
Research Article

Proceedings of the Pakistan Academy of Sciences: Pakistan Academy of Sciences
A: Physical and Computational Sciences 58(1): 35–45 (2021)
Copyright © Pakistan Academy of Sciences
ISSN (print) 2518-4245; ISSN (Online) 2518-4253
https://doi.org/10.53560/PPASA(58-1)717

————————————————
Received: July 2020; Accepted: March 2021
*Corresponding Author: Sadeeq Jan <sadeeqjan@uetpeshawar.edu.pk>

 A Comparative Analysis of Mobile Application Development
Approaches

Mohamed Abdal Mohsin Masaad Alsaid1, Tarig Mohamed Ahmed1,3, Sadeeq Jan2* , Fazal
Qudus Khan3, Mohammad2, and Amjad Ullah Khattak4

1Department of Computer Science, University of Khartoum, Khartoum, Sudan
2Department of Computer Science & IT, University of Engineering and Technology,

Peshawar, Pakistan
3Department of Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

4Department of Electrical Engineering, University of Engineering and Technology,
Peshawar, Pakistan

Abstract: Over the last decade, there has been a significant increase in the development of mobile applications.
The performance of the developed applications depends largely on the development approaches. There are two
widely used approaches: (1) native, where the application is targeted and developed for a specific platform, (2) cross-
platform, where the developed application runs on multiple platforms. This paper aims to address the question of
which approach should be used in various scenarios. We have performed a detailed comparison of the two approaches
by developing a mobile app using both approaches. Experiments are performed using Android and iOS, the two most
well-known mobile Operating System. The criteria of deciding the best approach include performance, usability and
support. Our results show that both approaches are viable depending on the requirements and type of the application
to be developed, with native having an edge. Guidelines are presented at the end to help the developers in choosing the
best approach. The fundamental differences and advantages of each approach are discussed.

Keywords: Mobile Applications, Native, Cross-platform, Development, Programming.

1. INTRODUCTION

In the age of technology, smartphones are the
most widely used electronic device, used by
billions of people. They have become a key part
of our daily lives. But what makes a smart-phone
“smart” is the functionality it provides beyond
phone calls and texting, such as touch screens,
GPS, camera, biometrics, and that they have fully
capable operating systems that can run all sort of
applications, like email, browsers, banking, health
care, games and much more. There exist several
smart-phone platforms, however, Android and IOS
have been dominant, with their market share being
87.7% and 12.1%, respectively [1].

Android is an Open source mobile operating
system that is developed and maintained by Google

and is used by many smart-phones manufactures.
IOS is a closed source mobile operating system
developed by Apple company for their own devices.
In the process of making a mobile application,
one of the first decisions to make is choosing the
target platforms and the technology stack to use for
development. For most cases targeting Android and
IOS is the way to go. The ideal situation would be
that both platforms can run the same source code
without compromising performance, support or
usability.

With two major operating systems, it makes
sense to target both platforms when developing
an app that needs to target almost all users. There
are two General approaches in mobile application
development, native and cross-platform. Native
application development involves using the

significance in all aspects of the project, since the
investment in a tool that ends up not meeting the
desired outcome will waste plenty of resources.
This research evaluates the two general approaches
of app development, native and cross-platform, and
the results can be used as guidelines when making
the decision.

The rest of the manuscript is structured as
follows: Section 2 describes the background
of each development approach. In Section 3, a
detailed comparison of the existing studies with our
work is presented. Related work is explained in
detail. Section 4 provides the research methodology
adopted for conducting this study. Results are
discussions are provided in Section 5, while
Section 6 discusses the best approach based on our
proposed evaluation criteria. Finally, the conclusion
and future work is provided in Section 7.

1.1 BACKGROUND

1.1.1 Native Application Development

MA Native application is an application developed
and targeted at a certain platform. Native apps
directly use the platform’s main language, tools,
framework and APIs, to access and use the resources
available for the system, in order to extend the
device functionality and offer value. The tools used
for developing native apps are often in abundance
and have direct support from the platform they
are targeting, since it’s in the platform’s best
interest to make the developer’s job as pain-free as
possible. Tools here mean programming languages,
IDEs (Integrated Development Environment),
frameworks, libraries, documentation, courses, etc.

Native development also often has a big
community, with open-source libraries and
frameworks that lets the developer focus on their
App’s business logic rather than spend time doing
something that has already been implemented and
tested thoroughly. Given the scope of this paper,
the platform means either Android or iOS.

1.1.2 Android Native Development

Android is a Linux-based operating system,
meaning its kernel is written with C/C++. The
framework layer is written in Java, as well as the
APIs. Java is a high-level programming language

supported languages and APIs directly, Native
development in Android is done with Java/Kotlin
and in ISO with Objective-C/Swift. Cross-platform
solutions are made to achieve the goal of “write
once run everywhere”, the same source code runs
in multiple platforms without the need to use
platform-specific code (at least for most cases) and
is usually done by implementing an abstraction
layer upon wish the cross-platform code runs. Some
notable cross-platform mobile solutions are React-
native, Unity, Flutter, Apache Cordova, Xamarin
and Kotlin-native.

The native application development approach
adds to the performance of the mobile apps;
however, it comes with additional technical and
financial costs during the development maintenance
phase. On the other hand, the cross-platform
approach is beneficial for the users, however, it
has several limitations like inferior performance
and lack of support etc. Deciding between the two
approaches is a challenging task. In this paper, we
aim to facilitate the developers in choosing the right
approach for developing their applications. We
investigate the advantages and disadvantages of
each approach in various scenarios and considers
the parameters from different use cases. The main
objectives of this research are:

• To assess and compare the two major mobile
application development approaches, i.e.,
native and cross-platform development

• Checking performance, usability and support
• To implement an app using both native and

cross-platform and then use various benchmarks
to assess certain KPIs

• Recommend which approach to choose
in general and depending on the tools and
environment available.

This paper focuses on the two major mobile
operating systems, Android and iOS. While some
cross-platform solutions target more platforms,
these two are the most prevalent. We conduct an
analysis on native and cross platform, to evaluate
certain parameters of interest. Mainly performance,
and usability. Most of the focus will be on Flutter,
from the cross-platform side and Android, from the
native side.

Choosing the development approach or tool
for developing Mobile applications has great

36 Mohamed Abdal Mohsin Masaad Alsaid et al

that is platform-independent. To achieve this, Java
runs on top of what is called JVM (Java Virtual
Machine). Java code is first compiled into “.class”
files that contain byte code, the JVM then interprets
the byte code in machine code that depends on the
host platform the JVM is run on [2]. Even though
Android uses Java, there are some differences.
Given the resource limitations mobile devices
generally have, some changes had to be made to
the java environment in order to better suit mobile
needs. Android has two first class supported
languages, Java and Kotlin. Given the popularity
and robustness of Java, Google made a choice to
use it for the Android platform, and for a while, it
was the only one with first-class support. However,
in Google I/O 2017, the Android team announced
first-class support for Kotlin [3]. Kotlin is a concise
modern programming language that can run on the
JVM, it also can be compiled to JavaScript code or
LLVM native code.

1.1.3 iOS native development

Apple launched the App Store in 2008 with 522
apps. To make these apps, the language of choice
for Apple was Objective-C, A C-like programming
language with object-oriented features. Apple uses
objective see for both of its major operating systems,
OSX and iOS, with their APIs also written in it. As
Objective-C aged apple decided it needs to find a
replacement, so in 2014, during their Worldwide
Developers Conference, Apple announced Swift,
a new modern programming language for iOS and
Mac OS applications. Swift was originally a side
project for an apple employee, Chris Lattner. But
after a while, it gained interest and attention within
the company. Swift is a compiled language that uses
the LLVM and Objective-C runtime, meaning it
can leverage and interact with existing Objective-C
code, which allows Swift to directly interact with
the iOS framework APIs [4].

1.1.4 Cross-Platform Application Development

The cross-Platform purpose is to solve the problems
caused by the fact that native applications are
platform-dependent, by making an abstraction that
works in more than one platform. To achieve this,
there are different approaches categorized into web,
hybrid, interpreted and generated apps [5].

1.1.5 Web Approach

Apps that are browser-based web apps take advantage
of technologies like HTML and JavaScript to make
platform-independent apps. Web apps depend on
the browser they run on, which renders the HTML
and interprets the JavaScript. This approach means
any platform with a browser can run them. Web
apps have limited access to the underlying structure
of the platform, since they depend on what the
browser exposes as capabilities. They also have to
be downloaded each time they are used, since there
is no installation process [5]. Figure 1 depicts the
interaction of the mobile apps with the browser and
backend.

1.1.6 Hybrid Approach

As depicted in Figure 2, Hybrid apps are a mid-
ground between Web Apps and Native Apps, they
use the native browser, like UIWebView in iOS
and WebView in Android, to run web pages. Their
difference from Web Apps is that they are packaged
and installed on device and have their content
saved locally so they don’t have to be downloaded
each time. They also have access to the underlying
capabilities of the platform they work on. An
example for them is Cordova [6].

1.1.7 Interpreted Approach

Interpreted apps depend on the underlying tools to
interpret the code to platform-specific native code,
like some programming platforms as Java does.
An example of a software environment that creates

Fig. 1. Web approach

 Mobile Application Development Approaches

 3

2.2 Android Native Development

Android is a Linux-based operating system, meaning its
kernel is written with C/C++. The framework layer is
written in Java, as well as the APIs. Java is a high-level
programming language that is platform-independent.
To achieve this, Java runs on top of what is called JVM
(Java Virtual Machine). Java code is first compiled into
“.class” files that contain byte code, the JVM then
interprets the byte code in machine code that depends
on the host platform the JVM is run on [2]. Even
though Android uses Java, there are some differences.
Given the resource limitations mobile devices generally
have, some changes had to be made to the java
environment in order to better suit mobile needs.
Android has two first class supported languages, Java
and Kotlin. Given the popularity and robustness of
Java, Google made a choice to use it for the Android
platform, and for a while, it was the only one with first-
class support. However, in Google I/O 2017, the
Android team announced first-class support for Kotlin
[3]. Kotlin is a concise modern programming language
that can run on the JVM, it also can be compiled to
JavaScript code or LLVM native code.

2.3 iOS native development

Apple launched the App Store in 2008 with 522 apps.
To make these apps, the language of choice for Apple
was Objective-C, A C-like programming language with
object-oriented features. Apple uses objective see for
both of its major operating systems, OSX and iOS, with
their APIs also written in it. As Objective-C aged apple
decided it needs to find a replacement, so in 2014,
during their Worldwide Developers Conference, Apple
announced Swift, a new modern programming
language for iOS and Mac OS applications. Swift was
originally a side project for an apple employee, Chris
Lattner. But after a while, it gained interest and
attention within the company. Swift is a compiled
language that uses the LLVM and Objective-C runtime,
meaning it can leverage and interact with existing
Objective-C code, which allows Swift to directly
interact with the iOS framework APIs [4].

2.4 Cross-Platform Application Development

The cross-Platform purpose is to solve the problems
caused by the fact that native applications are platform-
dependent, by making an abstraction that works in
more than one platform. To achieve this, there are
different approaches categorized into web, hybrid,
interpreted and generated apps [5].

2.5 Web Approach

Apps that are browser-based web apps take advantage
of technologies like HTML and JavaScript to make
platform-independent apps. Web apps depend on the
browser they run on, which renders the HTML and
interprets the JavaScript. This approach means any
platform with a browser can run them. Web apps have
limited access to the underlying structure of the
platform, since they depend on what the browser
exposes as capabilities. They also have to be
downloaded each time they are used, since there is no
installation process [5]. Figure 1 depicts the interaction
of the mobile apps with the browser and backend.

2.6 Hybrid Approach

As depicted in Figure 2, Hybrid apps are a mid-ground
between Web Apps and Native Apps, they use the
native browser, like UIWebView in iOS and WebView
in Android, to run web pages. Their difference from
Web Apps is that they are packaged and installed on
device and have their content saved locally so they
don’t have to be downloaded each time. They also have
access to the underlying capabilities of the platform
they work on. An example for them is Cordova [6].

Fig.1. Web Approach

 Mobile Application Development Approaches 37

Interpreted apps is Appcelerator Titanium [5].

This approach provides native user interfaces
but has downsides like dependence on the tool, such
as the case where a new user interface is available
in the native platform but is not yet supported by
the tool.

1.1.8 Generated Approach

Generated apps are compiled to platform-specific
code depending on the target platform, so each
platform will have different executable code. An
example of a software environment that creates
Interpreted apps is Applause [5].

1.1.9 MDA approach

MDA is a design approach that allows development
using high-level constructs without having to deal
with low-level details. MDA acts as a middleware
that abstracts away operating systems, programming
languages, etc., allowing focus on the business logic
of the product [7]. MDA was defined by the Object
Management Group (OMG) [8]. MDA consists of,
well, models, as shown in Figure 3.

1.2 Related Work

In the paper “A Comparative Analysis of Cross-
platform Development Approaches for Mobile
Applications” by Spyros Xanthopoulos from the
Aristotle University of Thessaloniki and Stelios
Xinogalos from University of Macedonia [5], the
authors suggested that the use of native application

development technologies imposed “severe
constraints”, things like multiple development
environments and increased maintenance cost were
mentioned. The paper evaluates different cross-
platform development types, which include, web,
hybrid, interpreted and generated apps.

In the white paper “Analysis of Native and
Cross-Platform Methods for Mobile Application
Development” by Praveen Kumar S [9], the author
conducts an analysis on the native and cross-
platform by highlighting their respective features,
advantages and limitation. The author suggests
that in the future the choice of the development
approach will become costlier as the process
become more complex because of increased mobile
device fragmentation.

In the paper “Evaluating Cross-Platform

Development Approaches for Mobile Applications”
by Henning Heitkötter, Sebastian Hanschke, and
Tim A. Majchrzak [10], the authors evaluate
cross-platform solutions for mobile, including
the most prevalent at the time of the publishing,
like PhoneGap and Titanium Mobile. Some of
the criteria they used for the evaluation are Look
and feel, ease of development Maintainability,
scalability and application speed. The authors argue
that cross-platform is mature enough that the native
approach is not always needed.

In the paper “Cross-platform approach for
mobile application development: a survey” by

2.7 Interpreted Approach

Interpreted apps depend on the underlying tools to
interpret the code to platform-specific native code, like
some programming platforms as Java does. An
example of a software environment that creates
Interpreted apps is Appcelerator Titanium [5].

This approach provides native user interfaces but
has downsides like dependence on the tool, such as the
case where a new user interface is available in the
native platform but is not yet supported by the tool.

2.8 Generated Approach

Generated apps are compiled to platform-specific code
depending on the target platform, so each platform will
have different executable code. An example of a
software environment that creates Interpreted apps is
Applause [5].

2.9 MDA approach

MDA is a design approach that allows development
using high-level constructs without having to deal with
low-level details. MDA acts as a middleware that
abstracts away operating systems, programming
languages, etc., allowing focus on the business logic of
the product [7]. MDA was defined by the Object

Management Group (OMG) [8]. MDA consists of,
well, models, as shown in Figure 3.

3 RELATED WORK

In the paper “A Comparative Analysis of Cross-
platform Development Approaches for Mobile
Applications” by Spyros Xanthopoulos from the
Aristotle University of Thessaloniki and Stelios
Xinogalos from University of Macedonia [5], the
authors suggested that the use of native application
development technologies imposed “severe
constraints”, things like multiple development
environments and increased maintenance cost were
mentioned. The paper evaluates different cross-
platform development types, which include, web,
hybrid, interpreted and generated apps.

In the white paper “Analysis of Native and Cross-
Platform Methods for Mobile Application
Development” by Praveen Kumar S [9], the author
conducts an analysis on the native and cross-platform
by highlighting their respective features, advantages
and limitation. The author suggests that in the future
the choice of the development approach will become
costlier as the process become more complex because
of increased mobile device fragmentation.

Fig.2. Hybrid Approach

Fig.3. Model Driven Architecture. Source
(Sommer and Krusche, 2013)

2.7 Interpreted Approach

Interpreted apps depend on the underlying tools to
interpret the code to platform-specific native code, like
some programming platforms as Java does. An
example of a software environment that creates
Interpreted apps is Appcelerator Titanium [5].

This approach provides native user interfaces but
has downsides like dependence on the tool, such as the
case where a new user interface is available in the
native platform but is not yet supported by the tool.

2.8 Generated Approach

Generated apps are compiled to platform-specific code
depending on the target platform, so each platform will
have different executable code. An example of a
software environment that creates Interpreted apps is
Applause [5].

2.9 MDA approach

MDA is a design approach that allows development
using high-level constructs without having to deal with
low-level details. MDA acts as a middleware that
abstracts away operating systems, programming
languages, etc., allowing focus on the business logic of
the product [7]. MDA was defined by the Object

Management Group (OMG) [8]. MDA consists of,
well, models, as shown in Figure 3.

3 RELATED WORK

In the paper “A Comparative Analysis of Cross-
platform Development Approaches for Mobile
Applications” by Spyros Xanthopoulos from the
Aristotle University of Thessaloniki and Stelios
Xinogalos from University of Macedonia [5], the
authors suggested that the use of native application
development technologies imposed “severe
constraints”, things like multiple development
environments and increased maintenance cost were
mentioned. The paper evaluates different cross-
platform development types, which include, web,
hybrid, interpreted and generated apps.

In the white paper “Analysis of Native and Cross-
Platform Methods for Mobile Application
Development” by Praveen Kumar S [9], the author
conducts an analysis on the native and cross-platform
by highlighting their respective features, advantages
and limitation. The author suggests that in the future
the choice of the development approach will become
costlier as the process become more complex because
of increased mobile device fragmentation.

Fig.2. Hybrid Approach

Fig.3. Model Driven Architecture. Source
(Sommer and Krusche, 2013)

Fig. 3. Model Driven Architecture. Source
(Sommer and Krusche, 2013)

Fig. 2. Hybrid approach

38 Mohamed Abdal Mohsin Masaad Alsaid et al

LATIF, LAKHRISSI, NFAOUI and ES-SBAI [11],
the authors conduct a survey on current cross-
platform approaches while it puts emphasis on
the MDA (Model Driven Architecture) approach,
it also looks into We, Hybrid, Interpreted and
cross-compiled approaches. The paper identifies
desirable properties of any cross-platform
solution, which includes Application Scalability
and maintainability, Access to devices features,
Security and Development Environment. The
paper concludes that a cross-platform solution is
favourable to native when time and cost constraints
are present, and it recommends a solution using the
MDA approach.

In the paper “Survey, Comparison and
Evaluation of Cross-Platform Mobile Application
Development Tools” [12], The authors discuss
the decision criteria for choosing a suitable
cross-platform tool. The authors first identify
the desired requirements to be met in a cross-
platform framework, then they discuss the general
architecture of cross-platform development, and
finally, they conclude with a survey of several
cross-platform solutions (PhoneGap, Titanium,
Sencha Touch). The paper concludes that the user
experience in cross-platform applications is not as
good as with native, but it still offers more potential
to reach more users straightforward.

In the paper “Cross-platform mobile
development approaches” [13], the authors present
a comparison between several cross-platform
approaches, including: Runtime, Sources Code
Translators. Web-to-native wrapper, App factories
and JavaScript frameworks. Some notable criteria
present are: The type of the resulting App (Native,
hybrid or web), the app size, performance hit (CPU
or memory), supported platforms and access to
underlying platform APIs. In conclusion the paper
emphasizes the need to analyze the desired objective
in order to choose a suitable cross-platform tool,
and the paper present three factors that help make
that choice, which are, programming habits, the
importance of native look and feel, and the target
OS.

In the paper “Baseline Requirements for
Comparative Research on Cross-Platform Mobile
Development: A Literature Survey” [14], the
authors state how the technical implementations are

used to test hypotheses in the computing field, and
that research in the mobile field lacked a common
baseline. The authors propose a baseline to be
used for cross-platform mobile app development
research. Their results include which tool to use for
each cross-platform approach (like Xamarin. For
cross-compiled / Generated), which devices to test
on for each major mobile platform and the features
to assess. The authors conclude that a signal
baseline is not feasible, so they presented several
baselines for different types of studies. They also
conclude that the approaches and tools change and
depreciate over time.

In the paper “Evaluation of cross-platform
frameworks for mobile applications” [15], the
authors conduct an evaluation of then current
cross-platform tool against their native counterpart.
The evaluation is done by assigning weights to
certain desirable properties like functionality and
developer support, and averaging for a final score.
The native SDKs got the higher scores overall with
the biggest gap appearing in the “Reliability &
Performance” category. In conclusion, the authors
argue that cross-platform solutions are of value if
the performance hit is acceptable for the use case.

There also exist several other studies on native
and cross platform development [16-23], however,
none of them specifically targeted the comparison
of the two approaches as we did in this paper.

2. MATERIALS AND METHODS

The procedure followed in this research include
Goal Question Metric, criteria evaluation through
investigation and Case Study to further measure
different aspects of the competing approaches
evaluation through investigation and Case Study to
further measure different aspects of the competing
approaches.

2.1 Goal Question Metric (GQM)

Goal Question Metric [24] is a top-down approach
that works as a measurement mechanism that
breaks down the study or project into Goals that
need to be reached, Questions to be answered to
reach the Goal and Measurements to evaluate said
Questions. This paper uses the GQM method and
uses the evaluation and case study to answer the

 Mobile Application Development Approaches 39

questions. Figure 4 depicts the association of the
goal with the corresponding questions and metrics.

2.2 Evaluation

To evaluate the two development approaches
for mobile, native and cross-platform, the paper
identifies desirable characteristics that will be
investigated in each approach. The paper uses
some of the criteria identified by H. Heitkötter, S.
Hanschke and T. A. Majchrzak [10], to test against
selected candidates from each approach. These
criteria include:

• License and Costs
• Access to platform-specific features
• Long-term feasibility
• Look and feel
• Application Speed
• Development environment
• Ease of development
• Scalability

2.3 Validation

To keep the validity of the thesis reasonably high,
GQM is used to link the goal of the study, to the
questions and metrics that help reach the goal, as
listed in Table 1. Evaluation through investigation
or case study is used where appropriate. While
the case study provides actual real-world data,
the investigation helps fill the gaps of criteria
examination in the case study.

2.4 Case Study

The case study is a mobile app that displays a
Timer that shows minutes, seconds and a two-digit
fraction of a second. The App is a modified version

of Alex Sullivan’s timer, that is used for the same
performance testing purpose [25].

2.5 Instrumentation

Following tools are used in our experiments:

• Android Studio
• Kotlin
• Flutter
• Dart
• Flutter plugins
• Benchmarking tools

2.6 Assumptions and Limitations

The paper won’t evaluate all existing cross-platform
technologies, and rather it will try to represent
major technologies and approaches, choosing
one candidate from native (native Android) and
one candidate for cross-platform (Flutter). Flutter
was chosen because it’s a new tool that is gaining
traction and because of the lack of studies using it.
The performance data will also be affected by choice
of and the implementation of the applications, the
paper will try to minimize this effect by optimizing
the applications to a reasonable degree. Lack of
tools and hardware for iOS development limits the
evaluation, in the case study, to the results present
on android devices.

3. RESULTS AND DISCUSSION

When the App first starts, it saves the initial start
time as the difference between the current time and
boot time (for Native) or between the current time
and time since the Unix epoch, this is called the start

4 MATERIALS AND METHODS

 The procedure followed in this research include Goal
Question Metric, criteria evaluation through
investigation and Case Study to further measure
different aspects of the competing approaches
evaluation through investigation and Case Study to
further measure different aspects of the competing
approaches.

4.1 Goal Question Metric (GQM)

Goal Question Metric [24] is a top-down approach that
works as a measurement mechanism that breaks down
the study or project into Goals that need to be reached,
Questions to be answered to reach the Goal and
Measurements to evaluate said Questions. This paper
uses the GQM method and uses the evaluation and case
study to answer the questions. Figure 4 depicts the
association of the goal with the corresponding
questions and metrics.

4.2 Evaluation

To evaluate the two development approaches for
mobile, native and cross-platform, the paper identifies
desirable characteristics that will be investigated in
each approach. The paper uses some of the criteria
identified by H. Heitkötter, S. Hanschke and T. A.
Majchrzak [10], to test against selected candidates from
each approach. These criteria include:

• License and Costs

• Access to platform-specific features
• Long-term feasibility
• Look and feel
• Application Speed
• Development environment
• Ease of development
• Scalability

4.3 Validation

To keep the validity of the thesis reasonably high,
GQM is used to link the goal of the study, to the
questions and metrics that help reach the goal, as listed
in Table 1. Evaluation through investigation or case
study is used where appropriate. While the case study
provides actual real-world data, the investigation helps
fill the gaps of criteria examination in the case study.

4.4 Case Study

The case study is a mobile app that displays a Timer
that shows minutes, seconds and a two-digit fraction of
a second. The App is a modified version of Alex
Sullivan’s timer, that is used for the same performance
testing purpose [25].

4.5 Instrumentation

Following tools are used in our experiments:

• Android Studio
• Kotlin

Fig.4. Goal Question Metric Hierarchy

Table 1 Questions and Metrics for Evaluation

Question 1 What approaches are available?

Question 2 What are the characteristic of said
approaches?

Question 3 what criteria to assess to choose an
approach?

Metric 1 survey available approaches and tools

Metric 2 investigate approaches and choose
candidates

Metric 3 evaluate candidates

Metric 4 design set of questions to help choose an
approach depending on the use case

Fig.4. Goal Question Metric Hierarchy

4 MATERIALS AND METHODS

 The procedure followed in this research include Goal
Question Metric, criteria evaluation through
investigation and Case Study to further measure
different aspects of the competing approaches
evaluation through investigation and Case Study to
further measure different aspects of the competing
approaches.

4.1 Goal Question Metric (GQM)

Goal Question Metric [24] is a top-down approach that
works as a measurement mechanism that breaks down
the study or project into Goals that need to be reached,
Questions to be answered to reach the Goal and
Measurements to evaluate said Questions. This paper
uses the GQM method and uses the evaluation and case
study to answer the questions. Figure 4 depicts the
association of the goal with the corresponding
questions and metrics.

4.2 Evaluation

To evaluate the two development approaches for
mobile, native and cross-platform, the paper identifies
desirable characteristics that will be investigated in
each approach. The paper uses some of the criteria
identified by H. Heitkötter, S. Hanschke and T. A.
Majchrzak [10], to test against selected candidates from
each approach. These criteria include:

• License and Costs

• Access to platform-specific features
• Long-term feasibility
• Look and feel
• Application Speed
• Development environment
• Ease of development
• Scalability

4.3 Validation

To keep the validity of the thesis reasonably high,
GQM is used to link the goal of the study, to the
questions and metrics that help reach the goal, as listed
in Table 1. Evaluation through investigation or case
study is used where appropriate. While the case study
provides actual real-world data, the investigation helps
fill the gaps of criteria examination in the case study.

4.4 Case Study

The case study is a mobile app that displays a Timer
that shows minutes, seconds and a two-digit fraction of
a second. The App is a modified version of Alex
Sullivan’s timer, that is used for the same performance
testing purpose [25].

4.5 Instrumentation

Following tools are used in our experiments:

• Android Studio
• Kotlin

Fig.4. Goal Question Metric Hierarchy

Table 1 Questions and Metrics for Evaluation

Question 1 What approaches are available?

Question 2 What are the characteristic of said
approaches?

Question 3 what criteria to assess to choose an
approach?

Metric 1 survey available approaches and tools

Metric 2 investigate approaches and choose
candidates

Metric 3 evaluate candidates

Metric 4 design set of questions to help choose an
approach depending on the use case

40 Mohamed Abdal Mohsin Masaad Alsaid et al

time. After that, periodically, the time difference
between the current time and start time is calculated
and displayed in the timer in the proper format. The
rapid, frequent update for the timer is good enough
to display performance differences between the two
approaches when looking at resource consumption.

The App also showcases the minimum
requirements in terms of memory and storage. Since
the app functionality is not memory intensive, and
neither is it when it comes to storage, then most
of the resources are needed for the framework to
function. The tests were run on a Samsung Galaxy
Note 5 Device, and the profiler bundled with
Android studio was used. Figure 5 shows framed
screenshots for the App in Android native and
Flutter, respectively.

3.1 CPU Readings

CPU readings from the two apps, depicted in Figure
6, demonstrates the overhead that is present when
using cross-platform solutions. The native App has
a CPU usage of 3% while its flutter counterpart has
a 5.5% usage.

3.2 Evaluation

Using the results and observations from the case
study, as well as thorough investigation, the native
Android and Flutter are evaluated using the criteria
mentioned in the previous section.
3.3 License and Cost

Android Open Source Project (AOSP) prefers the
usage of Apache 2.0 license [26], which meets their
use case for openness and providing more options to
manufacturers in means of how to use the platform.

The mentioned license is for Android itself, for
development, however, using the Android SDK for
native Android development incurs different terms
and license [27], which grants a patent to developers
to use the SDK, and the sources for the SDK are
also available. Flutter is also open-source [28].

3.4 Supported Platforms

Native development, for Android or iOS,
involves using the platforms SDK for developing
applications targeted only to one platform. Hence
native approaches, in the sense of native vs cross-
platform, support only one platform.

Flutter builds cross-platform applications that
target both Android and iOS [29], which is the main
difference between native and cross-platform. The
ability to target multiple platforms, with even the
infrastructure to even support future platforms, is a
very valuable trait.

3.5 Access to platform Specific Features

Native development for Android or iOS gives direct
access to all available features of the platform.
Flutter, out of the box, gives access to a part of
the underlying platform’s features in the form of
read-made packages, such as, access to biometric

 Mobile Application Development Approaches

 7

• Flutter
• Dart
• Flutter plugins
• Benchmarking tools

4.6 Assumptions and Limitations

The paper won’t evaluate all existing cross-platform
technologies, and rather it will try to represent major
technologies and approaches, choosing one candidate
from native (native Android) and one candidate for
cross-platform (Flutter). Flutter was chosen because it’s
a new tool that is gaining traction and because of the
lack of studies using it. The performance data will also
be affected by choice of and the implementation of the
applications, the paper will try to minimize this effect
by optimizing the applications to a reasonable degree.
Lack of tools and hardware for iOS development limits
the evaluation, in the case study, to the results present
on android devices.

5 RESULTS AND DISCUSSION

When the App first starts, it saves the initial start time
as the difference between the current time and boot
time (for Native) or between the current time and time
since the Unix epoch, this is called the start time. After
that, periodically, the time difference between the
current time and start time is calculated and displayed
in the timer in the proper format. The rapid, frequent
update for the timer is good enough to display
performance differences between the two approaches
when looking at resource consumption.

The App also showcases the minimum
requirements in terms of memory and storage. Since the
app functionality is not memory intensive, and neither
is it when it comes to storage, then most of the
resources are needed for the framework to function.
The tests were run on a Samsung Galaxy Note 5
Device, and the profiler bundled with Android studio
was used. Figure 5 shows framed screenshots for the
App in Android native and Flutter, respectively.

5.1 CPU Readings

CPU readings from the two apps, depicted in Figure 6,
demonstrates the overhead that is present when using
cross-platform solutions. The native App has a CPU
usage of 3% while its flutter counterpart has a 5.5%
usage.

5.2 Evaluation

Using the results and observations from the case study,
as well as thorough investigation, the native Android
and Flutter are evaluated using the criteria mentioned in
the previous section.

Fig.5. Timer App in Native Android (left) &
Flutter (Right)

Fig.6. CPU Comparison

 Mobile Application Development Approaches

 7

• Flutter
• Dart
• Flutter plugins
• Benchmarking tools

4.6 Assumptions and Limitations

The paper won’t evaluate all existing cross-platform
technologies, and rather it will try to represent major
technologies and approaches, choosing one candidate
from native (native Android) and one candidate for
cross-platform (Flutter). Flutter was chosen because it’s
a new tool that is gaining traction and because of the
lack of studies using it. The performance data will also
be affected by choice of and the implementation of the
applications, the paper will try to minimize this effect
by optimizing the applications to a reasonable degree.
Lack of tools and hardware for iOS development limits
the evaluation, in the case study, to the results present
on android devices.

5 RESULTS AND DISCUSSION

When the App first starts, it saves the initial start time
as the difference between the current time and boot
time (for Native) or between the current time and time
since the Unix epoch, this is called the start time. After
that, periodically, the time difference between the
current time and start time is calculated and displayed
in the timer in the proper format. The rapid, frequent
update for the timer is good enough to display
performance differences between the two approaches
when looking at resource consumption.

The App also showcases the minimum
requirements in terms of memory and storage. Since the
app functionality is not memory intensive, and neither
is it when it comes to storage, then most of the
resources are needed for the framework to function.
The tests were run on a Samsung Galaxy Note 5
Device, and the profiler bundled with Android studio
was used. Figure 5 shows framed screenshots for the
App in Android native and Flutter, respectively.

5.1 CPU Readings

CPU readings from the two apps, depicted in Figure 6,
demonstrates the overhead that is present when using
cross-platform solutions. The native App has a CPU
usage of 3% while its flutter counterpart has a 5.5%
usage.

5.2 Evaluation

Using the results and observations from the case study,
as well as thorough investigation, the native Android
and Flutter are evaluated using the criteria mentioned in
the previous section.

Fig.5. Timer App in Native Android (left) &
Flutter (Right)

Fig.6. CPU Comparison Fig. 5. Timer app in native android (left) & Fig. 6. Cpu comparison

 Mobile Application Development Approaches 41

technologies like a fingerprint for authentication
[30] and storage access for storing simple key-
value pairs [31], but it does not have cross-platform
packages for all platform-specific features and
APIs, which is a decision explained to made to
avoid the issue of “lowest common denominator”
[29], which restricts the features of the cross-
platform packages to the capabilities available in
all platforms (Android and iOS).

For features not available as ready packages,
Flutter allows developers to access platform
features via message passing, allowing Flutter to
message a part of the program that is written in the
corresponding native language (Java or Kotlin for
Android, Objective C or Swift for iOS), and get a
response when the request is handled [32].

3.6 Long Term Feasibility

The native approach, for Android or iOS, is the
official approach endorsed by the respective
platform, and it’s reasonable to assume that it
will be supported as long as the platform is still
relevant. Even still, some changes can happen in
the ecosystem, such as the introduction of Kotlin
development for Android [2], and Swift for iOS
[33], but the underlying SDKs are still unchanged,
and original programming languages can still be
used. It can also be seen that each platform is striving
to make native development a better experience for
developers, which in this case is done by supporting
new modern programming languages.

Flutter is a Google product, one of the largest
tech giants with around 110 billion dollar earnings
in the third quarter of 2018 [34], and also the
company behind Android, which is a good indicator
for flutters survivability, but it’s likely will be
ultimately decided with the degree of its success
and adaptability, which is too early to tell given
how it only recently hit its first stable release [35].

In Conclusion, the native approach is always
better supported given that its critical for the
platform in question, while the cross-platform
approach is affected by the backing of its creators
of or the community in case of open-source.

3.7 Look and Feel

Look and feel is platform specific, since users
expect applications in a certain platform to have
certain look and certain behavior, which is defined
by how the native applications look and feel. For
Android google use material design [36], while iOS
use Human Interface Guidelines [37].

Flutter has widgets, layouts and themes that use
Material design for Android and used Cupertino
(iOS -like style) for iOS [29], which solves the
issue of difference in the look and feel between the
different platforms.

The conclusion is that Native has the most
authentic look and feel to the platform, but cross-
platform solutions like Flutter take a good approach
to achieve the desired look and feel across platforms.
Also, it can be seen that some applications take the
approach of making their applications look and
feel the same across platforms, with the intent of
making the experience consistent and as a way to
focus on the desired experience that the brand needs
to convey to customers. In the Later approach, the
cross platform can be more appealing in that regard.

3.8 Distribution

Whether it is native or cross-platform, applications
can be distributed via the specific platforms app
store, as long as they comply with the respective
rules and policies.

3.9 Development Environment

Android native development is mostly done using
Android studio, the IntelliJ based IDE (Integrated
Development Environment) that is reached in
features tools. Some of its offerings include things
like Instant run, translation editor and APK analyzer
[38].

Flutter can be integrated into an android studio;
it also has a very straightforward way for SDK
installation. Both contribute to a good experience,
especially for developers making a move from the
Native Android ecosystem.

In conclusion, both approaches give a good
development environment, but with the native

42 Mohamed Abdal Mohsin Masaad Alsaid et al

having generally more tooling available, by the fact
it had quite a while to mature.

3.10 GUI Design

Native Android development using Android studio
can make use of the build in WYSIWYG tool that
facilitates building graphic user interfaces and see
the result without the need for time consuming way
building and running the application every time a
change is done, this is achieved by interpreting the
XML files which are used to describe the UI [38].

Flutter does not have a WYSIWYG, but it
achieves the desired results in different ways. Flutter
uses Dart programming language for both its logic
and GUI portions and its uses hot reloading as a
means to almost immediately reflect code changes
into the running App, and it takes significantly less
time to achieve so.

In conclusion, Flutter’s hot reload is a very
good quality of life feature that does not have a
good enough counterpart in the Native approach,
despite attempts to give a similar outcome using
instant run.

3.11 Maintainability

Although the technologies used in the native affect
its maintainability, the fact remains that a native
application for both Android and iOS means
that two separate code bases negatively affect
maintainability. On the other hand, in Flutter and
other cross-platform approaches, only one code
base exists, which helps maintainability.

3.12 Speed and Cost of Development

Native development, for Android or iOS, requires
specific knowledge about the framework,
programming language and tools, resulting in
doubling the work, increasing either or both of the
cost and speed of development.

Flutter is a cross-platform framework, and
one of the main points of cross-platform is to run
the same code base on multiple platforms. But in
reality, other factors can have an effect, and the
lowest common denominator problem issue is
solved in Flutter by allowing certain functionalities

to be implemented separately for each platform.
This means two separate implementations, which
can become counter-intuitive depending on the type
of the application. But nevertheless, the general
rule is cross-platform is cheaper and faster. This
is supported by the observation that the case study
in the previous section took roughly the same time
to develop in native and Flutter, while of course,
flutter runs on two platforms.

4. BEST APPROACH

Using the outcomes of the evaluation, the following
criteria can help decide which approach to choose
for development:

4.1 Budget

Budget is the main form factor, the time and resources
required vary depending on the nature of the
application and the approach used for development.
Native apps usually require a developer/team for
each OS, and even if it’s a single developer/team,
there are still two separate code bases, on the other
hand Cross-platform apps need one developer/team
to get the job done which makes it cheaper. If the
budget is not a problem, however, native apps offer
uncompromised performance and user experience,
making it more favourable in this situation.

4.2 Type of App

The type of the App is a significant factor, typical
CRUD apps can be relatively straightforward to
make using both approaches, but another kind
of apps that require access hardware sensors or
device, like a camera app, can become a nuisance
to make using a cross-platform approach because
the lowest common denominator problem. Native
apps, however have direct access to all the APIs
that expose device resources, making the approach
more ideal for this type of App.

4.3 Developer Background

The developer’s previous knowledge can determine
how difficult to learn a new development framework,
for example, web developers can find themselves
at home using cross-platform frameworks that use
web technologies or programming languages like
react-native.

 Mobile Application Development Approaches 43

5. CONCLUSIONS

In this paper, we investigated the two widely
used approaches (Native and cross-platform)
by developing and evaluating a mobile app. We
discussed our results from various perspectives
highlighting the advantages and shortcoming of
each approach, with native having the upper hand in
criteria such as performance and access to platform
specific features, and cross-platform showing an
advantage in terms of cost and maintainability. We
have used the well-known Goal Question Metric
(GQM) as a measurement mechanism to breakdown
our study into Goals and to answer the Questions for
reaching our goals. The cross-platform approach has
many established frameworks with different ideas
to deliver on the write once promise and Flutter
is a promising framework that builds upon the
experience gained from the previous frameworks.

The decision of which development approach
to use is a costly one, but the answer is not
straightforward, it should be decided by the
nature of the project, the team developing and the
budget. However, based on our findings, native
is still the safest approach for mobile application
development. In future, the following options can
be investigated:

• Address the limitations present in this paper, for
example, by evaluation multiple cross-platform
frameworks.

• Test different upcoming approaches e.g.,
Kotlin-native, that promises the best of both
worlds, native and cross-platform.

• What if the number of dominant mobile
operating systems increase? Is there a point at
which native becomes impractical?

• With mobile devices becoming increasingly
more performant in terms of hardware, will the
performance advantage of the native approach
become unnoticeable? Or will the applications
become ever more demanding of resources?

6. REFERENCES

1. “Mobile OS market share 2018 | Statista,” 2018.
[Online]. Available: https://www.statista.com/
statistics/266136/global-market-share-held-by-
smartphone-operating-systems/.

2. J. Gosling, B. Joy, G. Steele, G. Bracha and A.

Buckley, “The Java® Language Specification,
2015,” Java SE, vol. 8, 2016.

3. M. Shafirov, “Kotlin on android. now official,” 2017.
[Online]. Available: https://blog.jetbrains.com/
kotlin/2017/05/kotlin-on-android-now-official/.

4. G. Wells, The Future of iOS Development :
Evaluating the Swift Programming Language The
Future of iOS Development : Evaluating the Swift
Programming, 2015.

5. S. Xanthopoulos and S. Xinogalos, “A comparative
analysis of cross-platform development approaches
for mobile applications,” in Proceedings of the 6th

Balkan Conference in Informatics, 2013.
6. Ziflaj, “Native vs Hybrid App Development,” 2014.

[Online]. Available: http://www.sitepoint.com/
native-vs-hybrid-app-development/.

7. R. Soley and the OMG Staff Strategy Group, “Model
driven architecture,” OMG white paper, vol. 308, p.
5, 2000.

8. S. Roubi, M. Erramdani and S. Mbarki, “A Model
Driven Approach for generating Graphical User
Interface for MVC Rich Internet Application.,”
Computer and Information Science, vol. 9, p. 91–
98, 2016.

9. P. Kumar, “Analysis of Native and Cross-Platform
Methods for Mobile Application Development,”
2014.

10. H. Heitkötter, S. Hanschke and T. A. Majchrzak,
“Evaluating cross-platform development approaches
for mobile applications,” in International Conference
on Web Information Systems and Technologies,
2012.

11. M. Latif, Y. Lakhrissi, N. Es-Sbai and others,
“Cross platform approach for mobile application
development: A survey,” in 2016 International
Conference on Information Technology for
Organizations Development (IT4OD), 2016.

12. S. K. Dalmasso, C. Datta, N. Bonnet, and Nikaein,
“Survey, comparison and evaluation of cross
platform mobile application development tools,” in
2013 9th International Wireless Communications
and Mobile Computing Conference (IWCMC),
2013.

13. S. Charkaoui, Z. Adraoui and E. H. Benlahmar,
“Cross-platform mobile development approaches,”
in 2014 Third IEEE International Colloquium in
Information Science and Technology (CIST), 2014.

14. A. Biørn-Hansen, T.M. Grønli and G. Ghinea,
“Baseline Requirements for Comparative Research
on Cross-Platform Mobile Development: A
Literature Survey,” in Norsk Informatikkonferanse

44 Mohamed Abdal Mohsin Masaad Alsaid et al

- 2017, 2017.
15. Sommer and S. Krusche, “Evaluation of cross-

platform frameworks for mobile applications,”
Software Engineering 2013-Workshopband, vol.
215, no. January, pp. 363-376, 2013.

16. P. Nawrocki, K. Wrona, M. Marczak, and B.
Sniezynski. A Comparison of Native and Cross-
Platform Frameworks for Mobile Applications.
Computer, 54(3), 18-27 (2021)

17. D. Inupakutika, S. Kaghyan, D. Akopian, P. Chalela,
and A.G. Ramirez. Facilitating the development of
cross-platform mHealth applications for chronic
supportive care and a case study. Journal of
biomedical informatics, 105, p.103420 (2020).

18. A. Biørn-Hansen, C. Rieger, T. M. Grønli, T.
A. Majchrzak, and G. Ghinea, An empirical
investigation of performance overhead in cross-
platform mobile development frameworks.
Empirical Software Engineering, 25, pp.2997-3040
(2020)

19. M. Isitan, and M. Koklu. “Comparison and
Evaluation of Cross Platform Mobile Application
Development Tools.” International Journal of
Applied Mathematics Electronics and Computers 8,
no. 4: 273-281 (2020).

20. A. Biørn-Hansen, T.M. Grønli, and G. Ghinea.
Animations in cross-platform mobile applications:
An evaluation of tools, metrics and performance.
Sensors, 19(9), p.2081 (2019).

21. M. Martinez, “Two datasets of questions and answers
for studying the development of cross-platform
mobile applications using Xamarin framework.” In
IEEE/ACM 6th International Conference on Mobile
Software Engineering and Systems (MOBILESoft),
pp. 162-173. IEEE, 2019.

22. K. Vassallo, G. Lalit, P. Vijay, and K. Ramesh.
“Contemporary technologies and methods for
cross-platform application development.” Journal
of Computational and Theoretical Nanoscience 16,
no. 9, 3854-3859 (2019).

23. I. Swarna, P. James, and A. Randy. “Cross-
Platform Analysis and Development of Online
Catering Platform (Kunyahku).” Journal of Applied
Information, Communication and Technology 7, no.
2, 79-89 (2020).

24. V. R. Basili, G. Caldiera and H. D. Rombach, “The
goal question metric approach,” Encyclopedia of
Software Engineering, p. 528–532, 1994.

25. Sullivan, Examining performance differences
between Native, Flutter, and React Native mobile
development, 2018.

26. “Content License | Android Open Source Project,”
2018. [Online]. Available: https://source.android.
com/setup/start/licenses.

27. “Terms and conditions | Android Developers,”
[Online]. Available: https://developer.android.com/
studio/terms.

28. “Flutter License,” 2018. [Online]. Available: https://
github.com/flutter/flutter/blob/master/LICENSE.

29. “FAQ - Flutter,” 2018. [Online]. Available: https://
flutter.io/docs/resources/faq#what-devices-and-os-
versions-does-flutter-run-on.

30. “local_auth | Flutter Package,” 2018. [Online].
Available: https://pub.dartlang.org/packages/local_
auth.

31. flutter.dev, “shared_preferences | Flutter Package,”
2018. [Online]. Available: https://pub.dartlang.org/
packages/shared_preferences.

32. “Writing custom platform-specific code - Flutter,”
2017. [Online]. Available: https://flutter.io/docs/
development/platform-integration/platform-
channels.

33. “Swift - Apple Developer,” 2018. [Online].
Available: https://developer.apple.com/swift/.

34. “Alphabet Inc (GOOG) 2018 3Q Earnings,” 2018.
[Online]. Available: https://www.sec.gov/Archives/
edgar/data/1652044/000165204418000035/
goog10-qq32018.htm.

35. “Flutter 1.0,” 2018. [Online]. Available: https://
developers.googleblog.com/2018/12/flutter-10-
googles-portable-ui-toolkit.html.

36. “Design for Android,” 2018. [Online]. Available:
https://developer.android.com/design.

37. “iOS Human Interface Guidelines,” 2018. [Online].
Available: https://developer.apple.com/design/
human-interface-guidelines/ios/overview/themes/.

38. “Android Studio features,” 2018. [Online].
Available: https://developer.android.com/studio/
features.

 Mobile Application Development Approaches 45

