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Abstract: Two algorithms to raise the order of convergence of nonlinear solvers for scalar nonlinear equations are 
proposed. The suggested algorithms comprise of three steps: first two being any existing iterative method for nonlinear 
equations with nth order convergence, and the proposed third step being free from any new derivative. The third step 
in the proposed algorithms uses two different divided difference approximations to replace new derivatives. The order 
of convergence is raised to n + 3 and n + 4, respectively, when the third steps are combined with any two-step   order 
convergent method. The extension in orders of convergence of methods is proved theoretically. As an application of 
proposed algorithms, proposed third steps are combined with some well-known existing third, fourth and fifth order 
two-step methods from literature. The consequent improvement in order of convergence is justified for five new 
methods derived using proposed algorithms. The computational performance of the proposed methods and some 
other similar order methods from literature are examined on several nonlinear equations of different nature including 
engineering problems and real mechanical system. All the proposed methods exhibit encouraging performance for 
test examples, and also for some applied nonlinear equations, like NASA’s launched satellite, real mechanical system, 
catenary cable and thermodynamics application.

Keywords: Nonlinear Equations, Efficient Algorithms, Iterative Methods, CPU Time, Order of Convergence, 
Computational Efficiency.

1.  INTRODUCTION 

To find the solutions of nonlinear scalar equations 
of the form is an important and challenging task 
in mathematical and engineering problems. Many 
real life problems are mathematically modeled in 
the form of these nonlinear equations. For instance, 
finding temperature of saturation concentration, 
measuring depth of water in a trapezoidal channel, 
solving Michaelis-Menten equation used in kinetics 
of enzyme mediated reactions, finding number 
of moles of chemical in a reversible chemical 
reaction, computing point of maximum and 
minimum deflection in a uniform beam, computing 
time required for the growth of population by 
transportation engineers [1]. Likewise, determining 
doping density of doped silicon, to find the 
distance between charge and center of ring, to 

find the Fanning friction factor in pipes by using 
Karman equation, to compute the velocity of 
rocket, to find the friction factor in rough pipes 
for turbulent flow by using Colebrook equation, 
to find the mole fraction of water in a chemical 
engineering process, to determine the amount of 
fuel in a tank by using Redlich-Kwong equation, 
to determine the depth of fluid in a cylindrical tank, 
to determine the angular frequency in a circuit by 
using Kirchhoff’s law, to compute the trajectories 
of rockets in aerospace engineering, to find the 
depth of fluid in a spherical tank, to compute the 
complex frequency in control systems analysis, 
to find the depth of flow in a rectangular open 
channel by using Manning equation, to find the gas 
compressibility in [2], to define the cell’s energy 
aging model that produce organelle in [3], to find 
the oscillation of simple harmonic motion in [4], to 
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Newton method (NM) is the most basic numerical 
method for solving nonlinear equations of type 

. The NM finds the approximate solution 
with quadratic convergence. Many efficient 
modifications to NM have been proposed by 
researchers to accelerate the order of convergence and 
to get the desired solution in less number of iterations. 
Rafiullah et al. [8] proposed a ninth order iterative 
method in 2016, Hou and Li [9] presented twelfth 
order method in 2010, Hu et al. [10] developed ninth 
order method in 2011, Zafar and Bibi [11] proposed a 
fourteenth order method in 2014 for solving nonlinear 
equations. 
The higher order iterative methods definitely require 
extra evaluations of function and derivative per 
iteration. This increases the computational load and 
CPU time required by computer to achieve the pre-
specified tolerance. Due to this purpose, the 
researchers have used divided differences instead of 
first order derivatives in the iterative methods, for 
example Zafar and Bibi [11] used divided difference 
in place of new derivative in third step which raised 
the convergence of method to fourteenth order, 
Rafiullah and Jabeen [12] used divided differences 
with the help of Lagrange interpolation and 
accelerated the convergence order to eight and sixteen, 
Cordero et al. [13] proposed sixth and seventh order 
methods by replacing new derivatives by divided 
difference approximations. The use of divided 
differences reduces the derivative evaluation per 
iteration and increases the efficiency index of the 
method. 
The main objective of this research is to propose some 
higher order methods with enhanced efficiency indices 
by incorporating the divided differences in place of 
new derivatives. We propose two three step algorithms 
for raising the order of convergence by using the 
divided differences in the third step. The third step, 
when combined with any two-step nth order 
convergent method, raises the convergence order to 
n+3 and n+4 respectively. The proposed algorithms 
are tested by combining the third step with some 
existing two-step methods, like the third order method 
of Darrvishi and Baraati [14], fourth order method of 
Khattri and Agrawal [15] and fifth order method of 
Rafiullah et al. [12]. Five new efficient iterative 
methods to solve nonlinear equations are presented 
using the proposed algorithms. Several numerical 
examples are solved including some applications such 
as NASA’s launched satellite’s nonlinear equation, 

nonlinear spring equation in a real mechanical system, 
tension force appeared in catenary cable and 
thermodynamics temperature computed by engineers. 
The paper is organized into five sections. Section 2 
contains basic definitions. Section 3 contains the 
proposed algorithms and the analytical proof of the 
improvement in orders of convergence. Five particular 
methods are also presented in Section 3, and the 
efficiency indices of proposed methods and other well-
known existing iterative methods are compared their-
in. The numerical examples including some 
applications are listed in Section 4 with details of the 
numerical setup to verify computational properties of 
proposed and other methods. The results and 
consequent discussions of the numerical experiments 
are presented in Section 5. Finally, we outline main 
contributions in the Conclusion.  
 
2. SOME BASIC DEFINITIONS 

Definition 1. Error equation 

For scalar equations, if be the error at 
ith iteration, then the error equation is defined as, 

          (1) 

Where, p is the convergence order and C is the 
asymptotic error coefficient [16]. 
Definition 2. Order of convergence 
Let  be a sequence in  that 
converges to found by an iterative method. 
Then, the method is said to be of converging 
order p, p > 1, as defined in [16], such that 

          (2) 

Definition 3. Computational order of 
convergence If and be the absolute errors of three  
consecutive  iterations,  then  the  computational  
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assess the heat transfer variation in [5], to measure 
the material’s temperature in [2], to find the drug 
concentration in plasma in [6], and to compute the 
falling parachutist’s speed in [7], etc.

The direct methods fail in finding the solutions 
to such applied nonlinear equations. Thus, the 
numerical methods may be used for the solution. 
Classical Newton method (NM) is the most basic 
numerical method for solving nonlinear equations 
of type  . The NM finds the approximate solution 
with quadratic convergence. Many efficient 
modifications to NM have been proposed by 
researchers to accelerate the order of convergence 
and to get the desired solution in less number of 
iterations. Rafiullah et al. [8] proposed a ninth 
order iterative method in 2016, Hou and Li [9] 
presented twelfth order method in 2010, Hu et al. 
[10] developed ninth order method in 2011, Zafar 
and Bibi [11] proposed a fourteenth order method 
in 2014 for solving nonlinear equations.

The higher order iterative methods definitely 
require extra evaluations of function and derivative 
per iteration. This increases the computational load 
and CPU time required by computer to achieve 
the pre-specified tolerance. Due to this purpose, 
the researchers have used divided differences 
instead of first order derivatives in the iterative 
methods, for example Zafar and Bibi [11] used 
divided difference in place of new derivative in 
third step which raised the convergence of method 
to fourteenth order, Rafiullah and Jabeen [12] used 
divided differences with the help of Lagrange 
interpolation and accelerated the convergence order 
to eight and sixteen, Cordero et al. [13] proposed 
sixth and seventh order methods by replacing new 
derivatives by divided difference approximations. 
The use of divided differences reduces the derivative 
evaluation per iteration and increases the efficiency 
index of the method.

The main objective of this research is to 
propose some higher order methods with enhanced 
efficiency indices by incorporating the divided 
differences in place of new derivatives. We propose 
two three step algorithms for raising the order of 
convergence by using the divided differences in 
the third step. The third step, when combined with 
any two-step nth order convergent method, raises 
the convergence order to n+3 and n+4 respectively. 

The proposed algorithms are tested by combining 
the third step with some existing two-step methods, 
like the third order method of Darrvishi and 
Baraati [14], fourth order method of Khattri and 
Agrawal [15] and fifth order method of Rafiullah 
et al. [12]. Five new efficient iterative methods to 
solve nonlinear equations are presented using the 
proposed algorithms. Several numerical examples 
are solved including some applications such as 
NASA’s launched satellite’s nonlinear equation, 
nonlinear spring equation in a real mechanical 
system, tension force appeared in catenary cable 
and thermodynamics temperature computed by 
engineers.

The paper is organized into five sections. Section 
2 contains basic definitions. Section 3 contains the 
proposed algorithms and the analytical proof of 
the improvement in orders of convergence. Five 
particular methods are also presented in Section 
3, and the efficiency indices of proposed methods 
and other well-known existing iterative methods 
are compared their-in. The numerical examples 
including some applications are listed in Section 
4 with details of the numerical setup to verify 
computational properties of proposed and other 
methods. The results and consequent discussions of 
the numerical experiments are presented in Section 
5. Finally, we outline main contributions in the 
Conclusion. 
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order of convergence [17] denoted by ‘q’ can be 
computed as: 

   
         (3)

 

Definition 4. Efficiency index 

The efficiency index [18] is calculated by the 

formula: 

 E = p1/d             (4) 

where, d is the number of evaluations of function 

and derivative per iteration in an iterative method. 

Conjecture 1. Kung-Traub conjecture of 
optimality 

According to Kung and Traub conjecture [19], an 
iterative method is said to be optimal if its order 
of convergence is 2d-1. 

Definition 5. 

Let 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛  and 𝑓𝑓(𝑥𝑥0), 𝑓𝑓(𝑥𝑥1),
𝑓𝑓(𝑥𝑥2), . . . , 𝑓𝑓(𝑥𝑥𝑛𝑛−1), 𝑓𝑓(𝑥𝑥𝑛𝑛) be the points and their 
corresponding functional values respectively, 
then the first order divided difference [20] 
denoted by𝑓𝑓[𝑥𝑥0, 𝑥𝑥1] is given by: 

𝑓𝑓[𝑥𝑥0, 𝑥𝑥1] =
𝑓𝑓(𝑥𝑥1)−𝑓𝑓(𝑥𝑥0)

𝑥𝑥1−𝑥𝑥0                        (5) 

and the nth order divided difference  [21] 
represented by𝑓𝑓[𝑥𝑥0, 𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛] is given by 

 𝑓𝑓[𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛] 
 = 𝑓𝑓[𝑥𝑥1,...,𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛]−𝑓𝑓[𝑥𝑥0,𝑥𝑥1,...,𝑥𝑥𝑛𝑛−1]

𝑥𝑥𝑛𝑛−𝑥𝑥0
         (6) 

3.  PROPOSED ALGORITHMS AND   
     METHODS 

To accelerate the order of convergence, we 
propose two three-step algorithms by using the 
divided differences in place of derivatives in the 
following proposed scheme, equation (7). 

𝑦𝑦𝑖𝑖 = 𝑔𝑔2(𝑥𝑥𝑖𝑖)
𝑧𝑧𝑖𝑖 = ℎ𝑛𝑛(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) 𝑛𝑛 ≥ 3

𝑥𝑥𝑖𝑖+1 = 𝑧𝑧𝑖𝑖 −
𝑓𝑓(𝑧𝑧𝑖𝑖)
𝑓𝑓′(𝑧𝑧𝑖𝑖)

}            (7) 

where, 𝑔𝑔2(𝑥𝑥𝑖𝑖)  is any second order convergent 
nonlinear solver which uses information at xi 
only, ℎ𝑛𝑛(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖), 𝑛𝑛 ≥ 3, is an nth order two-step 
method utilizing information at both xi and yi. The 
third step is the usual Newton step.  

       Following two different divided difference 
approximations for the replacement of 𝒇𝒇′(𝒛𝒛𝒊𝒊), as 
suggested in [11]. 

 
𝑓𝑓 ′(𝑧𝑧𝑖𝑖) ≈ 𝑓𝑓[𝑧𝑧𝑖𝑖, 𝑦𝑦𝑖𝑖] + 𝑓𝑓[𝑧𝑧𝑖𝑖, 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖](𝑧𝑧𝑖𝑖 − 𝑦𝑦𝑖𝑖)  

= 𝑓𝑓(𝑧𝑧𝑖𝑖) − 𝑓𝑓(𝑦𝑦𝑖𝑖)
(𝑧𝑧𝑖𝑖 − 𝑦𝑦𝑖𝑖)

+
[𝑓𝑓(𝑧𝑧𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑓𝑓 ′(𝑥𝑥𝑖𝑖)(𝑧𝑧𝑖𝑖 − 𝑥𝑥𝑖𝑖)](𝑧𝑧𝑖𝑖 − 𝑦𝑦𝑖𝑖)

(𝑧𝑧𝑖𝑖 − 𝑥𝑥𝑖𝑖)2
 

              (8)
 And 

𝑓𝑓 ′(𝑧𝑧𝑖𝑖) ≈ 2𝑓𝑓[𝑧𝑧𝑖𝑖, 𝑦𝑦𝑖𝑖] − 𝑓𝑓 ′(𝑦𝑦𝑖𝑖)

= 2𝑓𝑓(𝑧𝑧𝑖𝑖) − 2𝑓𝑓(𝑦𝑦𝑖𝑖) − 𝑓𝑓 ′(𝑦𝑦𝑖𝑖)(𝑧𝑧𝑖𝑖 − 𝑦𝑦𝑖𝑖)
(𝑧𝑧𝑖𝑖 − 𝑦𝑦𝑖𝑖)

 

              (9) 

Using (8) and (9) in the third step of general 

scheme, we propose the following two 

algorithms: 

Algorithm 1
 

𝑦𝑦𝑖𝑖 = 𝑔𝑔2(𝑥𝑥𝑖𝑖)
𝑧𝑧𝑖𝑖 = ℎ𝑛𝑛(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) 𝑛𝑛 ≥ 3

𝑥𝑥𝑖𝑖+1 = 𝑧𝑧𝑖𝑖 −
𝑓𝑓(𝑧𝑧𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑦𝑦𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑥𝑥𝑖𝑖)2

(𝑧𝑧𝑖𝑖−𝑥𝑥𝑖𝑖)2[𝑓𝑓(𝑧𝑧𝑖𝑖)−𝑓𝑓(𝑦𝑦𝑖𝑖)]+[𝑓𝑓(𝑧𝑧𝑖𝑖)−𝑓𝑓(𝑥𝑥𝑖𝑖)−𝑓𝑓′(𝑥𝑥𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑥𝑥𝑖𝑖)](𝑧𝑧𝑖𝑖−𝑦𝑦𝑖𝑖)2

}
 

                              (10) 

Algorithm 2
 

𝑦𝑦𝑖𝑖 = 𝑔𝑔2(𝑥𝑥𝑖𝑖)
𝑧𝑧𝑖𝑖 = ℎ𝑛𝑛(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) 𝑛𝑛 ≥ 4

𝑥𝑥𝑖𝑖+1 = 𝑧𝑧𝑖𝑖 −
(𝑧𝑧𝑖𝑖−𝑦𝑦𝑖𝑖)𝑓𝑓(𝑧𝑧𝑖𝑖)

2𝑓𝑓(𝑧𝑧𝑖𝑖)−2𝑓𝑓(𝑦𝑦𝑖𝑖)−𝑓𝑓′(𝑦𝑦𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑦𝑦𝑖𝑖)

}
        (11) 

        The proposed algorithms (10) and (11) do 
not use any new derivative evaluation, thus, the 
cost of derivative evaluation is saved, and the 
algorithms extend the convergence to orders n + 
3 and   n + 4, respectively.  

3.1. Order of Convergence 

To prove the orders of convergence theoretically 
of above defined algorithms, we use the Taylor’s 

1

1

log ( ) / ( )
log ( ) / ( )

i i

i i

q 
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expansion in the form of following two theorems, 
Theorems 1 and 2. 

Theorem 1. Let 𝛼𝛼 ∈ 𝑄𝑄 be the root of 
differentiable function 𝑓𝑓: 𝑄𝑄 ⊂ 𝑅𝑅 → 𝑅𝑅for an open 
interval𝑄𝑄. Then, the general iterative algorithm 1 
described in (10) has (𝑛𝑛 + 3)𝑟𝑟𝑟𝑟  order of 
convergence and satisfy the following error term, 

𝑒𝑒𝑖𝑖+1 = −2𝐴𝐴3𝑏𝑏𝑏𝑏𝑒𝑒𝑖𝑖
𝑛𝑛+3 + 𝑂𝑂(𝑒𝑒𝑖𝑖

𝑛𝑛+4), 𝑛𝑛 ≥ 3     (12) 

Where, 𝐴𝐴𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝛼𝛼)
𝑖𝑖!𝑓𝑓′(𝛼𝛼) , 𝑖𝑖 = 2,3,4, . . .  

Proof of Theorem 1. 
Let 𝛼𝛼  be the root of 𝑓𝑓(𝑥𝑥) and𝒆𝒆𝒊𝒊 = 𝒙𝒙𝒊𝒊 − 𝜶𝜶

 
Also 

let 𝑦𝑦𝑖𝑖  be the approximate solution using any 
second order convergent method, g2(xi), then:

 

�̂�𝑒𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝛼𝛼 = 𝑏𝑏𝑒𝑒𝑖𝑖
2 + 𝑂𝑂(𝑒𝑒𝑖𝑖

3)   (13) 

Where b is asymptotic error coefficient of first 
step in (10) and it depends on Ai’s.  
Let𝑧𝑧𝑖𝑖 be the approximation to the solution by an 
𝑛𝑛𝑡𝑡ℎ  order convergent method, hn(xi, yi), 𝑛𝑛 ≥ 3 
then: 

�̃�𝑒𝑖𝑖 = 𝑧𝑧𝑖𝑖 − 𝛼𝛼 = 𝑏𝑏𝑒𝑒𝑖𝑖
𝑛𝑛 + 𝑂𝑂(𝑒𝑒𝑖𝑖

𝑛𝑛+1) 𝑛𝑛 ≥ 3       (14) 

Where c is asymptotic error coefficient of 
approximation by second step, and it also 
depends on some Ai’s. 
 
Using Taylor’s expansion for𝑓𝑓(𝑧𝑧𝑖𝑖) 

𝑓𝑓(𝑧𝑧𝑖𝑖) = 𝑓𝑓 ′(𝛼𝛼)[�̃�𝑒𝑖𝑖 + 𝑂𝑂(�̃�𝑒𝑖𝑖
2)]        (15) 

Equation (15) leads to: 

𝑓𝑓(𝑧𝑧𝑖𝑖)(𝑧𝑧𝑖𝑖 − 𝑦𝑦𝑖𝑖)(𝑧𝑧𝑖𝑖 − 𝑥𝑥𝑖𝑖)2 

= −𝑒𝑒𝑖𝑖
2�̂�𝑒𝑖𝑖𝑓𝑓 ′(𝛼𝛼) [�̃�𝑒𝑖𝑖 − �̃�𝑒𝑖𝑖

2

�̂�𝑒𝑖𝑖
− 2 �̃�𝑒𝑖𝑖

2

𝑒𝑒𝑖𝑖
]        (16) 

 
and 

1
[(𝑧𝑧𝑖𝑖 − 𝑥𝑥𝑖𝑖)2[𝑓𝑓(𝑧𝑧𝑖𝑖) − 𝑓𝑓(𝑦𝑦𝑖𝑖)] +

[𝑓𝑓(𝑧𝑧𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑓𝑓 ′(𝑥𝑥𝑖𝑖)(𝑧𝑧𝑖𝑖 − 𝑥𝑥𝑖𝑖)](𝑧𝑧𝑖𝑖 − 𝑦𝑦𝑖𝑖)2] 

 

= − 1
𝑒𝑒𝑖𝑖

2�̂�𝑒𝑖𝑖𝑓𝑓′(𝛼𝛼) [1 + 2𝐴𝐴3𝑒𝑒𝑖𝑖�̂�𝑒𝑖𝑖 + 2 �̃�𝑒𝑖𝑖
𝑒𝑒𝑖𝑖

+ �̃�𝑒𝑖𝑖
�̂�𝑒𝑖𝑖

]        (17)
 

Using (16) and (17) in third step of (10), we get 

𝑒𝑒𝑖𝑖+1 = −2𝐴𝐴3𝑒𝑒𝑖𝑖�̂�𝑒𝑖𝑖�̃�𝑒𝑖𝑖          (18)
 

Using (12) and (13) in (18), we have: 

𝑒𝑒𝑖𝑖+1 = −2𝐴𝐴3𝑏𝑏𝑏𝑏𝑒𝑒𝑖𝑖
𝑛𝑛+3 + 𝑂𝑂(𝑒𝑒𝑖𝑖

𝑛𝑛+4), 𝑛𝑛 ≥ 3       (19) 

Equation (19) shows (𝑛𝑛 + 3)𝑟𝑟𝑟𝑟  order of 
convergence of proposed general Algorithm 1, 
i.e. equation (10). 
Theorem 2. Let 𝛼𝛼 ∈ 𝑄𝑄 be the root of 
differentiable function 𝑓𝑓: 𝑄𝑄 ⊂ 𝑅𝑅 → 𝑅𝑅for an open 
interval𝑄𝑄. Then, the proposed iterative algorithm 
2 defined in (11) has (𝑛𝑛 + 4)𝑡𝑡ℎ  order 
convergence and satisfy the following error term, 

𝑒𝑒𝑖𝑖+1 = (𝐴𝐴2𝑏𝑏2 − 𝐴𝐴3𝑏𝑏2𝑏𝑏)𝑒𝑒𝑖𝑖
𝑛𝑛+4 + 𝑂𝑂(𝑒𝑒𝑖𝑖

𝑛𝑛+5), 𝑛𝑛 ≥ 4
 

          

 (20)

 where, 𝐴𝐴𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝛼𝛼)
𝑖𝑖!𝑓𝑓′(𝛼𝛼) , 𝑖𝑖 = 2,3,4, . . . 

Proof of Theorem 2. 
Let 𝛼𝛼be the root of 𝑓𝑓(𝑥𝑥) and𝒆𝒆𝒊𝒊 = 𝒙𝒙𝒊𝒊 − 𝜶𝜶

 
Also let 

𝑦𝑦𝑖𝑖  be the second order convergent method then 
the expression of the corresponding error term 
can be defined by equation (13) as before. 
Let𝑧𝑧𝑖𝑖 be an nth order convergent scheme with 
𝑛𝑛 ≥ 4, then 

�̃�𝑒𝑖𝑖 = 𝑧𝑧𝑖𝑖 − 𝛼𝛼 = 𝑏𝑏𝑒𝑒𝑖𝑖
𝑛𝑛 + 𝑂𝑂(𝑒𝑒𝑖𝑖

𝑛𝑛+1) 𝑛𝑛 ≥ 4       (21) 

Using Taylor’s expansion for𝑓𝑓(𝑧𝑧𝑖𝑖) 

𝑓𝑓(𝑧𝑧𝑖𝑖) = 𝑓𝑓 ′(𝛼𝛼)[�̃�𝑒 + �̃�𝑒𝑖𝑖
2 + 𝑂𝑂(�̃�𝑒𝑖𝑖

3)]
        (22) 

Also calculating 

𝑓𝑓(𝑧𝑧𝑖𝑖)(𝑧𝑧𝑖𝑖 − 𝑦𝑦𝑖𝑖) = −�̂�𝑒𝑖𝑖𝑓𝑓 ′(𝛼𝛼) [�̃�𝑒𝑖𝑖 + 𝐴𝐴2�̃�𝑒𝑖𝑖
2 − �̃�𝑒𝑖𝑖

2

�̂�𝑒𝑖𝑖
]        

                                                                       (23) 

and  
1

2𝑓𝑓(𝑧𝑧𝑖𝑖) − 2𝑓𝑓(𝑦𝑦𝑖𝑖) − 𝑓𝑓 ′(𝑦𝑦𝑖𝑖)(𝑧𝑧𝑖𝑖 − 𝑦𝑦𝑖𝑖) 

= − 1
�̂�𝑒𝑖𝑖𝑓𝑓′(𝛼𝛼) [1 + �̃�𝑒𝑖𝑖

�̂�𝑒𝑖𝑖
− 2𝐴𝐴2�̃�𝑒𝑖𝑖 + 3𝐴𝐴3�̂�𝑒𝑖𝑖

2 + �̃�𝑒𝑖𝑖
2

�̂�𝑒𝑖𝑖
2]  (24) 
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Using (23) and (24) in third step of (11), we get 

𝑒𝑒𝑖𝑖+1 = 𝐴𝐴2�̃�𝑒𝑖𝑖2 − 𝐴𝐴3�̂�𝑒𝑖𝑖2�̃�𝑒𝑖𝑖        (25) 

Or, 𝑒𝑒𝑖𝑖+1 = (𝐴𝐴2𝑐𝑐2 − 𝐴𝐴3𝑏𝑏2𝑐𝑐)𝑒𝑒𝑖𝑖𝑛𝑛+4 +
𝑂𝑂(𝑒𝑒𝑖𝑖𝑛𝑛+5), 𝑛𝑛 ≥ 4     
                                             (26)

 

which shows that the Algorithm 2, i.e. equation 
(11) has order of convergence of 𝑛𝑛 + 4.   

3.2. Proposed Iterative Methods 

For verification of the proposed algorithms 1 and 
2, we present five new iterative methods as an 
application of the proposed algorithms. These 
new algorithms will verify the extension in order 
of convergence to 𝑛𝑛 + 3 and 𝑛𝑛 + 4. 

3.2.1. Proposed Methods using Algorithm 1 

Using the two-step modified Newton’s method 
[14] which is third order convergent (n = 3) as 
first two steps in equation (10) with the third step 
same as proposed, a new three-step iterative 
method of sixth order convergence (n +3) 
denoted by M1 takes the following form: 

Method 1 (M1) 

𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖 −
𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑓𝑓′(𝑥𝑥𝑖𝑖)

𝑧𝑧𝑖𝑖 = 𝑦𝑦𝑖𝑖 −
𝑓𝑓(𝑦𝑦𝑖𝑖)
𝑓𝑓′(𝑥𝑥𝑖𝑖)

𝑥𝑥𝑖𝑖+1 = 𝑧𝑧𝑖𝑖 −
𝑓𝑓(𝑧𝑧𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑦𝑦𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑥𝑥𝑖𝑖)2

[(𝑧𝑧𝑖𝑖−𝑥𝑥𝑖𝑖)2[𝑓𝑓(𝑧𝑧𝑖𝑖)−𝑓𝑓(𝑦𝑦𝑖𝑖)]+[𝑓𝑓(𝑧𝑧𝑖𝑖)−𝑓𝑓(𝑥𝑥𝑖𝑖)−𝑓𝑓′(𝑥𝑥𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑥𝑥𝑖𝑖)](𝑧𝑧𝑖𝑖−𝑦𝑦𝑖𝑖)2]}
 
 
 
 

     (27) 

Replacing the first two steps of algorithm 1, i.e. 
equation (10) with two-step optimal fourth order 
convergent (n = 4) method from [15], we get a 
new three-step iterative method of seventh order 
convergence (n + 3) denoted by M2 takes the 
following form: 

Method 2 (M2) 
𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖 −

𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑓𝑓′(𝑥𝑥𝑖𝑖)

𝑧𝑧𝑖𝑖 = 𝑦𝑦𝑖𝑖 −
𝑓𝑓(𝑦𝑦𝑖𝑖)

2(𝑓𝑓(𝑦𝑦𝑖𝑖)−𝑓𝑓(𝑥𝑥𝑖𝑖)𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖
)−𝑓𝑓′(𝑥𝑥𝑖𝑖)

𝑥𝑥𝑖𝑖+1 = 𝑧𝑧𝑖𝑖 −
𝑓𝑓(𝑧𝑧𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑦𝑦𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑥𝑥𝑖𝑖)2

(𝑧𝑧𝑖𝑖−𝑥𝑥𝑖𝑖)2[𝑓𝑓(𝑧𝑧𝑖𝑖)−𝑓𝑓(𝑦𝑦𝑖𝑖)]+[𝑓𝑓(𝑧𝑧𝑖𝑖)−𝑓𝑓(𝑥𝑥𝑖𝑖)−𝑓𝑓′(𝑥𝑥𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑥𝑥𝑖𝑖)](𝑧𝑧𝑖𝑖−𝑦𝑦𝑖𝑖)2}
 
 

 
 

     

(28)

 

In algorithms 1, using the fifth order convergent 
(n=5) method from [12] as first two steps, the new 
three-step iterative method of eighth order 
convergence (n + 3) denoted by M3 takes the 
following form 
Method 3 (M3) 

𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖 −
𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑓𝑓′(𝑥𝑥𝑖𝑖)

𝑧𝑧𝑖𝑖 = 𝑦𝑦𝑖𝑖 −
𝑓𝑓(𝑦𝑦𝑖𝑖)
𝑓𝑓′(𝑦𝑦𝑖𝑖)

− 𝑓𝑓(𝑦𝑦𝑖𝑖)2[𝑓𝑓′(𝑥𝑥𝑖𝑖)−𝑓𝑓′(𝑦𝑦𝑖𝑖)]
2𝑓𝑓′(𝑥𝑥𝑖𝑖)2[𝑓𝑓(𝑥𝑥𝑖𝑖)−𝑓𝑓(𝑦𝑦𝑖𝑖)]

𝑥𝑥𝑖𝑖+1 = 𝑧𝑧𝑖𝑖 −
𝑓𝑓(𝑧𝑧𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑦𝑦𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑥𝑥𝑖𝑖)2

(𝑧𝑧𝑖𝑖−𝑥𝑥𝑖𝑖)2[𝑓𝑓(𝑧𝑧𝑖𝑖)−𝑓𝑓(𝑦𝑦𝑖𝑖)]+[𝑓𝑓(𝑧𝑧𝑖𝑖)−𝑓𝑓(𝑥𝑥𝑖𝑖)−𝑓𝑓′(𝑥𝑥𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑥𝑥𝑖𝑖)](𝑧𝑧𝑖𝑖−𝑦𝑦𝑖𝑖)2}
 
 
 
 

          

(29)

 

3.2.2. Proposed Methods using Algorithm 2 

Using a two-step optimal fourth order convergent 
(n=4) method from [15] as first two steps in 
equation (11), the new three-step iterative method 
of eighth order convergence (n + 4) using 
algorithm 2, denoted by M4, takes the following 
form 
Method 4 (M4) 

𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖 −
𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑓𝑓′(𝑥𝑥𝑖𝑖)

𝑧𝑧𝑖𝑖 = 𝑦𝑦𝑖𝑖 −
𝑓𝑓(𝑦𝑦𝑖𝑖)

2(𝑓𝑓(𝑦𝑦𝑖𝑖)−𝑓𝑓(𝑥𝑥𝑖𝑖)𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖
)−𝑓𝑓′(𝑥𝑥𝑖𝑖)

𝑥𝑥𝑖𝑖+1 = 𝑧𝑧𝑖𝑖 −
𝑓𝑓(𝑧𝑧𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑦𝑦𝑖𝑖)

2𝑓𝑓(𝑧𝑧𝑖𝑖)−2𝑓𝑓(𝑦𝑦𝑖𝑖)−𝑓𝑓′(𝑦𝑦𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑦𝑦𝑖𝑖)}
 
 

 
 

 

                                   

                                                                       (30)

 

Using the two-step fifth order convergent (n = 5) 
method from [12] with the third step of equation 
(11), the new three-step iterative method of ninth 
order convergence (n + 4) using the algorithm 2, 
denoted by M5, takes the following form 

Method 5 (M5) 

𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖 −
𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑓𝑓′(𝑥𝑥𝑖𝑖)

𝑧𝑧𝑖𝑖 = 𝑦𝑦𝑖𝑖 −
𝑓𝑓(𝑦𝑦𝑖𝑖)
𝑓𝑓′(𝑦𝑦𝑖𝑖)

− 𝑓𝑓(𝑦𝑦𝑖𝑖)2[𝑓𝑓′(𝑥𝑥𝑖𝑖)−𝑓𝑓′(𝑦𝑦𝑖𝑖)]
2𝑓𝑓′(𝑥𝑥𝑖𝑖)2[𝑓𝑓(𝑥𝑥𝑖𝑖)−𝑓𝑓(𝑦𝑦𝑖𝑖)]

𝑥𝑥𝑖𝑖+1 = 𝑧𝑧𝑖𝑖 −
𝑓𝑓(𝑧𝑧𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑦𝑦𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑥𝑥𝑖𝑖)2

2𝑓𝑓(𝑧𝑧𝑖𝑖)−2𝑓𝑓(𝑦𝑦𝑖𝑖)−𝑓𝑓′(𝑦𝑦𝑖𝑖)(𝑧𝑧𝑖𝑖−𝑦𝑦𝑖𝑖)}
 
 
 
 

 

           

                                                                       (31)

 

Applying theorems 1 and 2, the asymptotic error 
terms of the proposed methods: M1 (sixth order), 
M2 (seventh order), M3 (eighth order), M4 
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(eighth order) and M5 (ninth order), respectively, 
can be expressed in the following form: 

𝑀𝑀1: 𝑒𝑒𝑖𝑖+1 = −4𝐴𝐴23𝐴𝐴3𝑒𝑒𝑖𝑖6 + 𝑂𝑂(𝑒𝑒𝑖𝑖7)        (32)
 

𝑀𝑀2: 𝑒𝑒𝑖𝑖+1 = 2(𝐴𝐴22𝐴𝐴32 − 𝐴𝐴24𝐴𝐴3)𝑒𝑒𝑖𝑖7 + 𝑂𝑂(𝑒𝑒𝑖𝑖8)      (33)
 

𝑀𝑀3: 𝑒𝑒𝑖𝑖+1 = −(10𝐴𝐴25𝐴𝐴3 − 3𝐴𝐴23𝐴𝐴32)𝑒𝑒𝑖𝑖8 + 𝑂𝑂(𝑒𝑒𝑖𝑖9)                  
                                                                       (34)

 
  

𝑀𝑀4: 𝑒𝑒𝑖𝑖+1 = (𝐴𝐴27 − 3𝐴𝐴25𝐴𝐴3 + 2𝐴𝐴23𝐴𝐴32)𝑒𝑒𝑖𝑖8 + 𝑂𝑂(𝑒𝑒𝑖𝑖9)                             
(35) 

𝑀𝑀5: 𝑒𝑒𝑖𝑖+1 = −0.5𝐴𝐴22𝐴𝐴3(10𝐴𝐴24 − 3𝐴𝐴22𝐴𝐴3)𝑒𝑒𝑖𝑖9 +
𝑂𝑂(𝑒𝑒𝑖𝑖10)

                                                           
(36)

 
Remark 1. Five new methods: M1-M5 have been 
proposed by applying proposed algorithms 1 and 
2 on some existing two step methods from [12] 
and [14-15]. The maximum order of convergence 
for a two-step method in literature, according to 
our survey, has been fifth.  

Remark 2. While the algorithms 1 (2), is defined 
for extending any nth order method, with 𝑛𝑛 ≥ 3 
(𝑛𝑛 ≥ 4), to order n + 3 (n + 4), the application of 
the algorithms are discussed only for 3 ≤ 𝑛𝑛 ≤ 5. 
However, the expected extension in the order of 
convergence using algorithms 1 and 2 has been 
established generally for any 𝑛𝑛 ≥ 3 and 𝑛𝑛 ≥ 4, 
respectively, to the orders n + 3  and n + 4 in 
theorems 1 and 2.    

3.3.  Efficiency Indices of the Proposed       
        Methods 

Here, we compare the efficiency indices of the 
proposed method M1-M5 with some existing 
methods in literature of the same order of 
convergence. The method M1 and M2 are 
compared with the sixth and seventh order 
methods of Alicia [13], denoted here as MK6 and 
MK7 respectively. The M3 and M4 methods are 
compared with the eighth order convergent 
method in [22], denoted by MZM here. The M5 
method is compared with the ninth order iterative 
method of Noor [23], denoted by NRM. The 
efficiency indices of proposed methods (EM1, 
EM2, EM3, EM4, EM5) and discussed methods 

(EMK6, EMK7, EMZM , ENRM) are given in 
Table 1.  
 
Table 1. Efficiency indices of proposed and discussed 
methods. 

Order of 

method 

Method Efficiency index 

Sixth order 

methods 

M1 1.565084580073287 

MK6 1.565084580073287 

Seventh order 

methods 

M2 1.626576561697786 

MK7 1.626576561697786 

Eighth order  

methods 

M3 1.515716566510398 

M4 1.515716566510398 

MZM 1.515716566510398 

Ninth order  

methods 

M5 1.551845573915360 

NRM 1.551845573915360 

It can be seen that the new methods M1-M5 
proposed using the algorithms 1 and 2 do not 
compromise on the efficiency in comparison to 
some of the similar order methods in literature. 
The computational properties of the proposed 
methods are verified in the next section.  

4.   NUMERICAL EXPERIMENTS 

The performance of the proposed method are 
highlighted and compared with other methods 
from literature in this section on some test 
problems. Following is the list of some numerical 
examples to be considered for comparison, most 
of which are taken from [11] and [24-25]. 

Example 1   
𝑓𝑓1(𝑥𝑥) = (𝑥𝑥 − 1)3 − 1 
Example 2 
𝑓𝑓2(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 − 𝑥𝑥 
Example 3 
𝑓𝑓3(𝑥𝑥) = 4 𝑐𝑐𝑠𝑠𝑛𝑛 𝑥𝑥 − 𝑥𝑥 + 1 
Example 4 
𝑓𝑓4(𝑥𝑥) = 𝑥𝑥 + √𝑥𝑥2 + 1.54𝑒𝑒20 − 2.47𝑒𝑒10 
Example 5 
𝑓𝑓5(𝑥𝑥) = 𝑥𝑥5 + 𝑥𝑥 − 10000 
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Example 6 
𝑓𝑓6(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑐𝑐2 𝑥𝑥 − 𝑥𝑥 5⁄  Example 7 
𝑓𝑓7(𝑥𝑥) = √𝑥𝑥 − 1 𝑥𝑥⁄ − 3 Example 8 
𝑓𝑓8 = 𝑥𝑥3 − 20 Example 9 
𝑓𝑓9 = 𝑥𝑥3 + 4𝑥𝑥2 − 10 Example 10 
𝑓𝑓10 = 𝑐𝑐𝑠𝑠𝑠𝑠2 𝑥𝑥 − 𝑥𝑥2 + 1 Example 11 
Another nonlinear scalar equation, taken from 
[26], in which we compute the distance ‘r’ of 
satellite “Wind” launched by NASA from earth is 
given as: 
 
𝑓𝑓11(𝑟𝑟) = 𝐺𝐺𝑀𝑀𝑆𝑆𝑚𝑚

𝑟𝑟2 − 𝐺𝐺 𝑀𝑀𝑒𝑒𝑚𝑚
(𝑅𝑅 − 𝑟𝑟)2 − 𝑚𝑚𝑟𝑟𝜔𝜔2 = 0

 where, 𝐺𝐺 = 6.67 × 10−11, 
301.98 10 [ ],SM kg  𝑀𝑀𝑒𝑒 = 5.98 × 1024[𝑘𝑘𝑘𝑘], 

m=the mass of satellite [kg], 𝑅𝑅 = 1.49 ×
1011[𝑚𝑚], 𝜔𝜔 = 2𝜋𝜋/𝑇𝑇, 𝑇𝑇 = 3.15576 × 107[𝑐𝑐𝑠𝑠𝑐𝑐] 
Example 12 
A nonlinear equation from [1] to find the 
distance ‘d’ above a nonlinear spring in a real 
mechanical system. The equation is  

𝑓𝑓12(𝑑𝑑) =
2𝑘𝑘2𝑑𝑑5/2

5 + 1
2 𝑘𝑘1𝑑𝑑

2 − 𝑚𝑚𝑘𝑘𝑑𝑑 − 𝑚𝑚𝑘𝑘ℎ = 0
 with the parameters 2

1 50,000 / ,k g s 𝑘𝑘2 =
40𝑘𝑘/(𝑐𝑐2𝑚𝑚5),𝑚𝑚 = 90𝑘𝑘, 𝑘𝑘 = 9.81𝑚𝑚/𝑐𝑐2, ℎ =
0.45𝑚𝑚. 
Example 13 
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methods are compared with other discussed 
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We have used 𝛾𝛾 ≤ 𝑠𝑠−299as stopping criterion to 
note the numerical results. MATLAB R2013a is 
used for calculations, installed in Intel(R) Core 
(TM) i3 hp laptop with RAM of 4GB operating at 
a processing speed of 2.4GHz with 12000 digits 
precision. 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

-250

10
-200

10
-150

10
-100

10
-50

10
0

10
50

number of iterations

er
ro

r d
ro

p

 

 

M1
M2
M3
M4
M5
MK6
MK7
MZM
NRM

1 1.5 2 2.5 3 3.5 4
10

-300

10
-250

10
-200

10
-150

10
-100

10
-50

10
0

number of iterations

er
ro

r d
ro

p

 

 

M1
M2
M3
M4
M5
MK6
MK7
MZM
NRM

 Some Efficient Algorithms to Raise Order of Convergence 83



5.  RESULTS AND DISCUSSION

The computational properties of proposed methods 
are compared with other discussed methods from 
literature (Table 2) for Examples 1-10 and Examples 
11-14 in Table 3. The used initial guesses are also 
shown in Tables 2 and 3. The results in Tables 2 and 
3 are compared on the basis of number of iteration 
‘I’, observed computational order of convergence, 
and absolute error γat last iteration to achieve a pre-
specified error tolerance. The absolute error, γ, is 
given by the following formula γ=|x_(i+1)-x_i |.

We have used γ≤e^(-299)as stopping criterion 
to note the numerical results. MATLAB R2013a 
is used for calculations, installed in Intel(R) Core 
(TM) i3 hp laptop with RAM of 4GB operating at 
a processing speed of 2.4GHz with 12000 digits 
precision.

Figures 1-14 shows the absolute error 
distributions for all iterations incurred in 
approximations by all methods for examples 1-14, 
respectively. Due to the graphical limit of MATLAB, 
the errors lower than 10-299 were assumed zero by 
the software, and could not be marked in figures. 
It is clear from Table 2 that the theoretical orders 
of convergence of all proposed methods M1-M5, 
as established in equations (32)-(36), and other 
methods have been verified as expected.

It appears from Table 2 that the number of 
iterations required by the proposed methods 
M1-M5 are either equal or smaller than those in 
accompanying methods from literature. The same 
is also evident from Figures 1-10. Particularly, 
M2 method takes fewer iterations than MK7 in 
Example1, the M3 and M4 methods take fewer 
iterations than MZM method for Example 1 and 
Examples 7-9 (Table 2).

In most of the cases the proposed methods 
and the other accompanying methods with similar 
order of convergence and efficiency index take 
similar number of iterations, which shows that the 
proposed methods are comparable to other existing 
methods. However, in the same problems, some of 
the proposed methods take ascendency over other 
methods with respect to the computational cost and 
execution time, also called CPU time (in seconds) 
to achieve pre-specified error tolerance. It can be 

seen from Figure. 15 and 16 that the proposed 
method M1 and the other method MK6 require 
same number of evaluations to achieve the pre-
specified error; which is referred here as the total 
computational cost (COC). However, with regards 
to CPU times as shown in Figure. 17 and 18, the 
proposed M1 method is better than MK6 for most 
of the examples. For example 1, the proposed M2 
exhibits lower COC value and lesser CPU time 
than the accompanying MK7 method as shown in 
Figures 15 and 17. While the computational cost 
of the proposed M2 method is same as the MK7 
method for Examples 2-10, 12 and 14 as shown 
in Figures 15 and 16, the former takes lesser CPU 
time in the same situations as seen from Figure 17 
and 18. For example 11, as appears from Table 3, 
the MK7 method loses order of convergence from 7 
(expected) to 1(observed), whereas the M2 method 
maintains seventh order convergence.

The COC and CPU times of the proposed M2 
are much lower than those by MK7 as shown in 
Figures 16 -18. For example 13, as in Table 3 and in 
Figures 16-18, the MK7 method diverges with the 
same initial guess for which the proposed method 
works efficiently fine. The CPU time of the M2 is 
substantially smaller than that by MK7 for example 
11 as in Figure 18. From Figures 15-16, we observe 
that the COC value for the proposed M3 and M4 
methods, for both or atleast one, are smaller than 
those in MZM method for examples 1, 7-9, 12 and 
14. For example 11 in Figure 16, some methods M3 
and MZM diverge, whereas in the same situation 
the proposed M4 method is still applicable and 
maintains it theoretical order of convergence.

Figures 17 and 18 show that among the discussed 
eighth order methods in Tables 2 and 3, the CPU time 
for the proposed M4 method are always and much 
lower than the MZM and M3 methods, whereas 
the CPU times of the M3 and MZM methods are 
comparable and slightly take edge over each other 
in some examples. As described in Tables 2 and 3, 
both the discussed ninth order methods: proposed 
M5 method and NRM method, show comparable 
performance with regards to number of iterations 
and observed order of convergence. Particularly, 
for the case for example 11, the proposed M5 
method takes much lower number of iterations, 
i.e. 18 as compared to those in NRM method, i.e. 
49. The COC value of the proposed M5 and NRM 

84 Hameer Akhtar Abro and Muhammad Mujtaba Shaikh



Some Efficient Algorithms to Raise Order of Convergence 

  

Fig. 3. Error drop of Example 3 

Fig. 4. Error drop of Example 4 

     Fig. 5. Error drop of Example 5  

 

 

 

 

Figs. 1-14 shows the absolute error distributions 
for all iterations incurred in approximations by all 
methods for examples 1-14, respectively. Due to 
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Fig. 17. CPU time for Examples 1-10 and Example 14 

 
Fig. 18. CPU time for Examples 11-13
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Fig. 15. COC for Examples 1-10 and Example 14 

 

 
Fig. 16. COC for Examples 11-13 
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method are also comparable as seen from Figs. 
15 and 16; M5 method is much better than NRM 
for example 11, whereas the NRM method takes 
slight edge over the former for example 8. The M5 
method diverges in example 13, which happens 
mostly when methods run out of their asymptotic 
regimes of convergence due to a particular range 
of initial guesses. The CPU times of the proposed 
M5 method are always lower than those in NRM 
method for all examples where these methods are 
applicable, as shown in Figures 17 and 18, except 
for examples 8 and 13 due to same reasons. 

It should be noted that there exist some highly 
nonlinear equations like our examples 12 and 14, 
in which most of the conventional methods have to 
compromise on the order of convergence and instead 
of the expected higher order methods usually end 
up showing almost linear convergence. From Table 
3 for the case of examples 12 and 14, it is clear that 
all the discussed methods compromise upon the 
order of convergence, and converge almost linearly 
instead of the expected higher order convergence. 
This is evident in all proposed methods M1-M5 and 
other discussed methods, MK6, MK7, MZM and 
NRM methods. However, in these situations, for 
examples 12 and 14, Figures. 15-18 clearly depict 
the preference of the proposed methods over other 
discussed methods from viewpoints of CPU times 
and somewhere with respect to COC value.

The exhaustive comparison of the computational 
performance of the proposed M1-M5 methods with 
similar order methods from literature, MK6, MK7, 
MZM and NRM show the utility and efficiency of 
proposed methods. The proposed methods using 
algorithms 1 and 2 tend to verify the theoretical 
order of convergence where ever possible, like 
other methods and from viewpoints of COC and 
CPU times show comparatively better results than 
other methods. Among all proposed methods and 
discussed methods, the M2 method has highest 
efficiency index for scalar nonlinear equations, 
which is slightly less than any other optimal eighth 
order iterative method, i.e. 1.6818, but in most 
of the examples, M2 gives better solutions than 
other higher order convergent methods in terms of 
number of iterations, error drop and CPU times.

6. CONCLUSION

Two three-step algorithms have been proposed 
in this work to extend order of convergence of 

iterative methods for scalar nonlinear equations. 
The suggested algorithms can be applied on any 
two-step nth order convergent iterative method 
to increase the convergence orders to (n + 3) and                             
(n + 4) by using the divided difference approximation 
in the third step of proposed algorithms. Theorems 
regarding the extension in order of convergence 
have been proved theoretically. Five new methods 
have been derived as tested as application of the 
proposed algorithms. The efficiency indices of the 
proposed methods M1-M5 are found to be higher 
and equivalent to some methods in literature. The 
computational performance of the new methods 
has been tested for various nonlinear equations 
from literature including some highly nonlinear 
case study equations. The numerical results show 
that the proposed methods perform good in terms 
of error drop, total computational cost, number 
of iterations and CPU time as compared to other 
methods having same efficiency index and same 
order of convergence. 
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