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Abstract: Lifetime data analysis is an important part of the Physical sciences, Engineering, and insurance sectors.
The present study proposed a generalized form of Lindley distribution, which is a lifetime model, and developed
its Statistical properties including moment generating function, generalized moment function, mean deviations,
Bonferroni and Lorenz curve, reliability measures (survival function, hazard function, cumulative hazard function,
reversed hazard function, mean residual life function), order statistics and Reyni entropy. An application of real-life

data showed that the proposed model best fitted the data.

Keywords: Lifetime, Reliability, Survival, Hazard, Entropy, Order statistics.

1. INTRODUCTION

The lifetime data analysis is in the Physical
sciences, and Engineering, and life insurance
sectors. For this purpose, many distributions
including exponential, Gamma, Rayleigh,
Weibull, and Lindley, etc. have been developed.
Recently introduced lifetime data distributions
include two and three parameters Lindley, Quasi
Lindley, Sujatha, Akash, Shanker, Aradhana, Suja,
Amerandra, Ishita, Odoma, Rani, Deyvia, Pranav
Sushila and Shukla distributions, which are all of
mixture type distributions under mixture
proportions with gamma and exponential
distributions. The Lindley (1958) distribution with
pdf and cdf respectively [1] given as:

6? -
fu(3,8) =5 (1 +y)e™® (1.1)
y>0;,0>0
Fi(y,0) = 1— 22t -6y (1.2)

is a mixture of f;(y)as an Exponential(9)
62ye=9y

and f,(y) as a Gamma (2,0) = with
mixture proportions P; = % and P, = ﬁ.

Quasi Lindley distribution  proposed by
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Shanker et al in 2016 , is a mixture of exponential
2,,,-0
an as a Gamma (2,0) = > with
(0) and f,(y) as a Gamma (2,0) = =22

. . 1
mixture proportions P; = ﬁ and P, = Py [2]

i.e.

f(,0) =P, f1(y) + Prf2(y) (1.3)

Nadarajah et al. (2011) developed a generalized
Lindley  distribution and  evaluated its
properties[3]. Shanker et al. (2013) introduced
two-parameter Lindley distribution, with pdf and
cdf [4] given as:

__° -0y
frep (7,8, ) = 201 (a+y)e™, (1.4)

y>0;,0>0; af > —1,
Frpp(y,0,a) =1 — (1 +9—y)e‘93’. (1.5)

af+1

Three parameters Lindley distribution (Three
PLD), introduced by Shanker et al. (2017), has the
following pdf and cdf [5]:

2

freeo (¥, 6, @) 20 + k (a +ky)e™™7,
where y>0;0>0; a6 >—1; k>0 (1.6)

KOy \ _
Frpyp(y,0,a) =1 — (1 + agfk) e=% (1.7)

Shanker (2015)[6] introduced Akash distribution
with pdf and cdf [6] respectively,
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3
fax(y,0) = 9—:2 1+ yz)e“’y, y>0;0>0,

(1.8)

0y(Oy+1) _
Fag(y,8) = 1 - 282 =0y (1.9

Shukla (2018) proposed Pranav distribution pdf
fp(y,0) and cdf Fp(y,0), [7] Shukla (2018)
introduced Ram Awadh distribution with pdf
fra(y,8) and cdf Fru(y,0), and gave its
properties and application, [8] Shanker et al.
(2017) developed Suja distribution with pdf
fs;(y,0) and cdf Fs;(y, 0) respectively [8] given
below:

— 6* 3y,—-0y .
fr@,0) =g 1+ye ™ :y>0,6>0
(1.10)
0y(02y? + 30y + 6)
F, 0)=1-—|1 -0y
P(y' ) + 94+ 6 e
(1.11)
06 _
fra(,0) = 5555 (1 +y5e ;y> 0; 0>
0, (1.12)
FAK(‘ly’4e) :3 13_ 2,,2
Oy(0*y*+50°y :209 y +600y+120)e_9y (1‘13)
06+120
95

fs;3,0) = 55, (4 +yHe 0, y>0;0>0

(1.14)
Fs;(y,0) =1 — [1 +
(0*y*+463y3+120%y2+240y) e—BJ/]
0*+6
(1.15)

2. A GENERALIZATION OF LINDLEY
DISTRIBUTION (AGLD)

The generalized function of mixture type lifetime

data distributions named as a Generalization of

Lindley distribution (AGLD), has the p.d.f. and
c.d.f. defined as the following respectively:

0K+ 1 (Tk+ay*)e=0¥ .

facLo(y; 0,2, k) = 0kTk+al(k+1) ' 0>
0;y>0;,a=>0; k=0
2.1)
_ 4 {6%e=0Y +al(k+1,0y)}
Fago(y; 0, k) =1 OkTk+al(k+1)
(2.2)

Where TI'(k+1,0y) is an upper incomplete

gamma function, AGLD is a mixture of

Exponential () and
gk+1yke—6y

Gamma (1,0) i.e.
Gamma (k +1,0) =
proportions P, = P TRrar (1D and P, =
_rter) tively. For the value of k =
SFTkrar(en respectively. For valu =

a =1 it is Lindley distribution (1.1), &« =0 it

with mixture

reduced to Exponential (0), for k =2, a =1 it
reduced to Akash distribution (1.8).

3. MATHEMATICAL AND STATISTICAL
PROPERTIES

Moment generating function: The moment
generating function of generalization of Lindley
given as;

_ v {OFTkIm+1+al(k+m+1)} (£\™
My(t) = Xm=o m{OkTk+al (k+1)} (9) CRY)
3.1 Moments about the Origin

The moment about the origin of generalized
function for mixture distributions defined as;

; _ {6*TkIr+1+al(k+r+1)}

Fr = T or(ekticrar (kv 1) r=123..
3.2)
1** four moments about the origin are:
, _ {6¥Tk+al(k+2)}
M = 0{6KTk+al(k+1)} (-3)
, _ {20*Tk+ar(k+3)}
M2 = Gatorrrsarkr1)) G-4)
, _ {66FTk+al(k+4)}
M3 = 93(ekrk+ar(k+ 1)) (-5
; _ {246*Tk+al(k+5)}
Ha = 04{0¥Tk+aTl(k+1)} (3-6)
_ {6FTk+ar(k+2)}

Mean = 0{6*Tk+al (k+1)} (3.7
Var(y) =
[6%%(Tk)2+a0*TkT (k+3)+a?T (k+3)T(k+2)—{T(k+2)}?]
02{0*Tk+al (k+1)}

(3.8)
CV =
\/[BZk(Fk)Z+oc9kl"kr‘(k+3)+a2F(k+3)l"(k+2)—{r‘(k+2)}2]
{0kTk+arl (k+2)}
x 100 3.9

index of dispersion,

U'Z

- p'

B[62K(TK)2+aOFTKT (k+3)+a?T(k+3)T'(k+2)—{T'(k+2)}?]
0{0kTk+al (k+1)}{6*kTk+al(k+2)}

(3.10)
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3.2. Mean Deviations

The mean deviation, usually taken from the mean
or the median, is a measure of variation in a
population. These are known as the mean
deviation about the mean and the mean deviation
about the median and respectively defined by;

1) = [V =l fago ) dy, (3.11)
u=E)
920 = [ 1y = MIfago()dy (3.12)

M = Median(y) and ¢,(y) and ¢,(y) can be
calculated as:

p1(y) = fou(ﬂ = Y faco¥)dy + f:o(y -
) facLo V) dy

= uF (W) ~ J ¥faco@)dy — ull = F(W)] +
f :o YfacLo (Y)dy

=2uF(p) — 2u+2 f:o YfacLo Y)dy

= 2uF () + 2 [} Yfacio () dy (3.13)

The mean deviation about median defined as;

2 (y) = fooob’ = Ml facp (y¥)dy,

020 = [i" (M = Y faguo @y + [ (v —
M) fagLp (¥)dy,

= MF(M) = [ yfacuo(y)dy — M[1 = F(M)] +
f,;o Yfacp (Y)dy,

=2MF(M) — fOM YfacLo(W)dy — M +
f;,), Yfacio(Y)dy + fooo YfacLo (Y)dy,

= — [V aco Ay + [ aco Ny + 1

=pu—2 fOM YfacLo (Y)dy, (3.14)
So by using pdf (2.1)
fou YfacLo )dy =

{rk(1-e= 94 —0pue ") +ay (k+2,01)}
0{0kTk+al(k+1)} ’

(3.15)

fOM Yfaco()dy =

{Tk(1-e~ "M —-gMeM)+ay(k+2,0M)}
0{0kTk+al(k+1)} ’

(3.16)
Where y(k+2,0u), y(k+2,06M) are lower

incomplete gamma functions.

Put (3.15) in (3.13) and (3.16) into (3.14) have the
following:

{ (1-way(k+1,6u)+aul(k+1)+
_ Fk(l—e‘Gﬂ—eue'euﬂwk)—/wke'e“}
¢ (y) = 9{0 Tk +al (k+ 1)}
(3.17)
0, (y)=
0% Tk + al'(k + 1) —
2{Tk(1— e~ M — 0Me=M) + ay(k + 2,0M)}

0{6%Tk + al'(k + 1)}
(3.18)

4. BONFERRONI AND LORENZ CURVES

The Bonferroni and Lorenz curves are introduced
by Bonferroni(1930) [9]. Bonferroni and Gini
indices have been utilized in economics, to study
the variation in income and poverty, in other fields
like reliability, vital statistics, insurance, and
medicine. The Bonferroni and Lorenz curves are
defined as:

B(p) = #foq YfacLo (¥)dy, (4.1)

1 (o 1 ,o0
= ru fo Yfaco)dy — i fq Yfaco(¥)dy,

1 1 o
:;_ﬁfq YfacLo (Y)dy.

By using (2.1) pdf of AGLD

foq Yfacio(y)dy =
{rk(1-e=99-0qe=97)+ay(k+2,0q)}
0{6kTk+al(k+1)} ’

(4.2)

Put (4.2) into (4.1).

i{ Tk(1-e~99-0qe=%7)+ay(k+2,0q)}
PU 0{6kTk+al(k+1)} ’

B(p) =
(4.3)

L®) = Jy Yfacio )y,
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(00

= lfooyfAc;LD (y)dy _lf YfacLo YAy
Ko u '

q

=1- %fqoo Yfaco ) dy. (4.4

By substituting (4.2) into (4.4),

_ {re(1-e=99-0qe=%9)+ay(k+2,0q)}
L) = UO{OFTk+ar(k+1)] (4.5)

Or both equivalent to B(p) = ﬁ fop F(y) ldy
and L(p) = [ F() "'dy where g = F(p)~!
The Bonferroni indices is defined as:
1
B=1- [ B(p)dp (4.6)
Put (4.3) into (4.6) has,

{rk(1—e~99-0qe=%7)+ay(k+2,0q)}

B=1- Ou{0kTk+al(k+1)}

4.7
The Gini indices defined as following:
G=1-2[ L(p)dp (4.8)
Put (4.5) into (4.8) determined as:

_ 2{Tk(1-e~99-0qe09)+ay(k+2,0q)}

G=1 ub{6*Tk+al(k+1)}

“4.9)
5. RELIABILITY MEASURES

There are different reliability measures namely
Survival Function, Hazard Rate Function,
Cumulative Hazard Function, and Reversed
Cumulative Hazard Function given below;

5.1. Survival Function

Let Y be a continuous random variable with pdf

facio(y; 0,a,k) (2.1) and cdf Fyep(y; 6, k)
(2.2) of AGLD the Survival function obtains as:

{6%e=0Y +ar(k+1,0y )}
0kTk+arl (k+1)

SAGLD (yl 6! a, k) =
(5.1)

5.2. Hazard Function

Let Y be a continuous random variable with
p-d.f. fagp (v; 6, @, k) 2.1) and c.d.f.
Facip(v;0,a,k) (2.2) AGLD The hazard rate
function known as the failure rate function defined
as:

hacp(v; 6, a, k) = lim P(Y<y+Ay|Y>y) _

Ay—0 Ay
f(y; 8,a,k)
1-F(y; 0,a,k)

By using (2.1) and (2.2) find as:

(5.2)

Ok (Tk+ayk)e=0¥
{6ke=0¥+ar(k+1,0y)}

hacLp(y; 0, a, k) ==
(5.3)

Here note that:
hAGLD (01 6; a, B: k) = fAGLD (01 9; a, B; k)
5.3. Cumulative Hazard Function

Let Y be a continuous random variable with
p.d.f. fagLp(v; 6, a, k) and c.d.f.
Facip(v; 6,a,k) of AGLD then the Cumulative
hazard function defined as:

CHup(y; 0,a,k) = —In|F(y; 0,a, k)|

(5.4)
By putting (2.2) we have,
CII;IAGGLD(y; 0,a,k) =—In|1—
O Lol (5.5)

5.4. Reversed Hazard Function

Let Y be a continuous random variable with
pdf fAGLD (y, 6, a, k), c.d.f. FAGLD (y, 0, a, k) of
AGLD then the reversed hazard function defined
as:

f(y;a,0,k)
Hpep(y) = —F(;;,-Z,e,k) (5.6)

By putting (2.1) and (2.2) into (5.8) have found
Hpgp(y; @, 0) =

Ok (Tk+ayk)e=0¥
[6kTk+al(k+1)—{0%e=0¥+al(k+1,0y)}]

(5.7)
6. ODER STATISTICS (OS)

The density function f;;y(y) of “ith” order
statistics (i=1, 2, ..., n) from independent and
identically distributed (i.i.d), random wvariable
Vi,V2, - Yn. The order statistics say as
Yy V) Y@ the function of order statistics
defined as:

fapa,0) = '
f) - i(m—j L
B(in—i+1) 7=6(_1)]( j )[F(Y)]H-J 1
6.1)
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fapa,0) =
O +1(Tk+ay*)e=0Y

n—j
j —
B(in—i+1){6kTk+al (k+1)} ( D ( )[1
{6%e=9Y +ar(k+1,0y )} -1

OkTk+al (k+1) , Bbn—i+1) is a
beta function, Substituting  fae.0 (v; 6, @, k) (2.1),

Faeip(y; 6, a,k) (2.2) into (6.1), the pdf of ith
order statistics is:

fap; 60, a,k)
0%+ (Tk + ay*)e=%
B(i,n —i+ 1){6*Tk + al'(k + 1)}

~J\yo (i+j—1
j

s (M) 2 () x
{le_9y+al"(k+1,0y)} m

[ OkTk+al (k+1) (6.2)

The ith order statistics c.d.f is:

Lz ()T

{Bke‘9y+aF(k+1,9y )} JH
0kTk+al (k+1)

(6.3)

For maximum order, statistics put i=n, for
minimum order statistics put i=1 in the equation.

7. RENYI ENTROPY MEASURE

A popular entropy measure is Renyi entropy
(1961), and the entropy of a random variable
Y is a measure of the variation of uncertainty [10].
Let Y is a continuous random variable
having probability density function
AGLD fu61p(y; 0,a,k), then Renyi entropy is
defined as;

1 [o'e)
Tre(¥) = —log{[, f()° dy} (7.1)
Let faep(y; @, 0,k) pdf of AGLD the Renyi
entropy such that:
TRE(y; a, 91 k) =
1 00 S
Bl(’g{fo facp v 6, a,k) dJ’]

_ 1 oo [6%+1 (Tktay*)e=07]°
_1T510g{f0 [ {6kTk+al(k+1)} ] @
1 gOk+6
= 15198 | Grrararor

ayk)5 e—eaydy]

Jo (Tk +

_ 1 98k+5(1—*k)8
=158 [{9"Fk+a[‘(k+1)}5f {

Tk
66k+5(rk)6
{ekrk + aF(k +1)}%
log
1-6 f Z )] —95ydy
98k+5(1—*k)8
—Llog {9ka+aF(k+1)}6
-8 @y (O @y jk -5y
7250 () Gy eoovay
95k+5(l"k)5
[ {ekrk+ar(k+1)} }
jk
1570 (j) 627 (35) " T + )]
(7.2)

8. MAXIMUM LIKELIHOOD METHOD

Let y4, y3, ... ¥, be an independent random sample
from fu6.p(y; 0, @, k), the Maximum Likelihood
(ML) function defined as:

0%+ 1 (Tk+ay*)e=0Y

. —_ n
L@y; 6,a,k) =1lizo OKkTk+al (k+1)

(8.1)

InL(y; 6,a,k) = n(k + 1)In6 + ¥ In(Tk +
ay®) — 60 ¥ y; — nln{6*Tk + aT'(k + 1)}

olnL(y; ,ak) _ n(k+1) ¢ o _mk (6)k-1
a6 T 6 i=0Yi ~ TokTk+ar(kt 1))
(8.2)
olnL(y; 0,a.k) _ «n yik . nI'(k+1)
da T ~i=0(Tk+ayk)  6kTk+al(k+1)
(8.3)
dlnL(y; 6,a k) nind + E iﬂﬁ“)’iklnw _
ak nn =0 (Tk+ay;k)
0)1 (6)+—Fk + F(k+1)
@ grdeagronn]
(Fk+ayl )

olnL(y; 0,a,k) _

By putting (8.2), (8.3), and (8.4) as 20

0: alnL(y; 0,a,k) — 0,
da

LY 0@k) _ ) The eq. (8.2), (8.3), and (8.4)

natural log-likelihood equations do not seem to be
solved directly because they are not in closed
form, so Fisher’s scoring method can be applied to
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solve these equations. We have;

alnl?(y; 0,a.k) _ _ n(k+1) n
962 - 62
nk 0% 2{a(k-1)T'(k+1) 6%-Tk} (8.5)
(0*Tk+al(k+1))* '
nL?(y; 6,ak) _  yi*k { r(k+1) }2
da? - (Tk+ay;®)? 6kTk+aTl (k+1)
(8.6)
olnL?(y; 6,a,k) _
Ak
[{ (9a)’<+r(k+1)}{ r(k+1)} {r(k+1)}2] N
{ (9a)’<+l“(k+1)}
2
n (I‘k+ayl-k)%rk—(%rk+ayiklnyi) 87)
=0 (I‘k+(xyl-k)2 ’
dr(k+1) ark) . . .
e d LS digmma functions

AmL?(y; 6,ak) _ nk (O)F 1T (k+1)
960« (6*Tk+al (k+1))

(8.8)

n (9)"_1[1—k{ln(9)+%l"k}]
(Tk+ay;*)
(8.9)

olnL?(y; 6,a,k)
0ko6

=2 _
]

{% 'k + 1)} is digmma function

IO 0.4k _ yom (Tkiny—ggrk)yi

okoa - i=0 (Fk+ayik)2
n[rkj—kr(ku)— (B)kyik{ln(9)+%r‘k}] 810
(Fk+ayik)2 (8.10)

The iterative solution of the equations (8.5) to
(8.10) using the matrix given following will be the

MLEs 0 @&, and k of parameters 8 «a and k of

AGLD.

[6lrLL2 (y; 8,a,k) 0lnL?(y; 6,a,k) dlnL*(y;0,a, k)‘l

| 062 dadb 0koo

| olnL?(y; 6,a,k) 0lnL?(y; 6,a,k) dInL?(y; 6,a,k) |

| 000« da? 0koa |

lalan(y 0,ak) 0InL?(y; 8,a.k) 0dlnL?(y;0,a, k)J'g: X
900k dadk dkda  dg=g,

k=k

(=

[alnL(y 6,a,k)

6 —
~ dlnL(y; 60,a,k
a-— = |2l bah) | Here 8,
k — lalnL(y 6 ak)J§= 6o
&=0(0
kzko

ay and kg initial values of parameters of 6 a f8
and k of AGLD.

9. APPLICATION

The data set is the strength data of glass of the
aircraft window reported by Fuller et al (1994)
and are given as 18.83, 20.80, 21.657, 23.03,
23.23, 24.05, 24.321, 25.50, 25.52, 25.80, 26.69,
26.77, 26.78, 27.05, 27.67, 29.90, 31.11, 33.20,
33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98,
37.08, 37.09, 39.58, 44.045, 45.29, 45.381 [11].

To compare lifetime distributions,
Kolmogorov-Smirnov Statistics (KSS), Pearson
Chi-square and Anderson Darling statistics for the
above data set have been computed their statistics
defined respectively.

Kolmogorov-Smirnov statistics:

K =58 = Supu)|Fa(y) = Fo(y)]

F, (y)= empirical distribution, n= sample size
Person Chi-square statistics:

x? =3 1(0151, &
E;=Expected frequency

; 0;=Observed frequency,

Anderson Darling statistics:
A’=-n-S

Where S=X1,
F(yn+1-0}]

F is the cumulative distribution function of the
specified distribution and y; are ordered data.

(2i —1)/n[InF(y;) + In{1 —
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Table 1. The MLE’s, K-S statistics, Chi-square, and Anderson-Darling statistics values

Distributions MLE’s K-S statistics Chi-square statistics Andet:son-
Darling
6 a k

AGLD 0.61434 1.0182  17.93  0.134906 7.45161 0.438565
Ram Awadh 0.19473 0.197684 22.9355 2.00445
Suja 1.65272 0.223211 22.4194 2.54007
Pranav 0.12978 0.25346 26.5484 3.24745
Akash 0.09706 0.294639 34.8065 4.19329
Three PLD 0.06489  0.0210  2.00 0.358665 36.3548 5.69565
TPLD 0.06488  0.010 0.358653 36.3548 5.69540
Lindley 0.06298 0.365453 35.8387 5.87165
Exponential 0.03245 0.458623 60.0968 8.52724

206

204 |-

w02 |-

Fig 1. The goodness of fit of distributions

10. CONCLUSIONS

A generalization of Lindley distribution (AGLD)
is a lifetime data analysis distribution with three
parameters 6 a and k, i.e. a mixture of
Gamma (1, 8), Exponential () and Gamma (k +

0k+1yke—9y . . .
1,0) = T with mixture proportions:
_ okTk _ar(k+1)
Py = OkTk+al(k+1) and P, = 0kTk+al(k+1)
respectively. For the value of k=a =1 it is
Lindley  distribution, a« =0 it reduced

to Exponential (0), for k = 2, = 1 it reduced to
Akash distribution. Moreover, mathematical and
statistical properties including moment generating
function, ™ moments function, mean deviations,

Bonferroni and Lorenz curve,reliability measures
(survival function, hazard function, cumulative
hazard function, reversed hazard function, mean
residual life function), order statistics, and Reyni
entropy have been described. Also, the parameters
of the distribution using the maximum likelihood
estimation method are computed on basis of real-
life data. The goodness of fit of AGLD is compared
with other lifetime distributions using real-life data
set. The values of K-S statistics (Kolmogorov-
Smirnov statistics), Pearson chi-square, and
Anderson Darling statistics are given in according
to values of the goodness of fit statistics, AGLD
best fitted the data than other distributions.
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