technique is
applied to every model to get a more accurate
and optimal solution. To fit the vulnerability
data to the models, the parameters are chosen
in such a way that the sum of squared error is
minimized such as Such as, if a model has
parameters A, B, and C, they are optimized
using the equation below:

An Optimization of Vulnerability Discovery Models

Residual error sign estimation (𝒔𝒔(𝒊𝒊))

The above HPEIAM method improves the
prediction accuracy of any model and gives an
optimal solution. The residual errors are
responsible for the prediction accuracy of error
approximation and the signs (())s i associated
with these errors of the given model. VDMs
cannot deal with directly residual errors
because of their randomly fluctuated positive

and negative signals. Therefore, we used an
artificial neural network (ANN) to estimate the
signs of residual errors. Different types of
neural architectures are available. However, a
multilayer backpropagation (BP) neural
network is the most widely used. A BP
network typically consists of three or more
layers: an input layer, an output layer, and at
least one hidden layer. The structure of the
ANN sign estimator is shown in Fig 2.

 Fig. 2.. Graphical representation of ANN sign estimator

To predict the signs (𝑠𝑠(𝑖𝑖)) of predicted

errors 𝜀𝜀𝑛𝑛
(𝑖𝑖), we have used the two-state ANN

model. For that, we introduced a dummy
variable d(i) to indicate the sign of ith error.
Assume that the sign of ith error is negative,
then d(i)=0, otherwise it is 1. Then we set up
an ANN model by using the values of d(n − 1)
and d(n) to estimate the values of d(n + 1).

The characteristic equation for the sign of
ith error, s(i), is as follows:

𝑠𝑠(𝑖𝑖) = {+1−1
 d(i)=1
 d(i)=0

if
if

 𝑖𝑖 = 1,2,3,… . , 𝑛𝑛

According to the above-illustrated equation,
the sign of estimated error can be predicted by
using the ANN sign estimator. The actual
estimated values can be shown as:

𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚)

= 𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚−1) + 𝑠𝑠(𝑖𝑖)𝜀𝜀𝑛𝑛+1

(𝑚𝑚−1)(𝑖𝑖 = 1,2,… , 𝑙𝑙)

Next, we will proceed to the software
vulnerability prediction to examine the
accuracy of our proposed method by using
different parametric software vulnerability
discovery models (VDMs).

4. NUMERICAL ILLUSTRATION

To demonstrate the effectiveness of the
proposed method, we use four different
statistical vulnerability discovery models as
shown in Table 1. The HPEIAM technique is
applied to every model to get a more accurate
and optimal solution. To fit the vulnerability
data to the models, the parameters are chosen
in such a way that the sum of squared error is
minimized such as Such as, if a model has
parameters A, B, and C, they are optimized
using the equation below:

An Optimization of Vulnerability Discovery Models

𝐴𝐴, 𝐵𝐵, 𝐶𝐶| 𝑚𝑚𝑚𝑚𝑚𝑚(∑ 𝑡𝑡 = 1 (𝑣𝑣(𝑡𝑡) − 𝑣𝑣(𝑡𝑡)2)

Table 1. Parametric software reliability growth models

Models Name Model Function Description

Exponential Model Rescorla 𝑉𝑉(𝑡𝑡) = 𝑁𝑁 × (1 − 𝑒𝑒−𝑎𝑎𝑎𝑎)
The number of vulnerabilities
discovered at time t decays
exponentially with the time

Logarithmic Model Poisson 𝑉𝑉(𝑡𝑡) = 𝑎𝑎 × 𝐿𝐿𝑁𝑁(1 + 𝑏𝑏 × 𝑡𝑡)
It shows the total number of
vulnerabilities as a logarithmic
growth function

Alhazmi-Malaiya Logistic
Model 𝑉𝑉(𝑡𝑡) = 𝐵𝐵

𝐵𝐵 × 𝐶𝐶 × 𝑒𝑒𝐴𝐴𝐴𝐴𝑎𝑎 + 1

It is based on capturing the
underlying process of vulnerability
discovery and the rate of
vulnerability depends on two
factors.

Weibull Model V (𝑡𝑡) = 𝛾𝛾 {1 − 𝑒𝑒−(𝑎𝑎
𝛽𝛽)𝛼𝛼

}

It assumes that the vulnerability
discovery rate varies according to
the Weibull probability distribution
function.

Data Description

To validate our model results, we collected the
vulnerability datasets from the National
Vulnerability Database (NVD)
(http://nvd.nist.gov) managed by the National
Institute of Standard and Technology (NIST).
Experts at NIST have analyzed the
vulnerabilities reported to the NVD and
assigned proper attributes to the defects before
the data entries [26].

Therefore, it is considered a high-quality
database, which has been used by several
researchers. In total, we collected four recent
versions of different vulnerability datasets:
Windows 10, Android 7.0, Internet Explorer
11, and Firefox 20. The collected
vulnerabilities for each dataset started from the
first day of the release, or the earliest
availability. These vulnerability datasets
represent the major categories of software
systems: operating systems, Web browsers,
and Android applications. We collected the
vulnerabilities of each application starting

from the first day of the release of the earliest
available data in NVD. We aggregated all
vulnerabilities for each application over a
monthly period. Table 2 shows the statistics of
all vulnerability datasets. Fig 3. Shows the
number of vulnerabilities found in each month
for all datasets.

52 Gul Jabeen et al

An Optimization of Vulnerability Discovery Models

𝐴𝐴, 𝐵𝐵, 𝐶𝐶| 𝑚𝑚𝑚𝑚𝑚𝑚(∑ 𝑡𝑡 = 1 (𝑣𝑣(𝑡𝑡) − 𝑣𝑣(𝑡𝑡)2)

Table 1. Parametric software reliability growth models

Models Name Model Function Description

Exponential Model Rescorla 𝑉𝑉(𝑡𝑡) = 𝑁𝑁 × (1 − 𝑒𝑒−𝑎𝑎𝑎𝑎)
The number of vulnerabilities
discovered at time t decays
exponentially with the time

Logarithmic Model Poisson 𝑉𝑉(𝑡𝑡) = 𝑎𝑎 × 𝐿𝐿𝑁𝑁(1 + 𝑏𝑏 × 𝑡𝑡)
It shows the total number of
vulnerabilities as a logarithmic
growth function

Alhazmi-Malaiya Logistic
Model 𝑉𝑉(𝑡𝑡) = 𝐵𝐵

𝐵𝐵 × 𝐶𝐶 × 𝑒𝑒𝐴𝐴𝐴𝐴𝑎𝑎 + 1

It is based on capturing the
underlying process of vulnerability
discovery and the rate of
vulnerability depends on two
factors.

Weibull Model V (𝑡𝑡) = 𝛾𝛾 {1 − 𝑒𝑒−(𝑎𝑎
𝛽𝛽)𝛼𝛼

}

It assumes that the vulnerability
discovery rate varies according to
the Weibull probability distribution
function.

Data Description

To validate our model results, we collected the
vulnerability datasets from the National
Vulnerability Database (NVD)
(http://nvd.nist.gov) managed by the National
Institute of Standard and Technology (NIST).
Experts at NIST have analyzed the
vulnerabilities reported to the NVD and
assigned proper attributes to the defects before
the data entries [26].

Therefore, it is considered a high-quality
database, which has been used by several
researchers. In total, we collected four recent
versions of different vulnerability datasets:
Windows 10, Android 7.0, Internet Explorer
11, and Firefox 20. The collected
vulnerabilities for each dataset started from the
first day of the release, or the earliest
availability. These vulnerability datasets
represent the major categories of software
systems: operating systems, Web browsers,
and Android applications. We collected the
vulnerabilities of each application starting

from the first day of the release of the earliest
available data in NVD. We aggregated all
vulnerabilities for each application over a
monthly period. Table 2 shows the statistics of
all vulnerability datasets. Fig 3. Shows the
number of vulnerabilities found in each month
for all datasets.

Vulnerability Database (NVD) (http://nvd.nist.
gov) managed by the National Institute of Standard
and Technology (NIST). Experts at NIST have
analyzed the vulnerabilities reported to the NVD
and assigned proper attributes to the defects before
the data entries [26].

Therefore, it is considered a high-quality
database, which has been used by several
researchers. In total, we collected four recent
versions of different vulnerability datasets:
Windows 10, Android 7.0, Internet Explorer 11, and
Firefox 20. The collected vulnerabilities for each
dataset started from the first day of the release, or
the earliest availability. These vulnerability datasets
represent the major categories of software systems:
operating systems, Web browsers, and Android
applications. We collected the vulnerabilities of
each application starting from the first day of the
release of the earliest available data in NVD. We
aggregated all vulnerabilities for each application
over a monthly period. Table 2 shows the statistics
of all vulnerability datasets. Fig 3. shows the
number of vulnerabilities found in each month for
all datasets.

 4. EXPERIMENTAL EVALUATION AND
 PERFORMANCE ANALYSIS

In our analysis, we have used datasets of four
different software as shown in Fig 3. Based on our

technique, we divide the data into two parts. The
first part of the dataset is always used to get expected
accuracy. The root means square error (RMSE)
criterion is used to get the expected accuracy of the
model based on our proposed technique for every
iteration. We specify the expected accuracy value
for every model as 10. The process will be stopped
if the RMSE value got less value than the expected
accuracy. Every model has been iterated repeatedly
based on our proposed technique until expected.
accuracy values get less than 10. The accuracy
values of different models and their improved
results for every iteration for different datasets are
shown in Fig 4.

Fig 4. the bar values which show less than 10
RMSE values are considered to reach the expected
accuracy and the iteration process is stopped. The
second part of the dataset is used to evaluate the
predictive power of the proposed technique. The
sum of squared errors (SSE) criterion is selected
to check the predictive capability of the proposed
technique. Most of the VDMs have been evaluated
using their fitting capability, while visually most of
the models appear to fit well, but their predictive
capability is considered non-satisfactory. The
primary use of VDMs is to predict future trends
based on the available data, rather than assessing
the past data behavior. Therefore, we have used the
last 10 data points of every dataset to evaluate the
predictive capability of models and also checked

 An Optimization of Vulnerability Discovery Models 53

An Optimization of Vulnerability Discovery Models

Table 2. Vulnerability datasets

Datasets Data Collection period Number of Vulnerabilities

Windows 10 Aug 2015-Jun-2018 613

 Dec 2014-Jun-2018 1018

Internet Explorer 11.0 Sep 2013-Jun-2018 640

Android 20.0 May 2012-Jun-2018 502

(a) Windows 10

(b) Firefox 7.0

(c) Internet explorer 11.0

(d) Android 20.0

Fig. 3. Number of vulnerabilities along with the calendar time

Firefox 20.0

An Optimization of Vulnerability Discovery Models

Table 2. Vulnerability datasets

Datasets Data Collection period Number of Vulnerabilities

Windows 10 Aug 2015-Jun-2018 613

 Dec 2014-Jun-2018 1018

Internet Explorer 11.0 Sep 2013-Jun-2018 640

Android 20.0 May 2012-Jun-2018 502

(a) Windows 10

(b) Firefox 7.0

(c) Internet explorer 11.0

(d) Android 20.0

Fig. 3. Number of vulnerabilities along with the calendar time

Firefox 20.0

An Optimization of Vulnerability Discovery Models

Table 2. Vulnerability datasets

Datasets Data Collection period Number of Vulnerabilities

Windows 10 Aug 2015-Jun-2018 613

 Dec 2014-Jun-2018 1018

Internet Explorer 11.0 Sep 2013-Jun-2018 640

Android 20.0 May 2012-Jun-2018 502

(a) Windows 10

(b) Firefox 7.0

(c) Internet explorer 11.0

(d) Android 20.0

Fig. 3. Number of vulnerabilities along with the calendar time

Firefox 20.0

Fig. 3. Number of vulnerabilities along with the calendar time

54 Gul Jabeen et al

An Optimization of Vulnerability Discovery Models

5. Experimental Evaluation and
Performance Analysis

In our analysis, we have used datasets of four
different software as shown in Fig 3. Based on
our technique, we divide the data into two
parts. The first part of the dataset is always
used to get expected accuracy. The root means
square error (RMSE) criterion is used to get
the expected accuracy of the model based on
our proposed technique for every iteration. We
specify the expected accuracy value for every

model as 10. The process will be stopped if the
RMSE value got less value than the expected
accuracy. Every model has been iterated
repeatedly based on our proposed technique
until expected.
accuracy values get less than 10. The accuracy
values of different models and their improved
results for every iteration for different datasets
are shown in Fig 4.

Fig 4. The bar values which show less than
10 RMSE values are considered to reach the

Table 3. Comparison of predictive results of all selected models using the HPEIAM technique for different
datasets

 Fitting power (RMSE values) Predicted power (SSE values)

Androi
d 7.0

Firefox
20

Explorer
11

Windows
10

Android
7.0

Firefox
20

Explorer
11

Window
s 10

Exponential
model

26.57 10.17 10.91 13.21 3155.01 158.35 183.39
1107.60
3803

Exponential model
iteration-1

14.76 6.18 7.53 9.92 2979.17 145.21 112.16 534.94

Exponential model
iteration-2

9.97 - - - 1893.8 - - -

Logarithmic model 27.8 11.11 10.92 13.06 3688.37 1228.58 211.09
977.623
1669

Logarithmic model
iteration-1

17.51 6 7.68 9.6 1701.18 680.92 86.81 463.35

Logarithmic model
iteration-2

14.61 - - - 753.99 - - -

Logarithmic model
iteration-3

10 - - - 282.22 - - -

AML model 16.29 10.822 11.01 12.45 4572.72 630.91 536.87
1049.02
935

AML model
iteration-1

11.66 6.71 8.52 8.93 2928.82 250.81 488.52 773.64

AML model
iteration-2

6.58 - - - 2185.46 - - -

Weibull model 16.52 11.22 15.36 11.83 4436.52 1608.73 271.79 1530.85

Weibull model
iteration-1

11.9 6.288 7.24 8.41 2622 809.78 231.52 791.35

Weibull model
iteration-2

6.78 - - - 2165 - - -

the predictive capability after applying the proposed
technique on every VDM. Table 3 shows the fitted
values obtained from the VDMs such as Exponential,
Logarithmic, AML, and Weibull models and their
improved results using the proposed technique
by considering different datasets. The expected
accuracy is selected based on the appropriate RMSE
value and this experiment is taken as 10. From
Table 3, it is shown that when HPEIAM is applied
to an exponential model, it provides the best fitting
and predictive results for different datasets. The
exponential model shows different RMSE values
for Android 7.0, Firefox 20, Internet Explorer 11,
and Windows 10 such as 26.57, 10.17, 13.21, and

13.21 values respectively. As the expected accuracy
value is selected as 10 so we iterate the process
and apply the proposed technique. For Firefox 20,
Internet Explorer 11, and Windows 10, the expected
accuracy is achieved after the first iteration such as
6.18, 7.53, and 9.92 respectively. For Android 7.0,
the expected accuracy is obtained after the second
iteration as 9.97. The predictive accuracy also
improved with every iteration such as for Android,
it improves from 3155.01 to 2979.17 and then
changed to 1893.8, which is the lowest SSE value.
The predictive accuracy for Firefox 20, Internet
Explorer 11, and Windows 10, also improve from
158.35, 183.39, and 1107.60 to 145.21, 112.16,

 An Optimization of Vulnerability Discovery Models 55

Dear Editor,

Please carefully consider our changes while composing.

Thank you very much for your time and support, below changes have been suggestion.

Need changes.

1. 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖(1)(𝑡𝑡)

2. 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖(1)(𝑡𝑡)

3. 𝑣𝑣𝑛𝑛+𝑖𝑖
(1)(𝑖𝑖 = 1,2,⋯ , 𝑙𝑙)

4. 𝜀𝜀𝑛𝑛(2) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(2) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛
(1) + 𝜀𝜀𝑛𝑛

(1)) = 𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛
(1)

𝜀𝜀𝑛𝑛(3) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(3) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛
(2) + 𝜀𝜀𝑛𝑛

(2)) = 𝜀𝜀𝑛𝑛(2) − 𝜀𝜀𝑛𝑛
(2)

5. 0 ≤ |𝜀𝜀𝑛𝑛(2)| = |𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(2)| = |𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛
(1)| ≤ |𝜀𝜀𝑛𝑛(1)| ≤ 𝑀𝑀

6. Need to change fig 5

Dear Editor,

Please carefully consider our changes while composing.

Thank you very much for your time and support, below changes have been suggestion.

Need changes.

1. 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖(1)(𝑡𝑡)

2. 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖(1)(𝑡𝑡)

3. 𝑣𝑣𝑛𝑛+𝑖𝑖
(1)(𝑖𝑖 = 1,2,⋯ , 𝑙𝑙)

4. 𝜀𝜀𝑛𝑛(2) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(2) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛
(1) + 𝜀𝜀𝑛𝑛

(1)) = 𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛
(1)

𝜀𝜀𝑛𝑛(3) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(3) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛
(2) + 𝜀𝜀𝑛𝑛

(2)) = 𝜀𝜀𝑛𝑛(2) − 𝜀𝜀𝑛𝑛
(2)

5. 0 ≤ |𝜀𝜀𝑛𝑛(2)| = |𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(2)| = |𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛
(1)| ≤ |𝜀𝜀𝑛𝑛(1)| ≤ 𝑀𝑀

6. Need to change fig 5

Fig. 5. Illustration of Predicted Errors for four VDMs using Android 7.0 dataset.

Fig. 5. Illustration of Predicted Errors for four VDMs using Android 7.0 dataset.

Fig. 5. Illustration of Predicted Errors for four VDMs using Android 7.0 dataset

Fig. 4. Expected Accuracy obtained for different model using HPEIAM technique

25. Correction of figure 5 is also needed because fig (b) replaced with 5(c)

Correction:

Fig. 4. Illustration of Predicted Errors for four VDMs using Android 7.0 dataset

56 Gul Jabeen et al

An Optimization of Vulnerability Discovery Models

Similarly, for the Weibull model, the

expected accuracy is obtained after the second
iteration for Android 7.0 such as 6.58. For
Firefox 20, Internet Explorer 11, and Windows
10, the expected accuracy is achieved after the
first iteration such as 6.288, 7.24, and 8.41
respectively. The predictive accuracy also
shows improved results such as for Android
7.0, it improves from 4436.52 to 2165.00,
which is the lowest predictive SSE value. The
predictive accuracy for Firefox 20, Internet
Explorer 11, and Windows 10 such as 809.78,
231.52, and 791.35 respectively. The
predictive errors of the improved Weibull
model for every dataset are illustrated in Fig
5(d), 6(d), 7(d), and 8(d).

The ANN sign estimator contains a tapped
delay line from 1 to 4 and uses eight neurons
in the hidden layer for every dataset. The
network has tapped the delay line with a
maximum delay of 4, begins by predicting the
fifth value of the input series (sign). The last
10 data points of every dataset are used as a
testing set and the remaining part is used for
training the network. The output results are
combined with the predicted error values of
different VDMs to get the expected
approximated solution. The fitting RMSE
values of the proposed method improve with
every iteration in each data interval. Therefore,
it is found that the proposed technique
improves the accuracy of every model using
any data interval and the user can use it to get
the model’s accuracy up to an expected level.

(a)

(b)

(c)

(d)

Fig. 5.. Illustration of Predicted Errors for four VDMs using Firefox 20 dataset Fig. 6. Illustration of Predicted Errors for four VDMs using Firefox 20 dataset

An Optimization of Vulnerability Discovery Models

(a)

(b)

(c)

(d)

Fig. 6. Illustration of Predicted Errors for four VDMs using Internet Explorer 11dataset
Fig. 7. Illustration of Predicted Errors for four VDMs using Firefox 20 dataset

 An Optimization of Vulnerability Discovery Models 57

An Optimization of Vulnerability Discovery Models

6. CONCLUSIONS

In this paper, we have used multiple errors
iterative accuracy methods and presented a
detailed analysis of the optimization process
by progressively acquiring optimal solutions
using different VDMs. Experiments are used
to demonstrate that the proposed method can
overcome the shortcomings of current
vulnerability discovery models such as the
assumptions made by the models and also the
dependency of models on the shapes or
skewness of data. Moreover, the experimental
results show that an expected accuracy which
is specified as 10 has been achieved by
optimizing the error data iteratively, and thus
MEIAM provides more accurate predictions of
the future trend of the number of
vulnerabilities. The proposed model brought
the lowest expected accuracy value for the
exponential model such as android 9.97,
Firefox 6.18, Explorer 7.53, and Windows

9.92. For the logarithmic model such as
android 10, Firefox 6, Explorer 7.68, and
windows got a 9.6 expected accuracy level.
For the AML model such as android 6.58,
Firefox 6.71, Explorer 8.52, and windows got
8.93. Similarly, the Weibull models also show
improve results such as android 6.78, Firefox
6.28, Explorer 7.2, and 8.1.

Moreover, the method presented in this
paper offers a universal optimization process
rather than the limited applicability of existing
vulnerability discovery models. Furthermore, a
comparison of the applied technique results on
different VDMs has also been provided
regarding different criteria values (RMSE and
SSE) on four different datasets. Experimental
results show that MEIAM techniques can
effectively enhance and improve the
performance of each VDM by providing better
accuracy and predictive power.

(a)

(b)

(c)

(d)

Fig. 7. Illustration of Predicted Errors for four VDMs using Windows 10 dataset
and 534.94 respectively. The predictive errors are
illustrated for every dataset in Fig 5(a), 6(a), 7(a),
and 8(a). When the proposed technique is applied
to the Logarithmic model, the expected accuracy
is obtained after the first iteration for Firefox 20,
Internet Explorer 11, and Windows 10 such as
6.00, 7.68, and 9.60 respectively. For Android 7.0,
the expected accuracy is obtained after the second
iteration such as 10.00. The predictive accuracy
also improves with every iteration such as for
Android 7.0; it improves from 3688.37 to 1701.18
in the first iteration and then changed from 7753.99
to 282.22 in the third iteration, which is the lowest
SSE value. The predictive errors of the improved
Logarithmic model for every dataset are illustrated
in Fig 5(b), 6(b), 7(b), and 8(b). For the AML
model, the expected accuracy is obtained after the
second iteration for Android 7.0 such as 6.58. For
Firefox 20, Internet Explorer 11, and Windows 10,
the expected accuracy is achieved after the first
iteration such as 6.71, 8.52, and 8.93 respectively.

The predictive accuracy shows improved results
such as for Android 7.0; it improves from 4572.72
to 2185.46, which is the lowest predictive SSE
value. The predictive accuracy for Firefox 20,
Internet Explorer 11, and Windows 10 such as
250.81, 488.52, and 773.64 respectively. The
predictive errors of the improved AML model for
every dataset are illustrated in Fig 5(c), 6(c), 7(c),
and 8(c).

Similarly, for the Weibull model, the expected
accuracy is obtained after the second iteration for
Android 7.0 such as 6.58. For Firefox 20, Internet
Explorer 11, and Windows 10, the expected accuracy
is achieved after the first iteration such as 6.288,
7.24, and 8.41 respectively. The predictive accuracy
also shows improved results such as for Android
7.0, it improves from 4436.52 to 2165.00, which
is the lowest predictive SSE value. The predictive
accuracy for Firefox 20, Internet Explorer 11, and
Windows 10 such as 809.78, 231.52, and 791.35

(d)

Fig. 8. Illustration of Predicted Errors for four VDMs using Windows 10 dataset

58 Gul Jabeen et al

respectively. The predictive errors of the improved
Weibull model for every dataset are illustrated in
Fig 5(d), 6(d), 7(d), and 8(d).

The ANN sign estimator contains a tapped
delay line from 1 to 4 and uses eight neurons in
the hidden layer for every dataset. The network
has tapped the delay line with a maximum delay of
4, begins by predicting the fifth value of the input
series (sign). The last 10 data points of every dataset
are used as a testing set and the remaining part is
used for training the network. The output results
are combined with the predicted error values of
different VDMs to get the expected approximated
solution. The fitting RMSE values of the proposed
method improve with every iteration in each data
interval. Therefore, it is found that the proposed
technique improves the accuracy of every model
using any data interval and the user can use it to get
the model’s accuracy up to an expected level.

5. CONCLUSIONS

In this paper, we have used multiple errors iterative
accuracy methods and presented a detailed analysis
of the optimization process by progressively
acquiring optimal solutions using different VDMs.
Experiments are used to demonstrate that the
proposed method can overcome the shortcomings
of current vulnerability discovery models such as
the assumptions made by the models and also the
dependency of models on the shapes or skewness
of data. Moreover, the experimental results show
that an expected accuracy which is specified as
10 has been achieved by optimizing the error data
iteratively, and thus MEIAM provides more accurate
predictions of the future trend of the number of
vulnerabilities. The proposed model brought the
lowest expected accuracy value for the exponential
model such as android 9.97, Firefox 6.18, Explorer
7.53, and Windows 9.92. For the logarithmic model
such as android 10, Firefox 6, Explorer 7.68, and
windows got a 9.6 expected accuracy level. For the
AML model such as android 6.58, Firefox 6.71,
Explorer 8.52, and windows got 8.93. Similarly, the
Weibull models also show improve results such as
android 6.78, Firefox 6.28, Explorer 7.2, and 8.1.

Moreover, the method presented in this paper
offers a universal optimization process rather than
the limited applicability of existing vulnerability

discovery models. Furthermore, a comparison
of the applied technique results on different
VDMs has also been provided regarding different
criteria values (RMSE and SSE) on four different
datasets. Experimental results show that MEIAM
techniques can effectively enhance and improve
the performance of each VDM by providing better
accuracy and predictive power.

6. REFERENCES

1. C. P. Pfleeger, and S. L. Pfleeger, Security in
computing: Prentice Hall Professional Technical
Reference (2002).

2. V. H. Nguyen and L. M. S. Tran, Predicting
vulnerable software components with dependency
graphs, in Proceedings of the 6th International
Workshop on Security Measurements and Metrics,
(2010)

3. S. Rahimi, and M. Zargham, Vulnerability scrying
method for software vulnerability discovery
prediction without a vulnerability database, IEEE
Transactions on Reliability, 62: 395-407 (2013).

4. R. Scandariato, J. Walden, A. Hovsepyan, and W.
Joosen, Predicting vulnerable software components
via text mining, IEEE Transactions on Software
Engineering, 40: 993-1006 (2014).

5. J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L.
R. Kosta, A. Rangamani, et al., Automated software
vulnerability detection with machine learning, arXiv
preprint arXiv:1803.04497 (2018).

6. Y. Shin, and L. Williams, Can traditional fault
prediction models be used for vulnerability
prediction?," Empirical Software Engineering, 18:
25-59 (2013).

7. G. Jabeen, L. Ping, J. Akram, and A. A. Shah, An
Integrated Software Vulnerability Discovery Model
based on Artificial Neural Network, in SEKE: 349-
458 (2019).

8. G. Jabeen, and L. Ping, A Unified Measurable
Software Trustworthy Model Based on Vulnerability
Loss Speed Index, in 2019 18th IEEE International
Conference On Trust, Security And Privacy In
Computing And Communications/13th IEEE
International Conference On Big Data Science And
Engineering (TrustCom/BigDataSE), 18-25 (2019).

9. R. Anderson, Security in open versus closed
systems—the dance of Boltzmann, Coase and
Moore, Technical report, Cambridge University,
England (2002).

10. E. Rescorla, Is finding security holes a good idea?,

 An Optimization of Vulnerability Discovery Models 59

IEEE Security & Privacy, 3: 14-19 (2005).
11. J. D. Musa and K. Okumoto, A logarithmic

Poisson execution time model for software
reliability measurement, in Proceedings of the 7th
international conference on Software engineering,
230-238 (1984).

12. S. Rahimi, Security vulnerabilities: Discovery,
prediction, effect, and mitigation: Southern Illinois
University at Carbondale (2013).

13. O. H. Alhazmi and Y. K. Malaiya, Quantitative
vulnerability assessment of systems software, in
Annual Reliability and Maintainability Symposium,
2005. Proceedings, 615-620 (2005).

14. O. H. Alhazmi, Y. K. Malaiya, and I. Ray Measuring,
analyzing, and predicting security vulnerabilities in
software systems, Computers & Security, 26: 219-
228 (2007).

15. O. H. Alhazmi and Y. K. Malaiya, Measuring and
enhancing prediction capabilities of vulnerability
discovery models for Apache and IIS HTTP
servers," in 2006 17th International Symposium on
Software Reliability Engineering 343-352 (2006).

16. O. H. Alhazmi and Y. K. Malaiya, "Application of
vulnerability discovery models to major operating
systems, IEEE Transactions on Reliability, 57: 14-
22 (2008).

17. K. Chen, D. Feng, P. Su, C. Nie, and X. Zhang,
Multicycle vulnerability discovery model for
prediction, Journal of Software, 21: 2367-2375
(2010).

18. H. Joh and Y. K. Malaiya, "Modeling skewness in
vulnerability discovery, Quality, and Reliability
Engineering International, 30: 1445-1459 (2014).

19. R. Johnston, S. Sarkani, T. Mazzuchi, T. Holzer,
and T. Eveleigh, Multivariate models using

MCMCBayes for web-browser vulnerability
discovery, Reliability Engineering & System Safety,
176: 52-61 (2018).

20. R. Johnston, S. Sarkani, T. Mazzuchi, T. Holzer,
and T. Eveleigh, Bayesian-model averaging using
MCMCBayes for web-browser vulnerability
discovery, Reliability Engineering & System Safety,
183: 341-359 (2019).

21. Y. Movahedi, M. Cukier, and I. Gashi, Vulnerability
prediction capability: A comparison between
vulnerability discovery models and neural network
models, Computers & Security, 87: 101596 (2019).

22. P. Kapur, V. S. Yadavali, and A. Shrivastava, A
comparative study of vulnerability discovery
modeling and software reliability growth modeling,
min 2015 International Conference on Futuristic
Trends on Computational Analysis and Knowledge
Management (ABLAZE), 246-251 (2015).

23. H. Joh and Y. K. Malaiya, Periodicity in software
vulnerability discovery, patching and exploitation,
International Journal of Information Security, 16:
673-690 (2017).

24. R. Sharma and R. Singh, Vulnerability Discovery
in Open-and Closed-Source Software: A New
Paradigm," in Software Engineering, ed: Springer,
2019, pp. 533-539.

25. B. Liu, L. Shi, Z. Cai, and M. Li, Software
vulnerability discovery techniques: A survey," in
2012 fourth international conference on multimedia
information networking and security, 152-
156(2012).

26. S. H. Houmb, V. N. Franqueira, and E. A. Engum
Quantifying security risk level from CVSS estimates
of frequency and impact, Journal of Systems and
Software, 83: 1622-1634 (2010).

60 Gul Jabeen et al

