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Abstract: A vulnerability discovery model (VDMs) play a central role to model the rate at which vulnerabilities 
are discovered for software. Though, these models have various shortcomings viz., multi VDMs, changes in VDMs, 
and development of new VDMS for different datasets due to diverse approaches and assumptions in their analytical 
formation. There is a clear need for intensive investigation and extensive use of these models to enhance the predictive 
accuracy of existing VDMs. In this paper, to enhance the predictive accuracy of existing VDMs, a multiple error 
iterative analysis method (MEIAM) along with artificial neural network sign estimators has been proposed based on 
the residual errors. Our findings reveal that the proposed method optimizes to fit historical vulnerability accurately and 
helps to predict future trends of vulnerabilities across different datasets and models. Repeated calculations of residual 
errors using these models are used to improve and adjust the forecast accuracy to the expected level.  The experiment 
performed by using real vulnerability data of three type’s popular software: Windows 10 (613), Android 7.0 (1018), 
Internet Explorer 11 (60), and Firefox 20 (502), starting from the first day of the issue or the earliest available in NVD 
database. The results demonstrate that the method is universally applicable to any of the VDMs to improve predictive 
accuracy.
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1.  INTRODUCTION

With the development of internet technology, 
software systems have become larger and more 
complex. Software vulnerabilities have also 
increased rapidly, potentially causing an increasing 
number of serious security threats. A critical 
vulnerability provides an attacker with the ability to 
access full control of software[1]. However, much 
of the work on security has been qualitative, focused 
on the detection and prediction of vulnerabilities 
present in these systems. If the software developers 
can make accurate quantitative predictions of the 
vulnerability discovery, they can optimally assign 
the needed resources that are likely to be required 
for the patch management [2-4].

Several software vulnerability discovery 
models (VDM) have been proposed during the 
past few decades to model the vulnerabilities with 
code attributes: text analysis and mining of source 
code [5,6]. Code-attributes-based data models 
have some disadvantages: the source code is not 
available, especially for commercial software, 
and the software developers continuously change 
source code in the software. This continues until 
the release of the software (repair or update), 
thus predicting the future based on its static code 
attributes is often not possible. Much of the current 
research focuses on time-series-based vulnerability 
discovery models [7, 8]. 

The first VDM model is proposed by anderson, 
which is termed as Andeson Thermodynamic (AT)



parameters, there are always a set of assumptions 
that have to be made. These assumptions generalize 
the model, and their applicability becomes a critical 
issue because there is no single model which can 
be universally applied in all situations. VDMs 
face challenges due to four assumptions: time, 
operational environment, independence, and static 
code [25]. 

Our purpose is to develop a technique that 
improves the performance of any generic model 
based on the expected accuracy that can be controlled 
by the user. We aim to find a universal technique, 
which is applicable to any data and model. Thus we 
propose an optimized method called multiple error 
iterative analysis method (MEIAM) that uses the 
residual error values between actual and estimated 
values iteratively to improve the fitting of historical 
vulnerability data, which is controlled externally 
by setting the expected accuracy for the specific 
failure dataset. The repeated combination of 
residual error modifications by using the proposed 
method facilitates a better process of the fitting 
model and provides a more accurate prediction 
of future accruing vulnerabilities in the software 
testing phase. An artificial neural network (ANN) 
is used to estimate signs, which are associated 
with residual errors. ANN facilitates the use of the 
proposed technique because VDMs do not deal 
with residual errors directly due to the randomly 
fluctuated positive and negative signs associated 
with them. The repeated computation of the same 
data makes the prediction accuracy of existing 
models significantly improved, and the expected 
precision can be achieved, without concern about 
the amount of data used. 

The proposed technique applies to any of the 
vulnerability prediction models, so it is considered 
universal. Compared with VDMs, our technique 
can globally enhance the performance of models 
rather than locally change the functional attributes. 
It is the only study where we have introduced the 
expected accuracy, which can be controlled by the 
user by giving the threshold value to any of the 
specific data. We measure the performance of our 
proposed optimized technique in conjunction with 
the traditional statistical vulnerability discovery 
models by using different vulnerability datasets. The 
experimental results derived from the four datasets 
illustrate that the proposed technique can better fit 

model [9]. Many other statistical models are used 
in literature, that either try to capture the underlying 
processes or apply principles used in other fields 
of science to discover vulnerabilities. Among 
them, the exponential model is designed to fit the 
real data [10]. In this model, two possible trends 
were examined such as the quadratic model and the 
exponential model. The logarithmic model shows 
the total number of vulnerabilities as logarithmic 
growth which was first proposed by poisson [11] 
and is used by Rahimi [12] by fitting the model 
to the vulnerabilities of a specific application. 
Alhazmi et al. proposed a logistic model called the 
AML model in [13] and examined it in [14]. The 
predictive capabilities were evaluated in [15] and 
[16] by using a different set of data. A multicycle 
vulnerability discovery model was proposed by 
Chan et al., which helps to extend the scope of 
existing models [17]. Other studies focused on 
increasing the accuracy of VDMs (weibull, normal, 
beta, and gamma distribution) by examining the 
skewness of the vulnerability data [18] or using the 
Bayesian theorem[19, 20]. 

A recent study in [21] compared the 
performance of the neural network and time-series 
models for vulnerability prediction and found 
that neural network outperforms in all the cases 
[22] proposed models for software vulnerability 
prediction and determine whether the software 
reliability growth models can be used to predict 
vulnerability discovery process and shows good 
prediction results [23]. Analyses the vulnerability 
data using the seasonal index and autocorrelation 
function approach, which can be used to improve 
the vulnerability discovery models. Sharma and 
Singh [24] proposed a new vulnerability discovery 
model based on the gamma distribution. Most of 
the research defined above gained great success 
in practice and attracted considerable attention. 
However, very little research has focused on the 
optimization of software vulnerability discovery 
models. Optimization indicates that the actual 
model property remains unchanged, but the 
performance of the model can be enhanced to 
fit better with the historical data and accurately 
predict the future vulnerability occurrences. These 
models use different physical approaches and 
make assumptions in their analytic formulation. 
Their parameters are defined explicitly and have 
physical interpretations. In order to determine the 
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the historical data and provides a more accurate 
prediction of future vulnerabilities. Our results 
demonstrate that our technique can work well with 
every set of data and improves the performance 
accuracy of every software vulnerability discovery 
model. The rest of this paper is organized as follows. 
In section 2, the proposed method is defined in 
detail. Numerical illustrations are given in section 
3. In section 4, the experimental evaluation and 
performance analysis has been performed. Finally, 
we conclude our work in section 5. 

2.  PROPOSED WORK

Statistical vulnerability models are generally 
evaluated by using the fitting ability. However, 
the primary purpose of VDMs is to achieve the 
prediction accuracy precisely. We claim that the 
method which is proposed (MEIAM) can enhance 
the predicted accuracy of VDMs effectively. In 
the following section, our proposed method is 
described in detail.

2.1.  Multiple Error Iterative Analysis Method 
        (MEIAM) 

To facilitate the description of our method, let us 
introduce some notations first. Assume that a set of 
known data v1(t),v2(t),...,vn(t) is used to develop a 
mathematical model such as:

VDM 
= f(v1(t),v2(t),…vn(t),p1,p2,…,pr,t1,t2,…,ts )           (1)

Where a1, a2, a3,…an are parameters and t1, t2,…ts 
are specific variables. In general, these quantitative 
vulnerability discovery models are used to predict 
future trend data: vn+1(t),vn+2(t),vn+3(t),…,vn+k(t). The 
p1, p2, p3,…pn are unknown parameters that can be 
determined by using any input sequences v1(t),v2 
(t),…,vn(t) with different methods such as the least-
square method or the maximum likelihood method. 

For convenience, this article discusses only one 
argument which is denoted as t. We can write the 
model Equation 1 as follows:

VDM = f(v1(t),v2(t),…,vn(t),p1,p2,…,pr,t)             (2)
                                                                
After applying the input data sequences:

in any quantitative VDM, the parameters are 
estimated and also determine the approximation 
solution, which is also used to evaluate the fitting 
power of the model. The first approximation 
solution is written as follow:

and its predicted values are defined as:

While the exact values corresponding to the 
predicted values are assumed to be:

Suppose the error values can be determined as:

Which is referred to as the first error 
sequence?  
However, the errors obtained  εn

(1)(t) may be positive 
or negative depending on the predicted values. For 
more simplicity, we omit t, for instance                              
vi(t),vi (t)

(1),εi
(1)(t)  and  Equation (1) is abbreviated 

vi (t),vi(t)
(1),εi

(1)(t) and VDM=f(t) respectively.  In 
our proposed technique, we used the error values 
εn

(1) to get more accurate results than previously 
predicted solution vn+i

(1)(i=1,2,...,l) through multiple 
iterations. Therefore, we analyze the error data 
sequences ε1

(1),ε2
(1),...,εn

(1) same as vi
(1)(i= 1,2,….,n). 

So, the mathematical VDM can be established as:
                                                                             

       
                 (3)

Where the parameters p1
(1), p2

(1),…,pr
(1) are 

determined by the input error data sequences:  εi
(1), 

i=1,2,…,n.

By using Equation 3, we obtained errors first 
approximate solution as: ε1

(1),ε2
(1),…,εn

(1) and errors 
predicted solution such as: ¯εn+1

(1),¯εn+2
(1) ,…, 

¯εn+l
(1). As we have used statistical vulnerability 

prediction models to estimate error approximation 
and predicted solutions, however, these models can 
use error inputs, but the signs associated with errors 
always change (positive or negative). Parametric 
VDMs only deals with positive input sequences, 
therefore we have changed the obtained errors 
sequences into positive values such as:
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After applying the input data sequences: 

𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡) 

in any quantitative VDM, the parameters are 
estimated and also determine the 
approximation solution, which is also used to 
evaluate the fitting power of the model. The 
first approximation solution is written as 
follow: 

𝑣𝑣1(𝑡𝑡)
(1)

, 𝑣𝑣2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛(𝑡𝑡)
(1)

 
and its predicted values are defined as: 

𝑣𝑣𝑛𝑛+1(𝑡𝑡)
(1)

, 𝑣𝑣𝑛𝑛+2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)
(1)

. 
While the exact values corresponding to the 
predicted values are assumed to be: 
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(1)(𝑡𝑡) = 𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑣𝑣𝑛𝑛(𝑡𝑡)

(1)
(𝑛𝑛 = 1,2, … ), 

Which is referred to as the first error 
sequence? However, the errors obtained  
𝜀𝜀𝑛𝑛

(1)(𝑡𝑡) maybe positive or negative depending 
on the predicted values. For more simplicity, 

we omit t, for instance  𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
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and Equation (1) is abbreviated 

𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡)  and 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝑡𝑡) 

respectively.  In our proposed technique, we 
used the error values𝜀𝜀𝑛𝑛

(1) to get more accurate 
results than the previously predicted 
solution 𝑣𝑣𝑛𝑛+𝑖𝑖

(1)(𝑖𝑖 = 1,2, ⋯ , 𝑙𝑙)  through 
multiple iterations. Therefore, we analyze the 
error data sequences 𝜀𝜀1

(1), 𝜀𝜀2
(1), ⋯ , 𝜀𝜀𝑛𝑛

(1) same 
as 𝑣𝑣𝑖𝑖(1)(𝑖𝑖 =  1,2, … . , 𝑛𝑛). So, the mathematical 
VDM can be established as: 

𝑉𝑉𝑉𝑉𝑉𝑉
= 𝑓𝑓(𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1), 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1), 𝑡𝑡) 

                                                                        (3) 

Where the parameters 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1)  are 

determined by the input error data sequences:  
𝜀𝜀𝑖𝑖

(1), 𝑖𝑖 = 1,2, … , 𝑛𝑛. 

By using Equation 3, we obtained errors 
first approximate solution as: 
𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1) and errors predicted 
solution such as: 𝜀𝜀𝑛𝑛+1

(1), 𝜀𝜀𝑛𝑛+2
(1), … , 𝜀𝜀𝑛𝑛+𝑙𝑙

(1)  . 
As we have used statistical vulnerability 
prediction models to estimate error 
approximation and predicted solutions, 
however, these models can use error inputs, 
but the signs associated with errors always 
change (positive or negative). Parametric 
VDMs only deals with positive input 
sequences, therefore we have changed the 
obtained errors sequences into positive values 
such as: 

𝜀𝜀𝑛𝑛
(𝑖𝑖)(𝑖𝑖 = 1,2, … , 𝑙𝑙) 

The positive and negative signs associated 
with errors can be represented as s(i). We will 
further describe it in the next section. Hence it 
is obvious to get the second approximate 
solution: 

𝑣𝑣𝑖𝑖
(2) = 𝑣𝑣𝑖𝑖

(1) + 𝜀𝜀𝑖𝑖
(1)(𝑖𝑖 = 1,2, … , 𝑛𝑛) 

by adding the first approximate solution and 
the first error approximate solution. 
We observe that 𝑣𝑣𝑖𝑖

(2)  is a more close 
approximate solution than that of first 
approximation solution  𝑣𝑣𝑖𝑖

(1)(𝑖𝑖 = 1,2, … , 𝑙𝑙)  to 
the exact solution 𝑣𝑣𝑖𝑖(𝑖𝑖 = 1,2, … , 𝑛𝑛). 

Similarly, the second error sequences obtained 
by subtracting actual input sequences to a 
second approximation solution:  𝜀𝜀𝑖𝑖

(2) =
𝑣𝑣𝑖𝑖

(1) − 𝑣𝑣𝑖𝑖
(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛) , which is known 

as the second error.  
By using the same method as defined above, 
we can get the second error approximate 
solution 𝜀𝜀𝑖𝑖

(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛)  of the second 
error 𝜀𝜀𝑖𝑖

(2) and its predicted values such  as:  

𝜀𝜀𝑛𝑛+1
(2), 𝜀𝜀𝑛𝑛+2

(2), … , 𝜀𝜀𝑛𝑛+𝑙𝑙
(2). 
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𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡) 

in any quantitative VDM, the parameters are 
estimated and also determine the 
approximation solution, which is also used to 
evaluate the fitting power of the model. The 
first approximation solution is written as 
follow: 

𝑣𝑣1(𝑡𝑡)
(1)

, 𝑣𝑣2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛(𝑡𝑡)
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Which is referred to as the first error 
sequence? However, the errors obtained  
𝜀𝜀𝑛𝑛

(1)(𝑡𝑡) maybe positive or negative depending 
on the predicted values. For more simplicity, 

we omit t, for instance  𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡) 

and Equation (1) is abbreviated 

𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡)  and 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝑡𝑡) 

respectively.  In our proposed technique, we 
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(1) to get more accurate 
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multiple iterations. Therefore, we analyze the 
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(1) same 
as 𝑣𝑣𝑖𝑖(1)(𝑖𝑖 =  1,2, … . , 𝑛𝑛). So, the mathematical 
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The positive and negative signs associated with 
errors can be represented as s(i). We will further 
describe it in the next section. Hence it is obvious 
to get the second approximate solution:

By adding the first approximate solution and 
the first error approximate solution.
We observe that vi ¯ (2) is a more close approximate 
solution than that of first approximation 
solution vi¯

(1) (i=1,2,…,l) to the exact solution                                        
vi (i=1,2,…,n).

Similarly, the second error sequences 
obtained by subtracting actual input sequences to 
a second approximation solution:  εi

(2)=vi
(1) _¯vi

(2)                        
(i=1,2,…,n), which is known as the second error. 

By using the same method as defined above, 
we can get the second error approximate solution 
εi

(2)  (i=1,2,…,n) of the second error εi
(2) and its 

predicted values such  as: 

The third approximation solution can be obtained 
as: 

Therefore, by continuing the above multiple 
error iterative process, we get the predicted values 
closer to the exact values vi (i = 1,2,…,l).  Similarly, 
we get the kth approximate solution

by using the input sequences vi
(k) (i=1,2,…,l, 

k=1,2,…,m) which will be considered as a more 
exact approximate solution than vi

(k-1). Its predicted 
solution v(n-1)

(k) (i = 1,2,…,n , k = 1,2,…,m) can also 
be determined. The kth input error sequence εi

(k) 
(i=1,2,…,n , k=1,2,…,m) is used to determine the 
error approximate solution sequences εi

(k)  (i=1,2,…
,n , k=1,2,…,m).

2.2.  Basic Theorem

The following theorem describes how multiple 
iterative analyses of residual errors obtained 

through mathematical modeling can significantly 
improve the predictive accuracy of software 
vulnerability prediction models and help to achieve 
expected results.

Theorem 1. Assume that a known data sequence   
vi (i=1,2,…,l), which can be determined by function 
VDM = f(v1,v2,…,vn , p1,p2,…,pr, t). By using our 
proposed technique (HPEIAM), mth predictive 
value vn+i

(m) can be obtained which is more close to 
the exact solution vn+1 (i=1,2,…,l) than vn+i

(1).

Proof. For any value n, the following common 
inequalities exist:

0 ≤ | vn 
_ vn 

(m) | = | εn
(m) | ≤ | εn 

(m-1) ) | ≤ ... ≤ | εn
(1) | = 

| vn 
_ vn

(1) |

Therefore, we consider M=max{ | vi 
_ vi

(1) |,i=1,2,…
,n} and analyze the error sequence εi

(k) (i=1,2,...,n 
, k=1,2,...,m). From the structure of εn

(k) and vn
(m), 

we can see that for any values of n, the following 
equations hold:  εn

(1) = vn 
_ vn

(1)

By continuing the same process we get:

εn
(m) = εn

(m-1) _  εn 
(m-1) . 

Now we prove that Equation 4 is true when 
m→∞, and εn

(m) → 0. Therefore from  

εn
(m) = vn 

_ vn
(m)

we found that the solution v(n+i)
(m) (i=1,2,...,l) is 

more closer to the exact solution v(n+i)(i=1,2,…,l) 
than v(n+i)

(1) (i=1,2,…,l). Since 0 ≤ | εn
(1) | = | vn 

_ vn 
(1)

| ≤ M 
then we obtain

                 (4)

So the following inequality can be obtained:                 
0 ≤ | εn

(m) | ≤ | εn
(m-1) | ≤ ...≤ | εn

(1) | ≤ M as defined in 
Equation (4), when m→∞ and εn

(m) → 0.
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                                                                (2) 

After applying the input data sequences: 

𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡) 

in any quantitative VDM, the parameters are 
estimated and also determine the 
approximation solution, which is also used to 
evaluate the fitting power of the model. The 
first approximation solution is written as 
follow: 

𝑣𝑣1(𝑡𝑡)
(1)

, 𝑣𝑣2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛(𝑡𝑡)
(1)

 
and its predicted values are defined as: 

𝑣𝑣𝑛𝑛+1(𝑡𝑡)
(1)

, 𝑣𝑣𝑛𝑛+2(𝑡𝑡)
(1)

, … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)
(1)

. 
While the exact values corresponding to the 
predicted values are assumed to be: 

𝑣𝑣𝑛𝑛+1(𝑡𝑡)(1), 𝑣𝑣𝑛𝑛+2(𝑡𝑡)(1), … , 𝑣𝑣𝑛𝑛+𝑙𝑙(𝑡𝑡)(1) 
Suppose the error values can be determined as: 

𝜀𝜀𝑛𝑛
(1)(𝑡𝑡) = 𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑣𝑣𝑛𝑛(𝑡𝑡)

(1)
(𝑛𝑛 = 1,2, … ), 

Which is referred to as the first error 
sequence? However, the errors obtained  
𝜀𝜀𝑛𝑛

(1)(𝑡𝑡) maybe positive or negative depending 
on the predicted values. For more simplicity, 

we omit t, for instance  𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡) 

and Equation (1) is abbreviated 

𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖
(1)(𝑡𝑡)  and 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝑡𝑡) 

respectively.  In our proposed technique, we 
used the error values𝜀𝜀𝑛𝑛

(1) to get more accurate 
results than the previously predicted 
solution 𝑣𝑣𝑛𝑛+𝑖𝑖

(1)(𝑖𝑖 = 1,2, ⋯ , 𝑙𝑙)  through 
multiple iterations. Therefore, we analyze the 
error data sequences 𝜀𝜀1

(1), 𝜀𝜀2
(1), ⋯ , 𝜀𝜀𝑛𝑛

(1) same 
as 𝑣𝑣𝑖𝑖(1)(𝑖𝑖 =  1,2, … . , 𝑛𝑛). So, the mathematical 
VDM can be established as: 

𝑉𝑉𝑉𝑉𝑉𝑉
= 𝑓𝑓(𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1), 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1), 𝑡𝑡) 

                                                                        (3) 

Where the parameters 𝑝𝑝1
(1), 𝑝𝑝2

(1), … , 𝑝𝑝𝑟𝑟
(1)  are 

determined by the input error data sequences:  
𝜀𝜀𝑖𝑖

(1), 𝑖𝑖 = 1,2, … , 𝑛𝑛. 

By using Equation 3, we obtained errors 
first approximate solution as: 
𝜀𝜀1

(1), 𝜀𝜀2
(1), … , 𝜀𝜀𝑛𝑛

(1) and errors predicted 
solution such as: 𝜀𝜀𝑛𝑛+1

(1), 𝜀𝜀𝑛𝑛+2
(1), … , 𝜀𝜀𝑛𝑛+𝑙𝑙

(1)  . 
As we have used statistical vulnerability 
prediction models to estimate error 
approximation and predicted solutions, 
however, these models can use error inputs, 
but the signs associated with errors always 
change (positive or negative). Parametric 
VDMs only deals with positive input 
sequences, therefore we have changed the 
obtained errors sequences into positive values 
such as: 

𝜀𝜀𝑛𝑛
(𝑖𝑖)(𝑖𝑖 = 1,2, … , 𝑙𝑙) 

The positive and negative signs associated 
with errors can be represented as s(i). We will 
further describe it in the next section. Hence it 
is obvious to get the second approximate 
solution: 

𝑣𝑣𝑖𝑖
(2) = 𝑣𝑣𝑖𝑖

(1) + 𝜀𝜀𝑖𝑖
(1)(𝑖𝑖 = 1,2, … , 𝑛𝑛) 

by adding the first approximate solution and 
the first error approximate solution. 
We observe that 𝑣𝑣𝑖𝑖

(2)  is a more close 
approximate solution than that of first 
approximation solution  𝑣𝑣𝑖𝑖

(1)(𝑖𝑖 = 1,2, … , 𝑙𝑙)  to 
the exact solution 𝑣𝑣𝑖𝑖(𝑖𝑖 = 1,2, … , 𝑛𝑛). 

Similarly, the second error sequences obtained 
by subtracting actual input sequences to a 
second approximation solution:  𝜀𝜀𝑖𝑖

(2) =
𝑣𝑣𝑖𝑖

(1) − 𝑣𝑣𝑖𝑖
(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛) , which is known 

as the second error.  
By using the same method as defined above, 
we can get the second error approximate 
solution 𝜀𝜀𝑖𝑖

(2)(𝑖𝑖 = 1,2, … , 𝑛𝑛)  of the second 
error 𝜀𝜀𝑖𝑖

(2) and its predicted values such  as:  

𝜀𝜀𝑛𝑛+1
(2), 𝜀𝜀𝑛𝑛+2

(2), … , 𝜀𝜀𝑛𝑛+𝑙𝑙
(2). 
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(𝑘𝑘)(𝑖𝑖 = 1,2, … , 𝑛𝑛, 𝑘𝑘 = 1,2, … , 𝑚𝑚). 
 
 

(e) value 𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚) can be obtained which is more close to the exact solution 𝑣𝑣𝑛𝑛+1(𝑖𝑖 = 1,2,… , 𝑙𝑙) than 

𝑣𝑣𝑛𝑛+𝑖𝑖
(1). 

 
(f) Proof. For any value n, the following common inequalities exist: 
Correction: 0 ≤ |𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(𝑚𝑚)| = |𝜀𝜀𝑛𝑛(𝑚𝑚)| ≤ |𝜀𝜀𝑛𝑛
(𝑚𝑚−1)| ≤ ⋯ ≤ |𝜀𝜀𝑛𝑛(1)| = |𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(1)| 
 

13. Need correction of equation Therefore, we consider 
Correction  𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚{ |𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖

(1)|, 𝑖𝑖 = 1,2,… , 𝑛𝑛} 
 

14. Need correction of equation  

Correction: and 𝑣𝑣𝑛𝑛
(𝑚𝑚), 

15. the following equations hold:  

correction:  𝜀𝜀𝑛𝑛(1) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛
(1) 

16. Need to put this equation.  
 
Correction : 

𝜀𝜀𝑛𝑛(2) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛
(2) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛

(1) + 𝜀𝜀𝑛𝑛
(1)) = 𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛

(1) 

𝜀𝜀𝑛𝑛(3) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛
(3) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛

(2) + 𝜀𝜀𝑛𝑛
(2)) = 𝜀𝜀𝑛𝑛(2) − 𝜀𝜀𝑛𝑛

(2) 
17. Need correction of equation.  

Correction: By continuing the same process, we get: 
𝜀𝜀𝑛𝑛(𝑚𝑚) = 𝜀𝜀𝑛𝑛(𝑚𝑚−1) − 𝜀𝜀𝑛𝑛

(𝑚𝑚−1). 
 

18. Therefore from 
Correction: 𝜀𝜀𝑛𝑛(𝑚𝑚) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(𝑚𝑚), 
 

19. Need to correctio the equation, we found that the solution 
 

Correction:  𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚)(𝑖𝑖 = 1,2,⋯ , 𝑙𝑙) 

 
20.  Need to correct the equation than 

Correction:  𝑣𝑣𝑛𝑛+𝑖𝑖
(1)(𝑖𝑖 = 1,2,… , 𝑙𝑙). Since 0 ≤ |𝜀𝜀𝑛𝑛(1)| = |𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(1)| ≤ 𝑀𝑀  
then we obtain 

21. Need to correct the equation       then we obtain 

Correction: 0 ≤ |𝜀𝜀𝑛𝑛(2)| = |𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛
(2)| = |𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛

(1)| ≤ |𝜀𝜀𝑛𝑛(1)| ≤ 𝑀𝑀 

                                                                    (4) 

22. Need to correct the equation:         So the following inequality can be obtained: 
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2.3. Detailed Diagram

The overall HPEIAM prediction method is 
illustrated through a flow diagram in Fig. 1.  The 
HPEIAM follows the following steps:

Step 1: Input the number of vulnerabilities in time.
Step 2: Estimate the first approximation solution 
using the selected VDM.
Step 3: By subtracting actual data with the 
previous approximation solution, the error of the 
approximation has been obtained.
Step 4: Estimate the root mean square values 
(RMSE).
Step 5: Check the Expected accuracy as selected by 
the user (RMSE<=M). If the condition is satisfied, 
get final results otherwise continue to the next step.
Step 6: Estimate the error approximation solution 
and error predicted solution using the same model.
Step 7: Get the next approximation solution and 
predicted solution by adding the last approximation 
and error approximation to the solution, which will 
be a more accurate estimated result than the previous 
estimation. After getting the next approximate 
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Step 5: Check the Expected accuracy as 
selected by the user (RMSE<=M). If the 
condition is satisfied, get final results 
otherwise continue to the next step. 
Step 6: Estimate the error approximation 
solution and error predicted solution using the 
same model. 

Step 7: Get the next approximation solution 
and predicted solution by adding the last 
approximation and error approximation to the 
solution, which will be a more accurate 
estimated result than the previous estimation. 
After getting the next approximate solution, 
move to step 3 to repeat the same process. 

 
                                        Fig. 1. Overview of HPEIAM prediction method 

1.4. Algorithm 
The proposed method is presented through 
algorithm 1 which shows the iterative process 
to improve the accuracy of VDMs as follows:  
 
Algorithm 1:High precision error iterative analysis algorithm 

Input 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑣𝑣, 𝛿𝛿 ≥ 0 

Create a model: 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛, 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑟𝑟, 𝑡𝑡) 

Get the approximation solution:  𝑣𝑣𝑖𝑖
(1)(𝑖𝑖 = 1,2, … , 𝑙𝑙) 

Get error values: 𝜀𝜀𝑖𝑖
(1) = 𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖

(1)(𝑖𝑖 = 1,2, … , 𝑣𝑣) 

1. For 1i  to m do 
2. 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓(𝜀𝜀1

(𝑖𝑖), 𝜀𝜀2
(𝑖𝑖), … , 𝜀𝜀𝑛𝑛

(𝑖𝑖), 𝑝𝑝1
(𝑖𝑖), 𝑝𝑝2

(𝑖𝑖), … , 𝑝𝑝𝑟𝑟
(𝑖𝑖), 𝑡𝑡) 

3. If |𝜺𝜺(𝒊𝒊)| = {∑ |𝒗𝒗𝒗𝒗𝒏𝒏
𝒗𝒗−𝟏𝟏 − 𝒗𝒗𝒗𝒗−(𝒊𝒊)|} ≤ 𝜹𝜹 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 

4. Get the predicted solution 
5. 𝑣𝑣𝑛𝑛+𝑖𝑖

(𝑚𝑚) = 𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚−1) + 𝑠𝑠(𝑠𝑠) 𝜀𝜀𝑛𝑛+𝑖𝑖

(𝑚𝑚−1) 
6. Exit 
7. Else of for some other condition then 
8. Repeat for loop 
9. end if 
10. end for 

solution, move to step 3 to repeat the same process.
 
2.4. Algorithm
 
The proposed method is presented through 
algorithm 1 which shows the iterative process to 
improve the accuracy of VDMs as follows: 

Algorithm 1: High precision error iterative analysis 
algorithm
Input v1,v2,…,vn, δ ≥ 0
Create a model: VDM = f (v1,v2, ..., vn , p1, p2, …, pr, t)
Get the approximation solution: vi

(1) (i=1,2,…,l)
Get error values: εi

(1) = vi 
_ vi

(1) (i=1,2,…,n)
1.  For i = 1 to m do
2.  VDM = f(ε1

(i),ε2
(i),…,εn

(i),p1
(i),p2

(i) ),…,pr
(i),t)

3.  If | ε(i) | = { ∑j-1
 | vj _ vj (i) |} ≤ δ then

4.  Get the predicted solution
5.   vn+i

(m) = vn+i
(m-1) + s (s)εn+i

(m-1)

6.   Exit
7.   Else of for some other condition then
7.   Repeat for loop
8.   end if
9.   end for

n
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2.5.  Residual error sign estimation (s(i))

The above HPEIAM method improves the 
prediction accuracy of any model and gives an 
optimal solution. The residual errors are responsible 
for the prediction accuracy of error approximation 
and the signs (s(i)) associated with these errors of 
the given model. VDMs cannot deal with directly 
residual errors because of their randomly fluctuated 
positive and negative signals. Therefore, we used 
an artificial neural network (ANN) to estimate the 
signs of residual errors. Different types of neural 
architectures are available. However, a multilayer 
backpropagation (BP) neural network is the most 
widely used. A BP network typically consists of 
three or more layers: an input layer, an output layer, 
and at least one hidden layer. The structure of the 
ANN sign estimator is shown in Fig 2. 
  

To predict the signs (s(i)) of predicted errors εn
(i), 

we have used the two-state ANN model. For that, 
we introduced a dummy variable d(i) to indicate the 
sign of ith error. Assume that the sign of ith error is 
negative, then d(i)=0, otherwise it is 1. Then we set 
up an ANN model by using the values of d(n − 1) 
and d(n) to estimate the values of d(n + 1). 

The characteristic equation for the sign of ith 
error, s(i), is as follows:

According to the above-illustrated equation, the 
sign of estimated error can be predicted by using 
the ANN sign estimator. The actual estimated 
values can be shown as:

Next, we will proceed to the software vulnerability 
prediction to examine the accuracy of our proposed 
method by using different parametric software 
vulnerability discovery models (VDMs).

3.   NUMERICAL ILLUSTRATION

To demonstrate the effectiveness of the proposed 
method, we use four different statistical 
vulnerability discovery models as shown in Table 1. 
The HPEIAM technique is applied to every model 
to get a more accurate and optimal solution. To fit 
the vulnerability data to the models, the parameters 
are chosen in such a way that the sum of squared 
error is minimized such as  Such as, if a model has 
parameters A, B, and C, they are optimized using 
the equation below:

3.1.  Data Description

To validate our model results, we collected 
the vulnerability datasets from the National 
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Residual error sign estimation (𝒔𝒔(𝒊𝒊)) 

The above HPEIAM method improves the 
prediction accuracy of any model and gives an 
optimal solution. The residual errors are 
responsible for the prediction accuracy of error 
approximation and the signs ( ( ))s i  associated 
with these errors of the given model. VDMs 
cannot deal with directly residual errors 
because of their randomly fluctuated positive 

and negative signals. Therefore, we used an 
artificial neural network (ANN) to estimate the 
signs of residual errors. Different types of 
neural architectures are available. However, a 
multilayer backpropagation (BP) neural 
network is the most widely used. A BP 
network typically consists of three or more 
layers: an input layer, an output layer, and at 
least one hidden layer. The structure of the 
ANN sign estimator is shown in Fig 2. 

 

                                   Fig. 2.. Graphical representation of ANN sign estimator 

To predict the signs (𝑠𝑠(𝑖𝑖))  of predicted 

errors 𝜀𝜀𝑛𝑛
(𝑖𝑖), we have used the two-state ANN 

model. For that, we introduced a dummy 
variable d(i) to indicate the sign of ith error. 
Assume that the sign of ith error is negative, 
then d(i)=0, otherwise it is 1. Then we set up 
an ANN model by using the values of d(n − 1) 
and d(n) to estimate the values of d(n + 1).  

The characteristic equation for the sign of 
ith error, s(i), is as follows: 

𝑠𝑠(𝑖𝑖) = {+1−1
 d(i)=1
 d(i)=0

if
if

 𝑖𝑖 = 1,2,3,… . , 𝑛𝑛 

According to the above-illustrated equation, 
the sign of estimated error can be predicted by 
using the ANN sign estimator. The actual 
estimated values can be shown as: 

𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚)

= 𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚−1) + 𝑠𝑠(𝑖𝑖)𝜀𝜀𝑛𝑛+1

(𝑚𝑚−1)(𝑖𝑖 = 1,2,… , 𝑙𝑙) 

Next, we will proceed to the software 
vulnerability prediction to examine the 
accuracy of our proposed method by using 
different parametric software vulnerability 
discovery models (VDMs). 

 
4. NUMERICAL ILLUSTRATION 

 
To demonstrate the effectiveness of the 
proposed method, we use four different 
statistical vulnerability discovery models as 
shown in Table 1. The HPEIAM technique is 
applied to every model to get a more accurate 
and optimal solution. To fit the vulnerability 
data to the models, the parameters are chosen 
in such a way that the sum of squared error is 
minimized such as  Such as, if a model has 
parameters A, B, and C, they are optimized 
using the equation below: 

Fig. 2. Graphical representation of ANN sign estimator 

An Optimization of Vulnerability Discovery Models

 
Residual error sign estimation (𝒔𝒔(𝒊𝒊)) 

The above HPEIAM method improves the 
prediction accuracy of any model and gives an 
optimal solution. The residual errors are 
responsible for the prediction accuracy of error 
approximation and the signs ( ( ))s i  associated 
with these errors of the given model. VDMs 
cannot deal with directly residual errors 
because of their randomly fluctuated positive 

and negative signals. Therefore, we used an 
artificial neural network (ANN) to estimate the 
signs of residual errors. Different types of 
neural architectures are available. However, a 
multilayer backpropagation (BP) neural 
network is the most widely used. A BP 
network typically consists of three or more 
layers: an input layer, an output layer, and at 
least one hidden layer. The structure of the 
ANN sign estimator is shown in Fig 2. 

 

                                   Fig. 2.. Graphical representation of ANN sign estimator 

To predict the signs (𝑠𝑠(𝑖𝑖))  of predicted 

errors 𝜀𝜀𝑛𝑛
(𝑖𝑖), we have used the two-state ANN 

model. For that, we introduced a dummy 
variable d(i) to indicate the sign of ith error. 
Assume that the sign of ith error is negative, 
then d(i)=0, otherwise it is 1. Then we set up 
an ANN model by using the values of d(n − 1) 
and d(n) to estimate the values of d(n + 1).  

The characteristic equation for the sign of 
ith error, s(i), is as follows: 

𝑠𝑠(𝑖𝑖) = {+1−1
 d(i)=1
 d(i)=0

if
if

 𝑖𝑖 = 1,2,3,… . , 𝑛𝑛 

According to the above-illustrated equation, 
the sign of estimated error can be predicted by 
using the ANN sign estimator. The actual 
estimated values can be shown as: 

𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚)

= 𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚−1) + 𝑠𝑠(𝑖𝑖)𝜀𝜀𝑛𝑛+1

(𝑚𝑚−1)(𝑖𝑖 = 1,2,… , 𝑙𝑙) 

Next, we will proceed to the software 
vulnerability prediction to examine the 
accuracy of our proposed method by using 
different parametric software vulnerability 
discovery models (VDMs). 

 
4. NUMERICAL ILLUSTRATION 

 
To demonstrate the effectiveness of the 
proposed method, we use four different 
statistical vulnerability discovery models as 
shown in Table 1. The HPEIAM technique is 
applied to every model to get a more accurate 
and optimal solution. To fit the vulnerability 
data to the models, the parameters are chosen 
in such a way that the sum of squared error is 
minimized such as  Such as, if a model has 
parameters A, B, and C, they are optimized 
using the equation below: 

An Optimization of Vulnerability Discovery Models

 
Residual error sign estimation (𝒔𝒔(𝒊𝒊)) 

The above HPEIAM method improves the 
prediction accuracy of any model and gives an 
optimal solution. The residual errors are 
responsible for the prediction accuracy of error 
approximation and the signs ( ( ))s i  associated 
with these errors of the given model. VDMs 
cannot deal with directly residual errors 
because of their randomly fluctuated positive 

and negative signals. Therefore, we used an 
artificial neural network (ANN) to estimate the 
signs of residual errors. Different types of 
neural architectures are available. However, a 
multilayer backpropagation (BP) neural 
network is the most widely used. A BP 
network typically consists of three or more 
layers: an input layer, an output layer, and at 
least one hidden layer. The structure of the 
ANN sign estimator is shown in Fig 2. 

 

                                   Fig. 2.. Graphical representation of ANN sign estimator 

To predict the signs (𝑠𝑠(𝑖𝑖))  of predicted 

errors 𝜀𝜀𝑛𝑛
(𝑖𝑖), we have used the two-state ANN 

model. For that, we introduced a dummy 
variable d(i) to indicate the sign of ith error. 
Assume that the sign of ith error is negative, 
then d(i)=0, otherwise it is 1. Then we set up 
an ANN model by using the values of d(n − 1) 
and d(n) to estimate the values of d(n + 1).  

The characteristic equation for the sign of 
ith error, s(i), is as follows: 

𝑠𝑠(𝑖𝑖) = {+1−1
 d(i)=1
 d(i)=0

if
if

 𝑖𝑖 = 1,2,3,… . , 𝑛𝑛 

According to the above-illustrated equation, 
the sign of estimated error can be predicted by 
using the ANN sign estimator. The actual 
estimated values can be shown as: 

𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚)

= 𝑣𝑣𝑛𝑛+𝑖𝑖
(𝑚𝑚−1) + 𝑠𝑠(𝑖𝑖)𝜀𝜀𝑛𝑛+1

(𝑚𝑚−1)(𝑖𝑖 = 1,2,… , 𝑙𝑙) 

Next, we will proceed to the software 
vulnerability prediction to examine the 
accuracy of our proposed method by using 
different parametric software vulnerability 
discovery models (VDMs). 

 
4. NUMERICAL ILLUSTRATION 

 
To demonstrate the effectiveness of the 
proposed method, we use four different 
statistical vulnerability discovery models as 
shown in Table 1. The HPEIAM technique is 
applied to every model to get a more accurate 
and optimal solution. To fit the vulnerability 
data to the models, the parameters are chosen 
in such a way that the sum of squared error is 
minimized such as  Such as, if a model has 
parameters A, B, and C, they are optimized 
using the equation below: 

An Optimization of Vulnerability Discovery Models

𝐴𝐴, 𝐵𝐵, 𝐶𝐶| 𝑚𝑚𝑚𝑚𝑚𝑚( ∑ 𝑡𝑡 = 1 (𝑣𝑣(𝑡𝑡) − 𝑣𝑣(𝑡𝑡)2) 
 
 

 
 

Table 1. Parametric software reliability growth models 

Models Name Model Function Description 

Exponential Model Rescorla 𝑉𝑉(𝑡𝑡) = 𝑁𝑁 × (1 − 𝑒𝑒−𝑎𝑎𝑎𝑎) 
The number of vulnerabilities 
discovered at time t decays 
exponentially with the time 

Logarithmic Model Poisson 𝑉𝑉(𝑡𝑡) = 𝑎𝑎 × 𝐿𝐿𝑁𝑁(1 + 𝑏𝑏 × 𝑡𝑡) 
It shows the total number of 
vulnerabilities as a logarithmic 
growth function 

Alhazmi-Malaiya Logistic 
Model 𝑉𝑉(𝑡𝑡) = 𝐵𝐵

𝐵𝐵 × 𝐶𝐶 × 𝑒𝑒𝐴𝐴𝐴𝐴𝑎𝑎 + 1 

It is based on capturing the 
underlying process of vulnerability 
discovery and the rate of 
vulnerability depends on two 
factors. 

Weibull Model V (𝑡𝑡) = 𝛾𝛾 {1 − 𝑒𝑒−( 𝑎𝑎
𝛽𝛽)𝛼𝛼

} 

It assumes that the vulnerability 
discovery rate varies according to 
the Weibull probability distribution 
function. 

Data Description 
 
To validate our model results, we collected the 
vulnerability datasets from the National 
Vulnerability Database (NVD) 
(http://nvd.nist.gov) managed by the National 
Institute of Standard and Technology (NIST). 
Experts at NIST have analyzed the 
vulnerabilities reported to the NVD and 
assigned proper attributes to the defects before 
the data entries [26].  

Therefore, it is considered a high-quality 
database, which has been used by several 
researchers. In total, we collected four recent 
versions of different vulnerability datasets: 
Windows 10, Android 7.0, Internet Explorer 
11, and Firefox 20. The collected 
vulnerabilities for each dataset started from the 
first day of the release, or the earliest 
availability. These vulnerability datasets 
represent the major categories of software 
systems: operating systems, Web browsers, 
and Android applications. We collected the 
vulnerabilities of each application starting  

 

 

from the first day of the release of the earliest 
available data in NVD. We aggregated all 
vulnerabilities for each application over a 
monthly period. Table 2 shows the statistics of 
all vulnerability datasets. Fig 3. Shows the 
number of vulnerabilities found in each month 
for all datasets. 
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Vulnerability Database (NVD) (http://nvd.nist.
gov) managed by the National Institute of Standard 
and Technology (NIST). Experts at NIST have 
analyzed the vulnerabilities reported to the NVD 
and assigned proper attributes to the defects before 
the data entries [26]. 

Therefore, it is considered a high-quality 
database, which has been used by several 
researchers. In total, we collected four recent 
versions of different vulnerability datasets: 
Windows 10, Android 7.0, Internet Explorer 11, and 
Firefox 20. The collected vulnerabilities for each 
dataset started from the  first day of the release, or 
the earliest availability. These vulnerability datasets 
represent the major categories of software systems: 
operating systems, Web browsers, and Android 
applications. We collected the vulnerabilities of 
each application starting from the first day of the 
release of the earliest available data in NVD. We 
aggregated all vulnerabilities for each application 
over a monthly period.  Table 2 shows the statistics 
of all vulnerability datasets. Fig 3. shows the 
number of vulnerabilities found in each month for 
all datasets.

 4.  EXPERIMENTAL EVALUATION AND   
      PERFORMANCE ANALYSIS

In our analysis, we have used datasets of four 
different software as shown in Fig 3. Based on our 

technique, we divide the data into two parts. The 
first part of the dataset is always used to get expected 
accuracy. The root means square error (RMSE) 
criterion is used to get the expected accuracy of the 
model based on our proposed technique for every 
iteration. We specify the expected accuracy value 
for every model as 10. The process will be stopped 
if the RMSE value got less value than the expected 
accuracy. Every model has been iterated repeatedly 
based on our proposed technique until expected.  
accuracy values get less than 10. The accuracy 
values of different models and their improved 
results for every iteration for different datasets are 
shown in Fig 4.

Fig 4. the bar values which show less than 10 
RMSE values are considered to reach the expected 
accuracy and the iteration process is stopped. The 
second part of the dataset is used to evaluate the 
predictive power of the proposed technique. The 
sum of squared errors (SSE) criterion is selected 
to check the predictive capability of the proposed 
technique. Most of the VDMs have been evaluated 
using their fitting capability, while visually most of 
the models appear to fit well, but their predictive 
capability is considered non-satisfactory. The 
primary use of VDMs is to predict future trends 
based on the available data, rather than assessing 
the past data behavior. Therefore, we have used the 
last 10 data points of every dataset to evaluate the 
predictive capability of models and also checked 
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Table 2. Vulnerability datasets 

Datasets Data Collection period Number of Vulnerabilities 

Windows 10 Aug 2015-Jun-2018 613 

 Dec 2014-Jun-2018 1018 

Internet Explorer 11.0 Sep 2013-Jun-2018 640 

Android 20.0 May 2012-Jun-2018 502 

 
 
 
 

 
(a) Windows 10 

 

(b)  Firefox 7.0

 

 
(c)  Internet explorer 11.0 

 

 
(d) Android 20.0 

 
Fig. 3. Number of vulnerabilities along with the calendar time 
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5. Experimental Evaluation and 
Performance Analysis 

 
In our analysis, we have used datasets of four 
different software as shown in Fig 3. Based on 
our technique, we divide the data into two 
parts. The first part of the dataset is always 
used to get expected accuracy. The root means 
square error (RMSE) criterion is used to get 
the expected accuracy of the model based on 
our proposed technique for every iteration. We 
specify the expected accuracy value for every 

model as 10. The process will be stopped if the 
RMSE value got less value than the expected 
accuracy. Every model has been iterated 
repeatedly based on our proposed technique 
until expected.  
accuracy values get less than 10. The accuracy 
values of different models and their improved 
results for every iteration for different datasets 
are shown in Fig 4. 

Fig 4. The bar values which show less than 
10 RMSE values are considered to reach the 

Table 3. Comparison of predictive results of all selected models using the HPEIAM technique for different 
datasets 

 Fitting power (RMSE values) Predicted power (SSE values) 

 
Androi
d 7.0 

Firefox 
20 

Explorer 
11 

Windows 
10 

Android 
7.0 

Firefox 
20 

Explorer 
11 

Window
s 10 

Exponential 
model 

26.57 10.17 10.91 13.21 3155.01 158.35 183.39 
1107.60
3803 

Exponential model 
iteration-1 

14.76 6.18 7.53 9.92 2979.17 145.21 112.16 534.94 

Exponential model 
iteration-2 

9.97 - - - 1893.8 - - - 

Logarithmic model 27.8 11.11 10.92 13.06 3688.37 1228.58 211.09 
977.623
1669 

Logarithmic model 
iteration-1 

17.51 6 7.68 9.6 1701.18 680.92 86.81 463.35 

Logarithmic model 
iteration-2 

14.61 - - - 753.99 - - - 

Logarithmic model 
iteration-3 

10 - - - 282.22 - - - 

AML model 16.29 10.822 11.01 12.45 4572.72 630.91 536.87 
1049.02
935 

AML model 
iteration-1 

11.66 6.71 8.52 8.93 2928.82 250.81 488.52 773.64 

AML model 
iteration-2 

6.58 - - - 2185.46 - - - 

Weibull model 16.52 11.22 15.36 11.83 4436.52 1608.73 271.79 1530.85 

Weibull model 
iteration-1 

11.9 6.288 7.24 8.41 2622 809.78 231.52 791.35 

Weibull model 
iteration-2 

6.78 - - - 2165 - - - 

the predictive capability after applying the proposed 
technique on every VDM. Table 3 shows the fitted 
values obtained from the VDMs such as Exponential, 
Logarithmic, AML, and Weibull models and their 
improved results using the proposed technique 
by considering different datasets. The expected 
accuracy is selected based on the   appropriate RMSE 
value and this experiment is taken as 10. From 
Table 3, it is shown that when HPEIAM is applied 
to an exponential model, it provides the best fitting 
and predictive results for different datasets. The 
exponential model shows different RMSE values 
for Android 7.0, Firefox 20, Internet Explorer 11, 
and Windows 10 such as 26.57, 10.17, 13.21, and 

13.21 values respectively. As the expected accuracy 
value is selected as 10 so we iterate the process 
and apply the proposed technique. For Firefox 20, 
Internet Explorer 11, and Windows 10, the expected 
accuracy is achieved after the first iteration such as 
6.18, 7.53, and 9.92 respectively. For Android 7.0, 
the expected accuracy is obtained after the second 
iteration as 9.97. The predictive accuracy also 
improved with every iteration such as for Android, 
it improves from 3155.01 to 2979.17 and then 
changed to 1893.8, which is the lowest SSE value. 
The predictive accuracy for Firefox 20, Internet 
Explorer 11, and Windows 10, also improve from 
158.35, 183.39, and 1107.60 to 145.21, 112.16, 

 An Optimization of Vulnerability Discovery Models 55



Dear Editor,  

Please carefully consider our changes while composing. 

 

Thank you very much for your time and support, below changes have been suggestion. 

 

 

Need changes.  
 

1. 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖(1)(𝑡𝑡) 

 

 

2. 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖(1)(𝑡𝑡) 

 

3. 𝑣𝑣𝑛𝑛+𝑖𝑖
(1)(𝑖𝑖 = 1,2,⋯ , 𝑙𝑙) 

 
4. 𝜀𝜀𝑛𝑛(2) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(2) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛
(1) + 𝜀𝜀𝑛𝑛

(1)) = 𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛
(1) 

 
𝜀𝜀𝑛𝑛(3) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(3) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛
(2) + 𝜀𝜀𝑛𝑛

(2)) = 𝜀𝜀𝑛𝑛(2) − 𝜀𝜀𝑛𝑛
(2) 

 
5. 0 ≤ |𝜀𝜀𝑛𝑛(2)| = |𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(2)| = |𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛
(1)| ≤ |𝜀𝜀𝑛𝑛(1)| ≤ 𝑀𝑀 

 
6. Need to change fig 5 

 

 
 

Dear Editor,  

Please carefully consider our changes while composing. 

 

Thank you very much for your time and support, below changes have been suggestion. 

 

 

Need changes.  
 

1. 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖(1)(𝑡𝑡) 

 

 

2. 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡)
(1)

, 𝜀𝜀𝑖𝑖(1)(𝑡𝑡) 

 

3. 𝑣𝑣𝑛𝑛+𝑖𝑖
(1)(𝑖𝑖 = 1,2,⋯ , 𝑙𝑙) 

 
4. 𝜀𝜀𝑛𝑛(2) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(2) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛
(1) + 𝜀𝜀𝑛𝑛

(1)) = 𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛
(1) 

 
𝜀𝜀𝑛𝑛(3) = 𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(3) = 𝑣𝑣𝑛𝑛 − (𝑣𝑣𝑛𝑛
(2) + 𝜀𝜀𝑛𝑛

(2)) = 𝜀𝜀𝑛𝑛(2) − 𝜀𝜀𝑛𝑛
(2) 

 
5. 0 ≤ |𝜀𝜀𝑛𝑛(2)| = |𝑣𝑣𝑛𝑛 − 𝑣𝑣𝑛𝑛

(2)| = |𝜀𝜀𝑛𝑛(1) − 𝜀𝜀𝑛𝑛
(1)| ≤ |𝜀𝜀𝑛𝑛(1)| ≤ 𝑀𝑀 

 
6. Need to change fig 5 

 

 
 

  
 

Fig. 5. Illustration of Predicted Errors for four VDMs using Android 7.0 dataset. 

  
 

Fig. 5. Illustration of Predicted Errors for four VDMs using Android 7.0 dataset. 

Fig. 5. Illustration of Predicted Errors for four VDMs using Android 7.0 dataset

 
Fig. 4. Expected Accuracy obtained for different model using HPEIAM technique 

 

25. Correction of figure 5 is also needed because fig (b) replaced with 5(c) 

 

Correction: 

 
 

Fig. 4. Illustration of Predicted Errors for four VDMs using Android 7.0 dataset
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Similarly, for the Weibull model, the 

expected accuracy is obtained after the second 
iteration for Android 7.0 such as 6.58. For 
Firefox 20, Internet Explorer 11, and Windows 
10, the expected accuracy is achieved after the 
first iteration such as 6.288, 7.24, and 8.41 
respectively. The predictive accuracy also 
shows improved results such as for Android 
7.0, it improves from 4436.52 to 2165.00, 
which is the lowest predictive SSE value. The 
predictive accuracy for Firefox 20, Internet 
Explorer 11, and Windows 10 such as 809.78, 
231.52, and 791.35 respectively. The 
predictive errors of the improved Weibull 
model for every dataset are illustrated in Fig 
5(d), 6(d), 7(d), and 8(d).  

The ANN sign estimator contains a tapped 
delay line from 1 to 4 and uses eight neurons 
in the hidden layer for every dataset. The 
network has tapped the delay line with a 
maximum delay of 4, begins by predicting the 
fifth value of the input series (sign). The last 
10 data points of every dataset are used as a 
testing set and the remaining part is used for 
training the network. The output results are 
combined with the predicted error values of 
different VDMs to get the expected 
approximated solution. The fitting RMSE 
values of the proposed method improve with 
every iteration in each data interval. Therefore, 
it is found that the proposed technique 
improves the accuracy of every model using 
any data interval and the user can use it to get 
the model’s accuracy up to an expected level.

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5.. Illustration of Predicted Errors for four VDMs using Firefox 20 dataset Fig. 6. Illustration of Predicted Errors for four VDMs using Firefox 20 dataset
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(a) 

 

(b) 

(c) 
 

(d) 

Fig. 6. Illustration of Predicted Errors for four VDMs using Internet Explorer 11dataset 
Fig. 7. Illustration of Predicted Errors for four VDMs using Firefox 20 dataset
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6. CONCLUSIONS 

 
In this paper, we have used multiple errors 
iterative accuracy methods and presented a 
detailed analysis of the optimization process 
by progressively acquiring optimal solutions 
using different VDMs. Experiments are used 
to demonstrate that the proposed method can 
overcome the shortcomings of current 
vulnerability discovery models such as the 
assumptions made by the models and also the 
dependency of models on the shapes or 
skewness of data. Moreover, the experimental 
results show that an expected accuracy which 
is specified as 10 has been achieved by 
optimizing the error data iteratively, and thus 
MEIAM provides more accurate predictions of 
the future trend of the number of 
vulnerabilities.  The proposed model brought 
the lowest expected accuracy value for the 
exponential model such as android 9.97, 
Firefox 6.18, Explorer 7.53, and Windows 

9.92. For the logarithmic model such as 
android 10, Firefox 6, Explorer 7.68, and 
windows got a 9.6 expected accuracy level. 
For the AML model such as android 6.58, 
Firefox 6.71, Explorer 8.52, and windows got 
8.93. Similarly, the Weibull models also show 
improve results such as android 6.78, Firefox 
6.28, Explorer 7.2, and 8.1. 

Moreover, the method presented in this 
paper offers a universal optimization process 
rather than the limited applicability of existing 
vulnerability discovery models. Furthermore, a 
comparison of the applied technique results on 
different VDMs has also been provided 
regarding different criteria values (RMSE and 
SSE) on four different datasets. Experimental 
results show that MEIAM techniques can 
effectively enhance and improve the 
performance of each VDM by providing better 
accuracy and predictive power. 

 

 

(a) 

 

(b) 

(c) 
 

(d) 

Fig. 7. Illustration of Predicted Errors for four VDMs using Windows 10 dataset 
and 534.94 respectively. The predictive errors are 
illustrated for every dataset in Fig 5(a), 6(a), 7(a), 
and 8(a). When the proposed technique is applied 
to the Logarithmic model, the expected accuracy 
is obtained after the first iteration for Firefox 20, 
Internet Explorer 11, and Windows 10 such as 
6.00, 7.68, and 9.60 respectively. For Android 7.0, 
the expected accuracy is obtained after the second 
iteration such as 10.00. The predictive accuracy 
also improves with every iteration such as for 
Android 7.0; it improves from 3688.37 to 1701.18 
in the first iteration and then changed from 7753.99 
to 282.22 in the third iteration, which is the lowest 
SSE value. The predictive errors of the improved 
Logarithmic model for every dataset are illustrated 
in Fig 5(b), 6(b), 7(b), and 8(b).  For the AML 
model, the expected accuracy is obtained after the 
second iteration for Android 7.0 such as 6.58. For 
Firefox 20, Internet Explorer 11, and Windows 10, 
the expected accuracy is achieved after the first 
iteration such as 6.71, 8.52, and 8.93 respectively. 

The predictive accuracy shows improved results 
such as for Android 7.0; it improves from 4572.72 
to 2185.46, which is the lowest predictive SSE 
value. The predictive accuracy for Firefox 20, 
Internet Explorer 11, and Windows 10 such as 
250.81, 488.52, and 773.64 respectively. The 
predictive errors of the improved AML model for 
every dataset are illustrated in Fig 5(c), 6(c), 7(c), 
and 8(c).

Similarly, for the Weibull model, the expected 
accuracy is obtained after the second iteration for 
Android 7.0 such as 6.58. For Firefox 20, Internet 
Explorer 11, and Windows 10, the expected accuracy 
is achieved after the first iteration such as 6.288, 
7.24, and 8.41 respectively. The predictive accuracy 
also shows improved results such as for Android 
7.0, it improves from 4436.52 to 2165.00, which 
is the lowest predictive SSE value. The predictive 
accuracy for Firefox 20, Internet Explorer 11, and 
Windows 10 such as 809.78, 231.52, and 791.35 

(d)

Fig. 8. Illustration of Predicted Errors for four VDMs using Windows 10 dataset
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respectively. The predictive errors of the improved 
Weibull model for every dataset are illustrated in 
Fig 5(d), 6(d), 7(d), and 8(d). 

The ANN sign estimator contains a tapped 
delay line from 1 to 4 and uses eight neurons in 
the hidden layer for every dataset. The network 
has tapped the delay line with a maximum delay of 
4, begins by predicting the fifth value of the input 
series (sign). The last 10 data points of every dataset 
are used as a testing set and the remaining part is 
used for training the network. The output results 
are combined with the predicted error values of 
different VDMs to get the expected approximated 
solution. The fitting RMSE values of the proposed 
method improve with every iteration in each data 
interval. Therefore, it is found that the proposed 
technique improves the accuracy of every model 
using any data interval and the user can use it to get 
the model’s accuracy up to an expected level. 

5.  CONCLUSIONS

In this paper, we have used multiple errors iterative 
accuracy methods and presented a detailed analysis 
of the optimization process by progressively 
acquiring optimal solutions using different VDMs. 
Experiments are used to demonstrate that the 
proposed method can overcome the shortcomings 
of current vulnerability discovery models such as 
the assumptions made by the models and also the 
dependency of models on the shapes or skewness 
of data. Moreover, the experimental results show 
that an expected accuracy which is specified as 
10 has been achieved by optimizing the error data 
iteratively, and thus MEIAM provides more accurate 
predictions of the future trend of the number of 
vulnerabilities.  The proposed model brought the 
lowest expected accuracy value for the exponential 
model such as android 9.97, Firefox 6.18, Explorer 
7.53, and Windows 9.92. For the logarithmic model 
such as android 10, Firefox 6, Explorer 7.68, and 
windows got a 9.6 expected accuracy level. For the 
AML model such as android 6.58, Firefox 6.71, 
Explorer 8.52, and windows got 8.93. Similarly, the 
Weibull models also show improve results such as 
android 6.78, Firefox 6.28, Explorer 7.2, and 8.1.

Moreover, the method presented in this paper 
offers a universal optimization process rather than 
the limited applicability of existing vulnerability 

discovery models. Furthermore, a comparison 
of the applied technique results on different 
VDMs has also been provided regarding different 
criteria values (RMSE and SSE) on four different 
datasets. Experimental results show that MEIAM 
techniques can effectively enhance and improve 
the performance of each VDM by providing better 
accuracy and predictive power.

6.   REFERENCES

1. C. P. Pfleeger, and S. L. Pfleeger, Security in 
computing: Prentice Hall Professional Technical 
Reference (2002).

2. V. H. Nguyen and L. M. S. Tran, Predicting 
vulnerable software components with dependency 
graphs, in Proceedings of the 6th International 
Workshop on Security Measurements and Metrics, 
(2010)

3. S. Rahimi, and M. Zargham, Vulnerability scrying 
method for software vulnerability discovery 
prediction without a vulnerability database, IEEE 
Transactions on Reliability, 62: 395-407 (2013).

4. R. Scandariato, J. Walden, A. Hovsepyan, and W. 
Joosen, Predicting vulnerable software components 
via text mining, IEEE Transactions on Software 
Engineering, 40: 993-1006 (2014).

5. J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. 
R. Kosta, A. Rangamani, et al., Automated software 
vulnerability detection with machine learning, arXiv 
preprint arXiv:1803.04497  (2018).

6. Y. Shin, and L. Williams, Can traditional fault 
prediction models be used for vulnerability 
prediction?," Empirical Software Engineering, 18: 
25-59 (2013).

7. G. Jabeen, L. Ping, J. Akram, and A. A. Shah, An 
Integrated Software Vulnerability Discovery Model 
based on Artificial Neural Network, in SEKE: 349-
458 (2019).

8. G. Jabeen, and L. Ping, A Unified Measurable 
Software Trustworthy Model Based on Vulnerability 
Loss Speed Index, in 2019 18th IEEE International 
Conference On Trust, Security And Privacy In 
Computing And Communications/13th IEEE 
International Conference On Big Data Science And 
Engineering (TrustCom/BigDataSE), 18-25 (2019).

9. R. Anderson, Security in open versus closed 
systems—the dance of Boltzmann, Coase and 
Moore, Technical report, Cambridge University, 
England (2002).

10. E. Rescorla, Is finding security holes a good idea?, 

 An Optimization of Vulnerability Discovery Models 59



IEEE Security & Privacy, 3: 14-19 (2005).
11. J. D. Musa and K. Okumoto, A logarithmic 

Poisson execution time model for software 
reliability measurement, in Proceedings of the 7th 
international conference on Software engineering, 
230-238 (1984).

12. S. Rahimi, Security vulnerabilities: Discovery, 
prediction, effect, and mitigation: Southern Illinois 
University at Carbondale (2013).

13. O. H. Alhazmi and Y. K. Malaiya, Quantitative 
vulnerability assessment of systems software, in 
Annual Reliability and Maintainability Symposium, 
2005. Proceedings, 615-620 (2005).

14. O. H. Alhazmi, Y. K. Malaiya, and I. Ray Measuring, 
analyzing, and predicting security vulnerabilities in 
software systems, Computers & Security, 26: 219-
228 (2007).

15. O. H. Alhazmi and Y. K. Malaiya, Measuring and 
enhancing prediction capabilities of vulnerability 
discovery models for Apache and IIS HTTP 
servers," in 2006 17th International Symposium on 
Software Reliability Engineering  343-352 (2006).

16. O. H. Alhazmi and Y. K. Malaiya, "Application of 
vulnerability discovery models to major operating 
systems, IEEE Transactions on Reliability, 57: 14-
22 (2008).

17. K. Chen, D. Feng, P. Su, C. Nie, and X. Zhang, 
Multicycle vulnerability discovery model for 
prediction, Journal of Software, 21: 2367-2375 
(2010).

18. H. Joh and Y. K. Malaiya, "Modeling skewness in 
vulnerability discovery, Quality, and Reliability 
Engineering International, 30: 1445-1459 (2014).

19. R. Johnston, S. Sarkani, T. Mazzuchi, T. Holzer, 
and T. Eveleigh, Multivariate models using 

MCMCBayes for web-browser vulnerability 
discovery, Reliability Engineering & System Safety, 
176: 52-61 (2018).

20. R. Johnston, S. Sarkani, T. Mazzuchi, T. Holzer, 
and T. Eveleigh, Bayesian-model averaging using 
MCMCBayes for web-browser vulnerability 
discovery, Reliability Engineering & System Safety, 
183: 341-359 (2019).

21. Y. Movahedi, M. Cukier, and I. Gashi, Vulnerability 
prediction capability: A comparison between 
vulnerability discovery models and neural network 
models, Computers & Security, 87: 101596 (2019).

22. P. Kapur, V. S. Yadavali, and A. Shrivastava, A 
comparative study of vulnerability discovery 
modeling and software reliability growth modeling, 
min 2015 International Conference on Futuristic 
Trends on Computational Analysis and Knowledge 
Management (ABLAZE), 246-251 (2015).

23. H. Joh and Y. K. Malaiya, Periodicity in software 
vulnerability discovery, patching and exploitation, 
International Journal of Information Security, 16: 
673-690 (2017).

24. R. Sharma and R. Singh, Vulnerability Discovery 
in Open-and Closed-Source Software: A New 
Paradigm," in Software Engineering, ed: Springer, 
2019, pp. 533-539.

25. B. Liu, L. Shi, Z. Cai, and M. Li, Software 
vulnerability discovery techniques: A survey," in 
2012 fourth international conference on multimedia 
information networking and security, 152-
156(2012).

26. S. H. Houmb, V. N. Franqueira, and E. A. Engum 
Quantifying security risk level from CVSS estimates 
of frequency and impact, Journal of Systems and 
Software, 83: 1622-1634 (2010).

60 Gul Jabeen et al


