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Abstract: Electromyogram (EMG) signal is often processed offline, after its acquisition, using digital signal processing 
algorithms to extract muscle anatomical and physiological information. As most of the signal processing algorithms 
work on an adequate quality of the signals, thus quality checking of the EMG in real-time during its acquisition is of 
immense importance. In multi-channel sEMG signals, usually there are some noisy or bad channels. If the noise is of 
low level, it is of little concern but high level of noise can limit the usefulness of the EMG. To make sure acquisition 
of a good quality EMG signal in terms of SNR, one way to detect noisy channels is through visual inspection by 
an expert human operator, however visual inspection of multiple electrodes in real-time is not possible and is also 
expensive both in terms of time and cost. In this research study, we propose a novel method for automatic detection 
of noisy channels in multi-channel surface EMG signals based on statistical thresholding of several parameters. The 
results of the proposed method are in perfect agreement with the ground truth for simulated EMG signals, with an 
accuracy of 98.6%. 
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1. INTRODUCTION

In a multi-channel signal detection system, 
some of the channels are often contaminated 
by various physiological and non-physiological 
sources of noise. Typically, these noises come 
from the acquisition system itself (amplifier 
noise, saturation, poor electrical contacts), the 
environment (mains interference, stimulation 
devices, body vibration etc.) and from the subject 
(bad skin electrode contact, movement of the skin 
under electrode, heartbeats, artefactual spikes, 
Baseline Wander) [1,2]. These noises are inherent 
in most signal acquisition protocols and are often 
the limiting factor in the performance of the post 
EMG signal processing algorithms. In most signal 
processing techniques, an adequate quality of the 
sEMG signal is assumed, if this assumption is not 
met, may lead to invalid extraction of the muscle 
physiological and anatomical features. Thus, sEMG 
quality checking is required to have valid signals 

for further processing and analysis. sEMG quality 
checking can be performed by an expert human 
operator, however human expert involvement is 
sometime impractical in real applications as it is 
time consuming and not cost effective. Thus, an 
algorithm is required for automatic detection of 
these artifacts. 

Literature review reveals significant research 
activities for automatic detection of artifacts in 
sEMG signals. Wavelet analysis has been used to 
detect and remove the artifacts from bio-signals 
[3-6], however due to its computationally intensive 
nature; wavelet transform can’t be used in real time 
situations [7]. Independent Component Analysis 
(ICA) is also being used to detect and isolate artifacts 
from EMG signals [8-10]. Higher Order Statistics 
(HOS), and Empirical mode decomposition (EMD) 
are some other approaches used to detect and 
remove artifacts from bio- signals [11,13]. Due to 
high computational cost and error in case of signal 



contaminated by some noise sources. 

2.   MATERIALS AND METHODS

The proposed algorithm depicted as a flow chart in 
Figure 1, computes and checks various statistical 
parameters to verify the quality of the EMG signal 
in each channel of a multi-channel acquisition 
system. The surface EMG recordings are affected 
by several artifacts such as power line interference 
(PLI), abrupt baseline drift due to movement of 
patient and skin-electrode impedance, ECG signal, 
electrode artifacts and amplifier saturation [17,18]. 
A channel of an electrode array that has any of the 
above-mentioned artifacts larger in amplitude than 
EMG with SNR less than 15dB is termed as Bad 
Channel. A Flag of each parameter is determined 
for each channel. The value of the Flag of each 
parameter is set either to 0 (for bad channel) or 1 
(for good channel). As we have four parameters, so 
four flags are obtained for each channel. The values 
of all these flags are added together and if this sum 
is greater than two (majority voting) then it means 
that more than two parameters have identified this 
channel as good, thus the channel is classified as 
good channel. Similarly, if a channel is detected as 
bad by majority of the parameters then the sum of its 
parameter’s Flags is less than two and this channel 
is classified as bad channel. We use an adaptive 
thresholding for each parameter after analysis of 
320 simulated EMG channels. The selection of 
threshold for each parameter is discussed in next 
subsections. 

distorted by Colored-Gaussian noise, these methods 
can’t be used. Some of the above methods focus on 
detection of a specific artifact in EMG signals while 
others are application dependent. Most of these 
methods are also based on supervised learning for 
classification of artifacts. As supervised methods 
require training of the algorithm for different 
scenarios, it is time consuming and may not be real 
time applicable [14,15]. In [16], the authors used 
a supervised method to detect artifacts in EEG 
signals, however this method detects time epochs 
of the EEG signals and is also not applied to multi-
channel EMG. 

Due to the random nature of sEMG signals, 
an alternate method, to detect automatically the 
bad channels, is to use a thresholding of various 
statistical parameters. Our proposed method is an 
unsupervised method and it uses various statistical 
parameters for automatic detection of bad channels. 
As it is an unsupervised method, it could be applied 
in real- time without need of training of any 
classifier. The statistical parameters used in our 
method are Mean Correlation, Root Mean Square, 
Hurst Exponent, and Complexity Coefficient. 
Adaptive thresholding of these parameters has 
been used to classify a channel as "Good" or 
"Bad". Our proposed method is a high accuracy 
of 99.2% by detecting both the noisy and clean 
signals automatically. The primary contribution of 
this research work are: 1) the selection of a new 
set of parameters which can differentiate noise 
from EMG signal, 2) Use of statistical thresholding 
to distinguish between a clean signal and the one 

Fig. 1. Flow chart of the proposed method for identification 
of bad channels based on statistical parameters 1) mean of 
the maxima of cross correlation of each channel with all other 
channels, 2) Hurst exponent of each channel, 3) Root mean 
square value, and 4) The complexity Coefficient of each channel 
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Fig. 1. Flow chart of the proposed method for identification 
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2.1 Statistical Parameters 
 
The parameters computed and analyzed for each 
channel are 1) mean of the maxima of the cross-
correlation functions (mCorr) of each channel with all 
the other channels, 2) Hurst Exponent (HE), 3) Root 
mean square value (RMS) and 4) Complexity 
Coefficient(CC). The algorithm calculates all the above 
four parameters for each channel and apply a threshold 
for each parameter for each channel. 
 
2.1.1 Mean of Maxima of Cross-Correlation 
 
The first parameter used for automatic detection of the 
bad sEMG channels is the mean correlation (mCorr), 
which is the average of the maxima of cross correlation 
of each channel with all other channels. For EMG 
signal of channel 1 i.e. X1, out of the total 16 Channels, 
the mCorr is computed as follow. 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(1) = 1
16∑(max (𝑅𝑅𝑋𝑋1𝑋𝑋𝑖𝑖(𝜏𝜏)))

16

𝑖𝑖=1
 

    
(1) 

 
Where 𝑅𝑅𝑋𝑋1𝑋𝑋𝑖𝑖(𝜏𝜏) is the cross-correlation of channel 

X1 with channel Xi. This mCorr is thus computed for 
each channel 2,3 and so on up to 16.  

For muscles, parallel to the skin, the sEMG 
Channels in a high-density system are highly correlated 
with neighboring channels therefore a channel with 
artifacts will have a lower correlation with other 
channels [19] and thus, the mean correlation of that 
channel will also be lower. Also, if in worst case most 
of the channels are noisy then still there will be low 
correlation between them as the noises are mostly 
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2.1 Statistical Parameters

The parameters computed and analyzed for each 
channel are 1) mean of the maxima of the cross-
correlation functions (mCorr) of each channel with 
all the other channels, 2) Hurst Exponent (HE), 3) 
Root mean square value (RMS) and 4) Complexity 
Coefficient(CC). The algorithm calculates all the 
above four parameters for each channel and apply a 
threshold for each parameter for each channel.

2.1.1 Mean of Maxima of Cross-Correlation

The first parameter used for automatic detection 
of the bad sEMG channels is the mean correlation 
(mCorr), which is the average of the maxima of 
cross correlation of each channel with all other 
channels. For EMG signal of channel 1 i.e. X¬1, 
out of the total 16 Channels, the mCorr is computed 
as follow.

Where                 is the cross-correlation of 
channel X1 with channel Xi. This mCorr is thus 
computed for each channel 2,3 and so on up to 16. 

For muscles, parallel to the skin, the sEMG 
Channels in a high-density system are highly 
correlated with neighboring channels therefore a 
channel with artifacts will have a lower correlation 
with other channels [19] and thus, the mean 
correlation of that channel will also be lower. Also, 
if in worst case most of the channels are noisy then 
still there will be low correlation between them as 
the noises are mostly uncorrelated and random. An 
example of a 16-channel single differential (SD) 
simulated EMG signals (simulated using the planer 
Model described in [1]) are shown in Figure 2a. The 
channels 3 and 14 are respectively contaminated 
by ECG artifact and electrode movement artifact 
with SNR of 8dB and 5dB respectively. The 
cross-correlation of all the channels with all other 
channels and the mCorr of each channel are shown 
respectively in Figure 2b and c. From the output 
in Figure 2b and c it is evident that the cross-
correlation and the mean correlation i.e. mCorr 
of the contaminated channels (channel 3 and 14) 
is lower than the other channels and can easily 
be detected automatically by applying a proper 

threshold.  The threshold is determined by finding a 
boundary condition between good and bad (noisy) 
channels for a total of 320 simulated channels (100 
bad and 220 good channels) as shown in Figure 3. 
The optimal boundary condition obtained in our 
case was mCorr = 0.5. The channels having mCorr 
below this value are detected as bad channels. 

2.1.2 Root Mean Square Value

Root Mean Square (RMS) value is commonly used 
as EMG amplitude indicator. RMS of the EMG 
signal usually ranges from 0 to 1.5 mV [20]. As 
most of the noises are additive in nature thus the 
noisy EMG channels have a higher RMS value. 
For example, due to sudden spikes, additive white 
Gaussian noise and movement artifacts the RMS 
value of the EMG channels significantly increases. 
The RMS of the EMG signal of a channel i is 
calculated as follow.

Here, N is the total number of samples of the 
channel i. As in our case the signal is simulated 
for 3 seconds with sampling frequency of 2048 
samples/s, so the total number of samples (N) are 
6144.

For a simulated SD EMG signal with four 
channels 2, 4, 8 and 13 contaminated with ECG 
artifact, electrode movement artifact, PLI and a 
mixture of PLI and low frequency noise respectively 
with SNR of 5dB, the RMS value of each channel 
are computed using eq. 2 as shown in Figure 4. It 
is found that the noisy channels appear as outlier 
in the corresponding histogram of the RMS values. 
Thus the channels which have RMS higher than 
the mean+2σ of the RMS of all the channels, is 
classified as bad channel i.e. outlier (see Figure 4b). 
 
2.1.3 Hurst Exponent

Hurst Exponent (HE) is a parameter used to check 
the randomness of a signals and is also a measure 
of the long range dependence with in a signal [21], 
[22]. It is also considered as a measure of self-
similarity. Self-similarity means that the random 
signals like EMG looks similar if it is zoomed in 
time in and out [23], like fractal index. Various 
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differentiate noise from EMG signal, 2) Use of 
statistical thresholding to distinguish between a clean 
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Where 𝑅𝑅𝑋𝑋1𝑋𝑋𝑖𝑖(𝜏𝜏) is the cross-correlation of channel 

X1 with channel Xi. This mCorr is thus computed for 
each channel 2,3 and so on up to 16.  

For muscles, parallel to the skin, the sEMG 
Channels in a high-density system are highly correlated 
with neighboring channels therefore a channel with 
artifacts will have a lower correlation with other 
channels [19] and thus, the mean correlation of that 
channel will also be lower. Also, if in worst case most 
of the channels are noisy then still there will be low 
correlation between them as the noises are mostly 
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X1 with channel Xi. This mCorr is thus computed for 
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Channels in a high-density system are highly correlated 
with neighboring channels therefore a channel with 
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of the channels are noisy then still there will be low 
correlation between them as the noises are mostly 

Noisy Signals Detection in High Density EMG 

 

uncorrelated and random. An example of a 16-channel 
single differential (SD) simulated EMG signals 
(simulated using the planer Model described in [1]) are 
shown in Figure 2a. The channels 3 and 14 are 
respectively contaminated by ECG artifact and 
electrode movement artifact with SNR of 8dB and 5dB 
respectively. The cross-correlation of all the channels 
with all other channels and the mCorr of each channel 
are shown respectively in Figure 2b and c. From the 
output in Figure 2b and c it is evident that the cross-
correlation and the mean correlation i.e. mCorr of the 
contaminated channels (channel 3 and 14) is lower than 
the other channels and can easily be detected 
automatically by applying a proper threshold.  The 
threshold is determined by finding a boundary 
condition between good and bad (noisy) channels for a 
total of 320 simulated channels (100 bad and 220 good 
channels) as shown in Figure 3. The optimal boundary 
condition obtained in our case was mCorr = 0.5. The 
channels having mCorr below this value are detected as 
bad channels.  

 
2.1.2 Root Mean Square Value 
 
Root Mean Square (RMS) value is commonly used as 
EMG amplitude indicator. RMS of the EMG signal 
usually ranges from 0 to 1.5 mV [20]. As most of the 
noises are additive in nature thus the noisy EMG 
channels have a higher RMS value. For example, due to 
sudden spikes, additive white Gaussian noise and 
movement artifacts the RMS value of the EMG 
channels significantly increases. The RMS of the EMG 
signal of a channel i is calculated as follow. 

 𝑅𝑅𝑅𝑅𝑅𝑅 =  (1
𝑁𝑁 ∑ 𝑋𝑋𝑖𝑖

2(𝑛𝑛)
𝑁𝑁

1
)

1
2

 (2) 

 
Here, N is the total number of samples of the 

channel i. As in our case the signal is simulated for 3 
seconds with sampling frequency of 2048 samples/s, so 
the total number of samples (N) are 6144. 

 
For a simulated SD EMG signal with four channels 

2, 4, 8 and 13 contaminated with ECG artifact, 
electrode movement artifact, PLI and a mixture of PLI 
and low frequency noise respectively with SNR of 5dB, 
the RMS value of each channel are computed using eq. 
2 as shown in Figure 4. It is found that the noisy 
channels appear as outlier in the corresponding 
histogram of the RMS values. Thus the channels which 
have RMS higher than the mean+2σ of the RMS of all 

the channels, is classified as bad channel i.e. outlier 
(see Figure 4b).  

  
2.1.3 Hurst Exponent 
 
Hurst Exponent (HE) is a parameter used to check the 
randomness of a signals and is also a measure of the 
long range dependence with in a signal [21], [22]. It is 
also considered as a measure of self-similarity. Self-
similarity means that the random signals like EMG 
looks similar if it is zoomed in time in and out [23], like 
fractal index. Various algorithms are available for the 
estimation of the HE. 

 

 
Fig. 2. a) Simulated EMG signals with channels 3 and 14 
contaminated with ECG artifact and electrode movement 
with SNR of 8dB and 5dB respectively, b) The maximum of 
cross correlation of each channel with all other 16 channels 
i.e. the correlation matrix. It can be seen from the correlation. 

 
In this study, the Hurst Exponent is estimated using 

a) 

b) 

c) 
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algorithms are available for the estimation of the 
HE.

In this study, the Hurst Exponent is estimated 
using absolute moment method described in [23] 
and shown in Figure 5. Let X is one channel EMG 
signal of length N that is divided into M subseries 
each of length k such that the total number of 
subseries K = N/k. From each subseries an aggregate 
series is calculated as, 

   

 

The Hurst Exponent is then approximated as,
 

Here,         is the mean of the subseries. 

To obtain a threshold for distinguishing 
between a good and a bad channel, we compute 
H for a total of 20 sets of simulated signals, each 
containing a total of 16 channel SD EMG signals. 
Randomly selected 5 out of 16 channels from all 
20 sets are contaminated with one of the noises 
from PLI, ECG artifact, movement artifact, low 
frequency noise, Guassian and Colored Gaussian, 
with their SNRs varying from 10dB down to 

Fig 2. a) Simulated EMG signals with channels 3 and 14 contaminated with ECG 
artifact and electrode movement with SNR of 8dB and 5dB respectively, b) The 
maximum of cross correlation of each channel with all other 16 channels i.e. the 
correlation matrix. It can be seen from the correlation.
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absolute moment method described in [23] and shown 
in Figure 5. Let X is one channel EMG signal of length 
N that is divided into M subseries each of length k such 
that the total number of subseries K = N/k. From each 
subseries an aggregate series is calculated as,  

 𝑋𝑋𝑚𝑚
(𝑘𝑘) = 1

𝑘𝑘 ∑ 𝑋𝑋𝑗𝑗,

𝑚𝑚𝑘𝑘

𝑗𝑗=(𝑚𝑚−1)𝑘𝑘+1
  𝑚𝑚

= 1,2, … , 𝐾𝐾 

(3) 

   
The Hurst Exponent is then approximated as, 

 𝐻𝐻𝑚𝑚 =  1
𝐾𝐾 ∑ |𝑋𝑋𝑚𝑚

𝑘𝑘 − 𝑋𝑋𝑘𝑘|
𝐾𝐾

𝑚𝑚=1
 

 

(4) 

 
Here, 𝑋𝑋𝑘𝑘 is the mean of the subseries.  
 

 
Fig. 3. Mean Correlation coefficient computed for a total of 
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both good and bad channels are obtained. Now, to 
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the other cluster. By doing so, the difference of the 
distance between the threshold and the two clusters is 
enlarged. This process is repeated until there is no 
further change in the threshold value. This optimization 
of the threshold is shown in Figure 6. Once this 
threshold is optimized, then the channels having H 
values greater than this threshold are classified as bad 
channels and the channels having H value lower than 
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empirically observed that CCX is almost constant for 
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absolute moment method described in [23] and shown 
in Figure 5. Let X is one channel EMG signal of length 
N that is divided into M subseries each of length k such 
that the total number of subseries K = N/k. From each 
subseries an aggregate series is calculated as,  
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uncorrelated and random. An example of a 16-channel 
single differential (SD) simulated EMG signals 
(simulated using the planer Model described in [1]) are 
shown in Figure 2a. The channels 3 and 14 are 
respectively contaminated by ECG artifact and 
electrode movement artifact with SNR of 8dB and 5dB 
respectively. The cross-correlation of all the channels 
with all other channels and the mCorr of each channel 
are shown respectively in Figure 2b and c. From the 
output in Figure 2b and c it is evident that the cross-
correlation and the mean correlation i.e. mCorr of the 
contaminated channels (channel 3 and 14) is lower than 
the other channels and can easily be detected 
automatically by applying a proper threshold.  The 
threshold is determined by finding a boundary 
condition between good and bad (noisy) channels for a 
total of 320 simulated channels (100 bad and 220 good 
channels) as shown in Figure 3. The optimal boundary 
condition obtained in our case was mCorr = 0.5. The 
channels having mCorr below this value are detected as 
bad channels.  

 
2.1.2 Root Mean Square Value 
 
Root Mean Square (RMS) value is commonly used as 
EMG amplitude indicator. RMS of the EMG signal 
usually ranges from 0 to 1.5 mV [20]. As most of the 
noises are additive in nature thus the noisy EMG 
channels have a higher RMS value. For example, due to 
sudden spikes, additive white Gaussian noise and 
movement artifacts the RMS value of the EMG 
channels significantly increases. The RMS of the EMG 
signal of a channel i is calculated as follow. 
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𝑁𝑁 ∑ 𝑋𝑋𝑖𝑖

2(𝑛𝑛)
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1
)

1
2

 (2) 

 
Here, N is the total number of samples of the 

channel i. As in our case the signal is simulated for 3 
seconds with sampling frequency of 2048 samples/s, so 
the total number of samples (N) are 6144. 

 
For a simulated SD EMG signal with four channels 

2, 4, 8 and 13 contaminated with ECG artifact, 
electrode movement artifact, PLI and a mixture of PLI 
and low frequency noise respectively with SNR of 5dB, 
the RMS value of each channel are computed using eq. 
2 as shown in Figure 4. It is found that the noisy 
channels appear as outlier in the corresponding 
histogram of the RMS values. Thus the channels which 
have RMS higher than the mean+2σ of the RMS of all 

the channels, is classified as bad channel i.e. outlier 
(see Figure 4b).  

  
2.1.3 Hurst Exponent 
 
Hurst Exponent (HE) is a parameter used to check the 
randomness of a signals and is also a measure of the 
long range dependence with in a signal [21], [22]. It is 
also considered as a measure of self-similarity. Self-
similarity means that the random signals like EMG 
looks similar if it is zoomed in time in and out [23], like 
fractal index. Various algorithms are available for the 
estimation of the HE. 

 

 
Fig. 2. a) Simulated EMG signals with channels 3 and 14 
contaminated with ECG artifact and electrode movement 
with SNR of 8dB and 5dB respectively, b) The maximum of 
cross correlation of each channel with all other 16 channels 
i.e. the correlation matrix. It can be seen from the correlation. 

 
In this study, the Hurst Exponent is estimated using 
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absolute moment method described in [23] and shown 
in Figure 5. Let X is one channel EMG signal of length 
N that is divided into M subseries each of length k such 
that the total number of subseries K = N/k. From each 
subseries an aggregate series is calculated as,  

 𝑋𝑋𝑚𝑚
(𝑘𝑘) = 1

𝑘𝑘 ∑ 𝑋𝑋𝑗𝑗,

𝑚𝑚𝑘𝑘

𝑗𝑗=(𝑚𝑚−1)𝑘𝑘+1
  𝑚𝑚

= 1,2, … , 𝐾𝐾 

(3) 

   
The Hurst Exponent is then approximated as, 

 𝐻𝐻𝑚𝑚 =  1
𝐾𝐾 ∑ |𝑋𝑋𝑚𝑚

𝑘𝑘 − 𝑋𝑋𝑘𝑘|
𝐾𝐾

𝑚𝑚=1
 

 

(4) 

 
Here, 𝑋𝑋𝑘𝑘 is the mean of the subseries.  
 

 
Fig. 3. Mean Correlation coefficient computed for a total of 
320 single differential EMG channels. It is clear from the 
Figure that the threshold for Mean correlation coefficient 
between bad and good channels is 0.5. 
 
To obtain a threshold for distinguishing between a good 
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low frequency noise, Guassian and Colored Gaussian, 
with their SNRs varying from 10dB down to 5dB. The 
threshold for detection of bad and good channels is 
obtained by computing the mean of the maximum and 
minimum values of H for all the 16 channels from the 
total 20 sets of signals. By doing so, initial clusters of 
both good and bad channels are obtained. Now, to 
convert this static boundary into a dynamic boundary, 
another threshold is computed as the average of the 
minimum value of one cluster with that of maximum of 

the other cluster. By doing so, the difference of the 
distance between the threshold and the two clusters is 
enlarged. This process is repeated until there is no 
further change in the threshold value. This optimization 
of the threshold is shown in Figure 6. Once this 
threshold is optimized, then the channels having H 
values greater than this threshold are classified as bad 
channels and the channels having H value lower than 
this threshold are classified as good channels. 
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of the frequency and peak amplitude. We also 
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simulated EMG signals (see Figure 7a). If the EMG 
signal is contaminated 
 

 
Fig. 4. a) RMS value of each channel of Simulated EMG 
signal with channel 2 contaminated by ECG artifact, channel 
5 with Electrode Moment artifact, channel 8 with PLI and 13 
with PLI and low frequency noise with an SNR of 5dB, b) 

(a) 

(b) 

64 Khalil Ullah and Khalid Shah



5dB. The threshold for detection of bad and good 
channels is obtained by computing the mean of the 
maximum and minimum values of H for all the 16 
channels from the total 20 sets of signals. By doing 
so, initial clusters of both good and bad channels are 
obtained. Now, to convert this static boundary into 
a dynamic boundary, another threshold is computed 
as the average of the minimum value of one cluster 
with that of maximum of the other cluster. By 
doing so, the difference of the distance between 
the threshold and the two clusters is enlarged. This 
process is repeated until there is no further change 
in the threshold value. This optimization of the 
threshold is shown in Figure 6. Once this threshold 
is optimized, then the channels having H values 
greater than this threshold are classified as bad 
channels and the channels having H value lower 
than this threshold are classified as good channels.

2.1.4 Complexity Coefficient

Complexity coefficient (CCx) is another feature to 
characterize a signal. It is defined as the ratio of the 
mobility coefficient                               of the derivative 
of the signal to the mobility coefficient of the signal 
itself. For a signal x(t) the complexity coefficient is 
computed as,

CCx is constant for a single sinusoid and is 
independent of the frequency and peak amplitude. 
We also empirically observed that CCX is almost 

constant for simulated EMG signals (see Figure 
7a). If the EMG signal is contaminated

It is clear from the histogram that the RMS of 
the four noisy channels appear as outlier i.e. the 
RMS are away from mean (0.142) by more than 
2σ. with a noise, the value of CCX changes due to 
change in the corresponding mobility coefficient 
of the signal and its derivative. Thus, the CCX is 
sensitive to noise and is chosen.

As one parameter for the detection of bad 
channels in EMG signals. From Figure 7a, the CC 
for clean EMG signals is 1.5. As noise is introduced 
to the simulated signals the CC value deviates from 
1.5 (See Figure 7b). The threshold selected after 
analysis of 320 channels of simulated EMG signals 
is 2. Any channel with CC value greater than this 
threshold is marked as bad channel.  

3.  RESULTS AND DISCUSSION

In this study a new method for automatic detection 
of bad channels, based on thresholding of four 
statistical parameters as discussed in section 2, 
is proposed. To check the performance of the 
proposed method, 2 sets of simulated single 
differential EMG signal each consisting of multi-
channels are prepared. The first set of EMG signals, 
consists of 20 simulated single differential EMG 
signals (each consisting of 16 channels and total 
of 320 channels), is generated using the planar 
model developed by Merletti et al [1]. The 2nd set 
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absolute moment method described in [23] and shown 
in Figure 5. Let X is one channel EMG signal of length 
N that is divided into M subseries each of length k such 
that the total number of subseries K = N/k. From each 
subseries an aggregate series is calculated as,  
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The Hurst Exponent is then approximated as, 
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320 single differential EMG channels. It is clear from the 
Figure that the threshold for Mean correlation coefficient 
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To obtain a threshold for distinguishing between a good 
and a bad channel, we compute H for a total of 20 sets 
of simulated signals, each containing a total of 16 
channel SD EMG signals. Randomly selected 5 out of 
16 channels from all 20 sets are contaminated with one 
of the noises from PLI, ECG artifact, movement artifact, 
low frequency noise, Guassian and Colored Gaussian, 
with their SNRs varying from 10dB down to 5dB. The 
threshold for detection of bad and good channels is 
obtained by computing the mean of the maximum and 
minimum values of H for all the 16 channels from the 
total 20 sets of signals. By doing so, initial clusters of 
both good and bad channels are obtained. Now, to 
convert this static boundary into a dynamic boundary, 
another threshold is computed as the average of the 
minimum value of one cluster with that of maximum of 

the other cluster. By doing so, the difference of the 
distance between the threshold and the two clusters is 
enlarged. This process is repeated until there is no 
further change in the threshold value. This optimization 
of the threshold is shown in Figure 6. Once this 
threshold is optimized, then the channels having H 
values greater than this threshold are classified as bad 
channels and the channels having H value lower than 
this threshold are classified as good channels. 
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itself. For a signal x(t) the complexity coefficient is 
computed as, 
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of the frequency and peak amplitude. We also 
empirically observed that CCX is almost constant for 
simulated EMG signals (see Figure 7a). If the EMG 
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absolute moment method described in [23] and shown 
in Figure 5. Let X is one channel EMG signal of length 
N that is divided into M subseries each of length k such 
that the total number of subseries K = N/k. From each 
subseries an aggregate series is calculated as,  
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both good and bad channels are obtained. Now, to 
convert this static boundary into a dynamic boundary, 
another threshold is computed as the average of the 
minimum value of one cluster with that of maximum of 

the other cluster. By doing so, the difference of the 
distance between the threshold and the two clusters is 
enlarged. This process is repeated until there is no 
further change in the threshold value. This optimization 
of the threshold is shown in Figure 6. Once this 
threshold is optimized, then the channels having H 
values greater than this threshold are classified as bad 
channels and the channels having H value lower than 
this threshold are classified as good channels. 
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absolute moment method described in [23] and shown 
in Figure 5. Let X is one channel EMG signal of length 
N that is divided into M subseries each of length k such 
that the total number of subseries K = N/k. From each 
subseries an aggregate series is calculated as,  
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of the noises from PLI, ECG artifact, movement artifact, 
low frequency noise, Guassian and Colored Gaussian, 
with their SNRs varying from 10dB down to 5dB. The 
threshold for detection of bad and good channels is 
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total 20 sets of signals. By doing so, initial clusters of 
both good and bad channels are obtained. Now, to 
convert this static boundary into a dynamic boundary, 
another threshold is computed as the average of the 
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the other cluster. By doing so, the difference of the 
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further change in the threshold value. This optimization 
of the threshold is shown in Figure 6. Once this 
threshold is optimized, then the channels having H 
values greater than this threshold are classified as bad 
channels and the channels having H value lower than 
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Fig. 3. Mean Correlation coefficient computed for a total of 320 single differential 
EMG channels. It is clear from the Figure that the threshold for Mean correlation 
coefficient between bad and good channels is 0.5.
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absolute moment method described in [23] and shown 
in Figure 5. Let X is one channel EMG signal of length 
N that is divided into M subseries each of length k such 
that the total number of subseries K = N/k. From each 
subseries an aggregate series is calculated as,  
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16 channels from all 20 sets are contaminated with one 
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low frequency noise, Guassian and Colored Gaussian, 
with their SNRs varying from 10dB down to 5dB. The 
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minimum values of H for all the 16 channels from the 
total 20 sets of signals. By doing so, initial clusters of 
both good and bad channels are obtained. Now, to 
convert this static boundary into a dynamic boundary, 
another threshold is computed as the average of the 
minimum value of one cluster with that of maximum of 

the other cluster. By doing so, the difference of the 
distance between the threshold and the two clusters is 
enlarged. This process is repeated until there is no 
further change in the threshold value. This optimization 
of the threshold is shown in Figure 6. Once this 
threshold is optimized, then the channels having H 
values greater than this threshold are classified as bad 
channels and the channels having H value lower than 
this threshold are classified as good channels. 
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The corresponding histogram of the RMS values in (a).  
 
It is clear from the histogram that the RMS of the 

four noisy channels appear as outlier i.e. the RMS are 
away from mean (0.142) by more than 2σ. with a noise, 
the value of CCX changes due to change in the 
corresponding mobility coefficient of the signal and its 
derivative. Thus, the CCX is sensitive to noise and is 
chosen. 

 
As one parameter for the detection of bad channels 

in EMG signals. From Figure 7a, the CC for clean 
EMG signals is 1.5. As noise is introduced to the 
simulated signals the CC value deviates from 1.5 (See 
Figure 7b). The threshold selected after analysis of 320 
channels of simulated EMG signals is 2. Any channel 
with CC value greater than this threshold is marked as 
bad channel.   
 

 
Fig. 5. The logarithmic plot between m and Ym and the fitted 
line. It should be noted that the slope of this line added with 
one gives an estimate of the H, the aggregate level m is the 
size of the non-overlapping blocks which could be from 1 to 
K.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 6. Hurst Exponent for 320 channels (220 good, 100 bad 
(contaminated randomly with one of the noises PLI, 
Electrode movement artifact, ECG artifact and bad contact, 
WN and CN, with SNR=10dB and 15dB). The initial 
threshold (-) and the adaptive threshold (-) for the detection 
of good and bad channels. 
 
3. RESULTS AND DISCUSSION 
 

In this study a new method for automatic detection of 
bad channels, based on thresholding of four statistical 
parameters as discussed in section 2, is proposed. To 
check the performance of the proposed method, 2 sets 
of simulated single differential EMG signal each 
consisting of multi-channels are prepared. The first set 
of EMG signals, consists of 20 simulated single 
differential EMG signals (each consisting of 16 
channels and total of 320 channels), is generated using 
the planar model developed by Merletti et al [1]. The 
2nd set consists of simulated EMG signals generated 
using the multilayer cylindrical description of the 
volume conductor model, described in [24].  

For the first set of 20 simulated EMG signals (320 
channels), noise such as power line interference (PLI), 
electrode movement (EM), white noise (WN), colored 
noise (CN) and ECG artifacts (ECGA) are added to 
channel number 2, 5, 8, 13 and 16 of each signal with 
SNR varying from 15 dB to -5 dB (total of 61 SNR 
values) respectively. The accuracy, sensitivity and 
specificity is then computed for each signal of the set of 
20 signals across all the SNR values, resulting in 61 
values of accuracy, sensitivity and specificity for each 
signal.  

Fig. 4. a) RMS value of each channel of Simulated EMG signal with channel 2 
contaminated by ECG artifact, channel 5 with Electrode Moment artifact, channel 8 with 
PLI and 13 with PLI and low frequency noise with an SNR of 5dB, b) 

Fig. 5. The logarithmic plot between m and Ym and the fitted line. It should 
be noted that the slope of this line added with one gives an estimate of the H, 
the aggregate level m is the size of the non-overlapping blocks which could 
be from 1 to K. 
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consists of simulated EMG signals generated using 
the multilayer cylindrical description of the volume 
conductor model, described in [24]. 

For the first set of 20 simulated EMG signals 
(320 channels), noise such as power line interference 
(PLI), electrode movement (EM), white noise 
(WN), colored noise (CN) and ECG artifacts 
(ECGA) are added to channel number 2, 5, 8, 13 
and 16 of each signal with SNR varying from 15 
dB to -5 dB (total of 61 SNR values) respectively. 
The accuracy, sensitivity and specificity is then 
computed for each signal of the set of 20 signals 
across all the SNR values, resulting in 61 values of 
accuracy, sensitivity and specificity for each signal. 

 
The accuracy, sensitivity and specificity of the 

proposed algorithm for this set of 20 signals across 
all SNR values are shown in Figure 8. The results 
show that the proposed method has a high accuracy 
in detecting both bad and good channels. 

The 2nd set of simulated EMG signals, generated 
using the cylindrical model, were detected with 
circular electrodes (diameter 1 mm), arranged in a 
grid with 5 columns and 40 rows (200 electrodes) 
with 5 mm inter-electrode distance in both the 
longitudinal and transverse directions. The center 
of the grid corresponded to the center of the muscle 

volume projected on the skin surface. The detection 
system covered both the muscle (approximately 20 
electrodes corresponding to the central portion of 
each column) and the tendon regions (approximately 
10 electrodes over each tendon). 

A monopolar recording was simulated for 
each electrode of the detection system and is then 
converted to signal differential across the channels. 
The surface-recorded motor-unit potential was 
obtained by summing the action potentials of all 
muscle fibers belonging to individual motor units. 
EMG signals were simulated at 4096 samples/s. 
As in this study we investigate only an array of 
electrodes so only the central column of the detection 
system is taken. A total of 20 simulated signals with 
different level of contractions (ranging from 10% 
to 100% Maximum Voluntary Contractions) were 
taken. 

In the first case all the clean signals were passed 
through the algorithm for quality checking. The 
behavior of each of the statistical parameter (quality 
indicator) are on one side of the threshold value 
which means that all the channels are identified as 
good channels. Various artifacts like PLI, movement 
artifact, real ECG artifact, white noise, colored 
noise etc. were then added to randomly selected 
channels with SNR ranging from 10 to -2dB to 
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(contaminated randomly with one of the noises PLI, 
Electrode movement artifact, ECG artifact and bad contact, 
WN and CN, with SNR=10dB and 15dB). The initial 
threshold (-) and the adaptive threshold (-) for the detection 
of good and bad channels. 
 
3. RESULTS AND DISCUSSION 
 

In this study a new method for automatic detection of 
bad channels, based on thresholding of four statistical 
parameters as discussed in section 2, is proposed. To 
check the performance of the proposed method, 2 sets 
of simulated single differential EMG signal each 
consisting of multi-channels are prepared. The first set 
of EMG signals, consists of 20 simulated single 
differential EMG signals (each consisting of 16 
channels and total of 320 channels), is generated using 
the planar model developed by Merletti et al [1]. The 
2nd set consists of simulated EMG signals generated 
using the multilayer cylindrical description of the 
volume conductor model, described in [24].  

For the first set of 20 simulated EMG signals (320 
channels), noise such as power line interference (PLI), 
electrode movement (EM), white noise (WN), colored 
noise (CN) and ECG artifacts (ECGA) are added to 
channel number 2, 5, 8, 13 and 16 of each signal with 
SNR varying from 15 dB to -5 dB (total of 61 SNR 
values) respectively. The accuracy, sensitivity and 
specificity is then computed for each signal of the set of 
20 signals across all the SNR values, resulting in 61 
values of accuracy, sensitivity and specificity for each 
signal.  

Fig. 6. Hurst Exponent for 320 channels (220 good, 100 bad (contaminated randomly with 
one of the noises PLI, Electrode movement artifact, ECG artifact and bad contact, WN and 
CN, with SNR=10dB and 15dB). The initial threshold (-) and the adaptive threshold (-) for 
the detection of good and bad channels.
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make some channels bad. For all these signals the 
accuracy and sensitivity of the proposed algorithm 
is also computed at various level of noises as shown 
in Figure 9. It is evident from the results that even 
at low level of noise i.e. higher SNR, the algorithm 

still detects the bad channels with a high accuracy, 
sensitivity and specificity. It is clear from the results 
that the parameters values are on opposite side of 
the threshold for good and bad channels in this case 
too. Noisy Signals Detection in High Density EMG 

 

 

Fig. 7. a) Complexity coefficient of clean (without noise) 16 
channel simulated EMG signal, b) Complexity coefficient of 
simulated EMG with channels 3, 7, 9 and 16 contaminated 
with different noises.  
 
The accuracy, sensitivity and specificity of the 
proposed algorithm for this set of 20 signals across all 
SNR values are shown in Figure 8. The results show 
that the proposed method has a high accuracy in 
detecting both bad and good channels.  

The 2nd set of simulated EMG signals, generated 
using the cylindrical model, were detected with circular 
electrodes (diameter 1 mm), arranged in a grid with 5 
columns and 40 rows (200 electrodes) with 5 mm inter-
electrode distance in both the longitudinal and 
transverse directions. The center of the grid 
corresponded to the center of the muscle volume 
projected on the skin surface. The detection system 
covered both the muscle (approximately 20 electrodes 
corresponding to the central portion of each column) 
and the tendon regions (approximately 10 electrodes 
over each tendon).  

A monopolar recording was simulated for each 
electrode of the detection system and is then converted 
to signal differential across the channels. The surface-
recorded motor-unit potential was obtained by 
summing the action potentials of all muscle fibers 
belonging to individual motor units. EMG signals were 
simulated at 4096 samples/s. As in this study we 
investigate only an array of electrodes so only the 
central column of the detection system is taken. A total 

of 20 simulated signals with different level of 
contractions (ranging from 10% to 100% Maximum 
Voluntary Contractions) were taken.  

In the first case all the clean signals were passed 
through the algorithm for quality checking. The 
behavior of each of the statistical parameter (quality 
indicator) are on one side of the threshold value which 
means that all the channels are identified as good 
channels. Various artifacts like PLI, movement artifact, 
real ECG artifact, white noise, colored noise etc. were 
then added to randomly selected channels with SNR 
ranging from 10 to -2dB to make some channels bad. 
For all these signals the accuracy and sensitivity of the 
proposed algorithm is also computed at various level of 
noises as shown in Figure 9. It is evident from the 
results that even at low level of noise i.e. higher SNR, 
the algorithm still detects the bad channels with a high 
accuracy, sensitivity and specificity. It is clear from the 
results that the parameters values are on opposite side 
of the threshold for good and bad channels in this case 
too. 

 
4.  CONCLUSIONS 
 
This study presents a novel method for the automatic 
detection of noisy and clean EMG signals which will be 
helpful to the experimenter while recording EMG 
signals from a subject. If there are too many noisy 
signals in an experiment then it is useless for future, so 
the experimenter will know in realtime to clean the 
electrodes and make other necessary actions to record 
clean signals.  From the performance of the algorithm 
on simulated signals, it is concluded that it will be a 
best choice for automatic detection of bad channels at 
the time of the acquisition of the signals. As a future 
study, a classification algorithm can be used after the 
detection of the noisy channel to also identify the type 
of the noise and then attenuate it by using a proper filter. 
As future work this research may be enhanced by 
recording more experimental signals and use of some 
machine learning techniques.  
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Fig. 8. Accuracy, sensitivity, and specificity of the proposed 
algorithm for a set of 20 simulated SD EMG signals with 
SNR varying from 15dB to -5dB. The higher specificity 
value (98.5492±2.681), shows that the algorithm can 
preserve most of the good channel as ’good’.  

 

Fig. 9. Accuracy, sensitivity, and specificity of the proposed 
algorithm for a set of 20 simulated SD EMG signals 
generated using the cylindrical model [25], each set consisted 
of 20 channels, with noisy channels of SNR varying from 
15dB to -5dB  
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4.  CONCLUSION

This study presents a novel method for the 
automatic detection of noisy and clean EMG signals 
which will be helpful to the experimenter while 
recording EMG signals from a subject. If there are 
too many noisy signals in an experiment then it is 
useless for future, so the experimenter will know 
in realtime to clean the electrodes and make other 
necessary actions to record clean signals.  From 
the performance of the algorithm on simulated 
signals, it is concluded that it will be a best choice 
for automatic detection of bad channels at the time 
of the acquisition of the signals. As a future study, 
a classification algorithm can be used after the 
detection of the noisy channel to also identify the 
type of the noise and then attenuate it by using a 
proper filter. As future work this research may be 
enhanced by recording more experimental signals 
and use of some machine learning techniques. 
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