
Proceedings of the Pakistan Academy of Sciences: Pakistan Academy of Sciences
A: Physical and Computational Sciences 58(1): 17–33 (2021)
Copyright © Pakistan Academy of Sciences
ISSN (Print): 2518-4245; ISSN (Online): 2518-4253
https://doi.org/10.53560/PPASA(58-1)721

Research Article

————————————————
Received: September 2020; Accepted: March 2021
*Corresponding Author: Tahira Nazir <tahira.nazir77@gmail.com>

 Agile Software Development Techniques: A Survey

 Marriam Nawaz1, Tahira Nazir1, Seema Islam2, Momina Masood1, Awais Mehmood1,
 and Samira Kanwal

 1Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan
 2Department of Computer Science, Comsats University Islamabad, Taxila Campus, Pakistan

Abstract: In this IT era, where there is a race of software development, it is necessary to introduce such types
of software development techniques which will help the practitioners to deliver fast solutions. In the past, various
traditional approaches were used for this purpose, but now agile techniques are getting more popular because
conventional software development approaches are not efficient in managing the changing requirements. The agile
software development process is one of the most emerging lightweight software development methodologies, which
uses iterative and prototype development approaches to accommodate changes in software requirements. Final
software products are delivered to the end-users in short iterations. One of the most noticeable drawbacks of agile
methods is their limited courtesy to the structured and architectural design of the system. Hence this development
approach will restrict small to medium design decisions only. In this paper, we have performed the analysis of different
agile techniques, which will help the readers to understand their positive and negative points and select the most
appropriate technique suited to their projects.

Keywords: Agile Techniques, Fast Software Development, Survey, Traditional Development Approaches.

1. INTRODUCTION

It is an organization that thrives on delivering
products faster, better, and cheaper ways. Many
studies and suggestions have been conducted for
the improvement of the software development
process. Recently a new software development
method has been introduced called Agile Software
Development. Agile software development
methods are introduced to tackle fast changes in
organizational and business needs. Agile methods
aid in generating quicker, faster, and efficient
solutions. There is a huge difference between
ASD and traditional approaches as ASD has more
emphasis on a mechanism for change management
during project development. In contrast, the
traditional approaches have more focus on up-front
and strict plan-based control.

The agile software development model is one
of the major models of software development that
is used extensively by industries, and huge research

work is conducted on its methodologies nowadays
[1-4]. This approach is used as an alternative to
conventional methods of software development
as they are document-driven and heavyweight
software development processes [5, 6].

Traditional approaches used for software
development consist of several phases where for
each phase, there is a predefined outcome and target
[7]. But this caused a lot of problems like failure
of software projects, unable to respond to changing
requirement [5, 8] and also piles of documents
gathered at the end of project development, But as
requirements get changed many times throughout
the project, so most of the time we do not require
these documents as they are useless, So to cope
with these problems Agile Software development
model was introduced [9].

The agile software development methodology
is based on the idea that software requirements are
changing during the whole development lifecycle

(Stapleton, 1997) [33]. XP and Scrum are considered
as the best agile software development methods[34,
35]. The main focus of Scrum is on software
project management to increase their probability of
success while XP is more concerned with project-
level activities of software development [36]. All
agile software development approaches (Scrum,
XP, DSD, ASP, FDD, RUP) are iterative and
Incremental and have focused on different parts
of the software development lifecycle. Among
them, some approaches have focused on different
practices used for development like XP, Agile
Modelling, and pragmatic programming while
other concerns with software project management
like Scrum approach [37-39].

This study is focused on a comparative analysis
of agile software development techniques and their
current practices in the industry. These approaches
will be examined from the angle of their applicability,
strengths, weaknesses, product delivery, standards
used for coding, design standards, roles description,
and complexity of design and workflow technique.
This will lead the reader to find benefits, limitations,
and difficulties in the transition from traditional to
agile software development. Moreover, this paper
explains the worth of employing agile techniques
in software development by examining its various
methods. The presented research work demonstrates
that agile approaches have significant benefits
as compared to the existing traditional methods.
However, all benefits do not apply to all software
projects and situations.

The rest of the paper is divided into the following
sections: section 2 explains the traditional approach
that is waterfall method for software development,
section 3 contains a description of agile software
method and its comparison with waterfall method.
Further, this section gives a comparative analysis of
agile software development methods and section 4
comprises of conclusion.

2. WATERFALL MODEL

The waterfall model is the first traditional model to
be introduced. It is a static technique that linearly
performs the software development. This approach
is very simple to understand and completes one
activity before starting another. The waterfall model
divides the projects based on process activities like

[10, 11]. This approach provides a consistent way to
deal with this dynamic behaviour of requirements
as Process ability to iterate itself, having active
interaction and communication among clients
and development team, flexibility in project
management and active involvement of customer
during the whole development cycle are the main
characteristics of agile software development
[12, 13]. Another basic characteristic of the agile
method is its provision of communication both
among the development team and customers. The
word “communication” has a very strong impact in
the field of software development as it depicts that
people who are working on the same projects will
be agreed to the same standards, definition and will
share their knowledge, provide information to others
and have good coordination in their activities [14,
15]. So this will help to achieve its goal and result
in customer satisfaction [16, 17]. Some examples
of these practices are collaboration activities like
scrum meetings which are held on a daily basis, pair
programming, and having face-to-face discussions
instead of using formal documentation methods [18,
19]. So as communication is the central property
of agile methods and makes it distinct from other
traditional approaches [20, 21].

Agile software development techniques are
preferred to use in such an environment where
there is a chance of sudden change or have to
generate a quick reaction to changing requirements
by delivering small increments or through
continuous incorporation of customers [22, 23].
Several principles of the agile method exist, of
which some are based on behavioural and some
are based on managerial improvement for software
development [24, 25]. Agile software development
methodologies are mainly concerned with code
development rather than documents driven [26, 27].

There exist several agile software development
methods that promote development work,
collaboration among team members, and increase
the flexibility of processes to make them more
adaptable throughout the development lifecycle
[28]. These methods include XP (Beck, 1999),
[29], FDD (Feature-Driven Development) (Palmer
& Felting, 2002) [30], Scrum methodology (K.
Schwaber & Beedle, 2002), [31], ASP (Adaptive
Software Development (Highsmith, 2000)[32], and
DSD (Dynamic Systems Development Method)

18 Nawaz et al

planning, design, implementation, etc [35]. There is
a predefined goal for each development phase. The
first phase must be completed before going into the
next phase and there is no way to go to the previous
one [40]. Testing can only be performed when the
whole project is completed [39].

This approach applies to those systems that
are more structured and where there exists a small
chance of modification after development [40, 41].
It is difficult to reuse and upgrade the software
systems developed by using this technique because
there exists a coupling between data and code[41].
So if data is changed then code must be modified
according to it and this causes to increase the
overall cost of a project because the whole process
needs to be modified [42, 43].

Figure 1 shows the workflow of the waterfall
model:

3. AGILE SOFTWARE DEVELOPMENT

The word Agile states ‘moving fast’ or ‘quickly
accepts changes’. It is a lightweight and practice-
based technique used widely for software
development nowadays. It understands and accepts
the idea that handling each project varies from each

other, so a more dynamic approach for modeling is
required that can be tailored according to the needs
of different projects [42, 43].

Instead of following a single long process for
the development of projects Agile methodology
divides the development cycle into small chunks
called increments [44]. After completion of each
increment, it is delivered to the users for their
verification. It follows the iterative approach and the
final product contains all required features of users
[45]. Figure 2 presents a graphical representation
of the Agile Methodology. Table.1 shows the basic
principles of the agile technique[47]. Table.2 shows
the comparison between the traditional approach
and agile methodology.

3.1 Extreme Programming (XP)

XP is one of the first agile methodologies which
are proposed to improve the quality of software.
It is a lightweight technique that provides a quick
response to the evolving requirements of users
and supports a more iterative and well-planned
method of software development. It contains a
small team of developers and provides an intense
level of interaction between the development team
and client organization in the whole development

Agile Software Development Techniques: A Survey

 3

difficult to reuse and upgrade the software systems
developed by using this technique because there exists
a coupling between data and code[41]. So if data is
changed then code must be modified according to it and
this causes to increase the overall cost of a project
because the whole process needs to be modified[42,
43].

Following diagram shows the workflow of the
waterfall model:

Fig. 1. Waterfall Model Development Lifecycle [41].

3. AGILE SOFTWARE DEVELOPMENT

The word Agile states ‗moving fast‘ or ‗quickly
accepts changes‘. It is a lightweight and practice-based
technique used widely for software development
nowadays. It understands and accepts the idea that
handling each project varies from each other, so a more
dynamic approach for modeling is required that can be

tailored according to the needs of different projects[42,
43].

Instead of following a single long process for the
development of projects Agile methodology divides the
development cycle into small chunks called increments[44].
After completion of each increment, it is delivered to the
users for their verification. It follows the iterative approach
and the final product contains all required features of
users[45].

Figure.2 presents a graphical representation of the Agile

Methodology:

 Fig. 2: Agile Software Development Lifecycle [46].

Table.2 shows the basic principles of the agile

technique[47]:

Fig. 1. Waterfall Model Development Lifecycle [41].

 Agile Software Development Techniques: A Survey 19

lifecycle.

Being a type of agile methodology it provides
fast “releases” in small cycles of development
which not only results in increasing the production
rate but also provides the points where evolving
requirements of customers can be facilitated [48].
The name for this methodology comes from the
idea of taking the different elements of traditional
approaches to “extreme level”. It addresses the
different phases of the software development
lifecycle like analysis, design, implementation, and
testing phases with novel techniques that will cause
to raise the quality of end product [49].

The basic principle of XP is to organize the
people in such a way to improve the quality of end
products and reduce the cost of accommodating the
varying requirements of users by following multiple
small phases of development [50]. Figure.3 explains
the core practices which are used in XP:

Distinguishes features of XP [51] are as follows:

• Story Cards: Users define requirements as
story-type scenarios, which are then presented
in the form of story cards. Each story card is
then further divided by developers to break
them into smaller tasks. These smaller tasks are
then prioritized with the help of customers for
implementation.

• Simplicity: XP works with designing the

simplest product to meet the basic needs of
users. It is based on the principle to only develop
what is demanded in the given requirement.
Further functionalities are added to the product
according to users' needs.

• Feedback: At the end of each release, proper
feedback is obtained from the customers, and
the next level of iteration is based on this
feedback. In XP, for efficient feedback, small
loops of design and implementation are built
with the help of a pair programming technique
and a test-oriented development method.

• Test-Driven Development: Extreme
programming uses a test-oriented development
technique in which test cases are pre-written
before actual code implementation. Testing is
used throughout the process of XP.

• Refactoring: It always encourages finding the

Agile Software Development Techniques: A Survey

 3

difficult to reuse and upgrade the software systems
developed by using this technique because there exists
a coupling between data and code[41]. So if data is
changed then code must be modified according to it and
this causes to increase the overall cost of a project
because the whole process needs to be modified[42,
43].

Following diagram shows the workflow of the
waterfall model:

Fig. 1. Waterfall Model Development Lifecycle [41].

3. AGILE SOFTWARE DEVELOPMENT

The word Agile states ‗moving fast‘ or ‗quickly
accepts changes‘. It is a lightweight and practice-based
technique used widely for software development
nowadays. It understands and accepts the idea that
handling each project varies from each other, so a more
dynamic approach for modeling is required that can be

tailored according to the needs of different projects[42,
43].

Instead of following a single long process for the
development of projects Agile methodology divides the
development cycle into small chunks called increments[44].
After completion of each increment, it is delivered to the
users for their verification. It follows the iterative approach
and the final product contains all required features of
users[45].

Figure.2 presents a graphical representation of the Agile

Methodology:

 Fig. 2: Agile Software Development Lifecycle [46].

Table.2 shows the basic principles of the agile

technique[47]:

Fig. 2. Agile software development lifecycle [46].

Agile Software Development Techniques: A Survey

 5

the evolving requirements of users and supports a more
iterative and well-planned method of software
development. It contains a small team of developers
and provides an intense level of interaction between the
development team and client organization in the whole
development lifecycle.

Being a type of agile methodology it provides fast
―releases‖ in small cycles of development which not
only results in increasing the production rate but also
provides the points where evolving requirements of
customers can be facilitated [48]. The name for this
methodology comes from the idea of taking the
different elements of traditional approaches to ―extreme
level‖. It addresses the different phases of the software
development lifecycle like analysis, design,
implementation, and testing phases with novel
techniques that will cause to raise the quality of end
product[49].

The basic principle of XP is to organize the people in
such a way to improve the quality of end products and
reduce the cost of accommodating the varying
requirements of users by following multiple small
phases of development[50]. Figure.3 explains the core
practices which are used in XP:

Distinguishes features of XP [51] are as follows:
 Story Cards: Users define requirements as story-type

scenarios, which are then presented in the form of story
cards. Each story card is then further divided by
developers to break them into smaller tasks. These
smaller tasks are then prioritized with the help of
customers for implementation.

 Simplicity: XP works with designing the simplest
product to meet the basic needs of users. It is based on
the principle to only develop what is demanded in the
given requirement. Further functionalities are added to
the product according to users' needs.

 Feedback: At the end of each release, proper feedback is
obtained from the customers, and the next level of

iteration is based on this feedback. In XP, for efficient
feedback, small loops of design and implementation are
built with the help of a pair programming technique and a
test-oriented development method.

 Test-Driven Development: Extreme programming uses
a test-oriented development technique in which test cases
are pre-written before actual code implementation.
Testing is used throughout the process of XP.

 Refactoring: It always encourages finding the best
practices for both design and problem solutions and using
them to modify the existing solutions. This will cause to
improve the quality of the product.

 Pair Programming: Pair programming is the
distinguishing feature of XP, where a pair of
programmers works dynamically. This results in
immense savage of time and reduces the working load.

The main benefit of using this technique is that it is
speeding up the process of development as this
approach gives the right to the developer to fix a fault
in code when it is detected. Standards related to
development and designs are defined globally so that
the whole team follows the same conventions. This
technique is suitable for small size applications that do
not need proper planning and specification efforts [52].
It results in cost reduction because it does not include
useless documentation and help the developers to
concentrate on their basic task and performs better risk
management. As simplicity is an important feature of
XP so it creates more high-quality and faster products
and contributes a lot in increasing the robustness of
products. At the same time, the main limitation of this
technique is that it does not take into count planning or
measuring Quality Assurance of design and coding
[53]. As it involves pair programming, so there is a
huge chance of duplication of data. And it is a code-
centric technique and can be irritated in large projects.

3.2. Feature-Driven Development

Software features are the basic focus of this approach
because these features are the main driver of the whole
development lifecycle[54]. This method is different
from other techniques of agile development because the
planning of the whole project and upfront design is its
basic concerns. It has a basic five stages [55].

3.2.1. Develop an Overall Model

FDD approach is different from XP and Scrum because
it demands team effort at the beginning of the project
for completely understanding the main structure of the
problem under consideration by developing its object

Fig. 3. XP workflow [45].

20 Nawaz et al

Marriam Nawaz et al

Table 1. Basic Principles of Agile Methods

1 The main objective is the satisfaction of customers through fast and early delivery of valuable features.

2 No matter which phase of development you are, it must be able to accept and accommodate the changes.

3 Increment should be delivered quickly within weeks or months.
4 Strong communication between the development team and the customer organization.

5 Must be able to provide sustainable development to every stakeholder, whether he is a developer,
customer, or sponsor, so that he has a constant pace.

6 The whole team should participate in identifying the ways of becoming more effective and then model
their behavior according to this.

7 Involve trusted and motivated individuals in projects.
8 Continuous attention to technical excellence and good design.
9 Simplicity—the art of maximizing the amount of work not done—is essential.

10 The basic measure used for progress checking is working software.

11 The team should be self-organizing to select the best technique for requirement gathering, design, and
architectures.

12 Both the development team and customer organization should work closely throughout the development
lifecycle.

Table.2 shows the comparison between the traditional approach and agile methodology

Table 2. Comparison between Traditional and Agile Methods
Factors Traditional Development Agile Development

Development Process Linear Iterative
Development style Analytical Adaptive
Development
Orientation

Process-Oriented People-Oriented

Requirements Complete understanding of
requirements and should be
documented and stable.

Discover with the progress of the
project. Emergent and rapidly changed.

Project Type Suitable for large project size. Suitable for small or medium project
size.

Planning Scale long-standing short-standing
Style of management More controlled and command-

oriented.
More collaborative and leadership-
oriented.

Documentation produced High Small
Response to change Resistive Accepted and adaptive

Client interaction Low High
Team Organization Structured Self-organized
Success measure Plan conformance Delivering business value

3.1. Extreme Programming (XP) XP is one of the first agile methodologies which are
proposed to improve the quality of software. It is a
lightweight technique that provides a quick response to

Marriam Nawaz et al

Table 1. Basic Principles of Agile Methods

1 The main objective is the satisfaction of customers through fast and early delivery of valuable features.

2 No matter which phase of development you are, it must be able to accept and accommodate the changes.

3 Increment should be delivered quickly within weeks or months.
4 Strong communication between the development team and the customer organization.

5 Must be able to provide sustainable development to every stakeholder, whether he is a developer,
customer, or sponsor, so that he has a constant pace.

6 The whole team should participate in identifying the ways of becoming more effective and then model
their behavior according to this.

7 Involve trusted and motivated individuals in projects.
8 Continuous attention to technical excellence and good design.
9 Simplicity—the art of maximizing the amount of work not done—is essential.

10 The basic measure used for progress checking is working software.

11 The team should be self-organizing to select the best technique for requirement gathering, design, and
architectures.

12 Both the development team and customer organization should work closely throughout the development
lifecycle.

Table.2 shows the comparison between the traditional approach and agile methodology

Table 2. Comparison between Traditional and Agile Methods
Factors Traditional Development Agile Development

Development Process Linear Iterative
Development style Analytical Adaptive
Development
Orientation

Process-Oriented People-Oriented

Requirements Complete understanding of
requirements and should be
documented and stable.

Discover with the progress of the
project. Emergent and rapidly changed.

Project Type Suitable for large project size. Suitable for small or medium project
size.

Planning Scale long-standing short-standing
Style of management More controlled and command-

oriented.
More collaborative and leadership-
oriented.

Documentation produced High Small
Response to change Resistive Accepted and adaptive

Client interaction Low High
Team Organization Structured Self-organized
Success measure Plan conformance Delivering business value

3.1. Extreme Programming (XP) XP is one of the first agile methodologies which are
proposed to improve the quality of software. It is a
lightweight technique that provides a quick response to

best practices for both design and problem
solutions and using them to modify the existing
solutions. This will cause to improve the quality
of the product.

• Pair Programming: Pair programming is the
distinguishing feature of XP, where a pair of
programmers works dynamically. This results
in immense savage of time and reduces the
working load.

The main benefit of using this technique is that
it is speeding up the process of development as this
approach gives the right to the developer to fix a
fault in code when it is detected. Standards related
to development and designs are defined globally so
that the whole team follows the same conventions.
This technique is suitable for small size applications
that do not need proper planning and specification
efforts [52]. It results in cost reduction because it
does not include useless documentation and help

Table 1. Basic principles of agile methods

Table.2 Shows the comparison between the traditional approach and agile methodology

 Agile Software Development Techniques: A Survey 21

the developers to concentrate on their basic task and
performs better risk management. As simplicity is
an important feature of XP so it creates more high-
quality and faster products and contributes a lot in
increasing the robustness of products. At the same
time, the main limitation of this technique is that
it does not take into count planning or measuring
Quality Assurance of design and coding [53]. As
it involves pair programming, so there is a huge
chance of duplication of data. And it is a code-
centric technique and can be irritated in large
projects.

3.2 Feature-Driven Development

Software features are the basic focus of this
approach because these features are the main driver
of the whole development lifecycle [54]. This
method is different from other techniques of agile
development because the planning of the whole
project and upfront design is its basic concerns. It
has a basic five stages [55].

3.2.1 Develop an Overall Model

FDD approach is different from XP and Scrum
because it demands team effort at the beginning
of the project for completely understanding the
main structure of the problem under consideration
by developing its object model. The basic reason
for building this model is to get a good idea and a
shared understanding of the project. It captures the
following things:

• Requirements of users
• Assumptions of users

3.2.2 Build a Feature List

Based on the first activity, a list of features is
defined in this phase. Functional requirements are
divided into smaller activities where each activity
will deliver some business value to users.

3.2.3 Plan by Feature

A complete formal team is involved in this phase
which consists of a project manager, head of the
development team, and chief programmer. A
complete plan is prepared here to determine the
order in which features will be developed. The

plan is prepared based on the priorities of the
customer, dependencies between modules, risk, and
complexities. Completion dates are also finalized
here.

3.2.4 Design by Feature

All design packages like sequential diagrams class
diagrams are defined here by the chief programmer.
The sequential diagrams are developed by a group
of people, but class diagrams and object models
are defined and developed by owners of the class.
Feature requirements are modified here with the
help of domain experts.

3.2.5 Build by Feature

Here all classes and methods which are outlined
and designed in the design phase are practically
developed by developers and are checked and
inspected for defects by using unit testing. Figure 4
shows the lifecycle of FDD.

The implementation work of all features is
performed in parallel and each team has its owner
which makes it distinct from XP. This approach
is well suited to the projects of large size and five
stages of the process allow you to perform the work
in a better and disciplined manner [57]. It uses a
predefined standard for implementation of the
project, so it makes work easier for developers [58].
This technique does not perform well for small team
sizes and the success of the project is dependent
on chief programmers [59]. No documentation is
available in written form in this methodology.

3.3 Scrum

Scrum is one of the iterative agile software
Marriam Nawaz et al

model. The basic reason for building this model is to
get a good idea and a shared understanding of the
project. It captures the following things:
 Requirements of users
 Assumptions of users

3.2.2. Build a Feature List

Based on the first activity, a list of features is defined in
this phase. Functional requirements are divided into
smaller activities where each activity will deliver some
business value to users.

3.2.3. Plan by Feature

A complete formal team is involved in this phase which
consists of a project manager, head of the development
team, and chief programmer. A complete plan is
prepared here to determine the order in which features
will be developed. The plan is prepared based on the
priorities of the customer, dependencies between
modules, risk, and complexities. Completion dates are
also finalized here.

3.2.4. Design by Feature

All design packages like sequential diagrams class
diagrams are defined here by the chief programmer.
The sequential diagrams are developed by a group of
people, but class diagrams and object models are
defined and developed by owners of the class. Feature
requirements are modified here with the help of domain
experts.

3.2.5. Build by Feature

Here all classes and methods which are outlined and
designed in the design phase are practically developed
by developers and are checked and inspected for
defects by using unit testing. Figure.4 shows the
lifecycle of FDD.

Fig. 4. FDD Workflow [56].

The implementation work of all features is
performed in parallel and each team has its owner
which makes it distinct from XP. This approach is well
suited to the projects of large size and five stages of the
process allow you to perform the work in a better and
disciplined manner[57]. It uses a predefined standard
for implementation of the project, so it makes work
easier for developers[58]. This technique does not
perform well for small team sizes and the success of the
project is dependent on chief programmers[59]. No
documentation is available in written form in this
methodology.

3.3. SCRUM

Scrum is one of the iterative agile software
development technique which is used for management
of software product development [60, 61]. The main
principle of this approach is to enable the development
team to work as a unit and achieve common goals of
the organization, enable the development team to self-
organize and work at physical co-location where
discipline and face to face communication of all team
members are involved[62]. It is the responsibility of the
scrum team to define organizational goals and then give
their best to meet them.

3.3.1. Documents and Artifacts

Scrum team generally produced three main documents
and artifacts these are Sprint Burndown chart, the
Sprint Backlog, and the Product Backlog.

3.3.2. Sprint Burndown chart

Burndown chart is one of the most common
mechanisms for sprint tracking used by the scrum team.

Fig. 4. FDD workflow [56].

22 Nawaz et al

development technique which is used for
management of software product development
[60, 61]. The main principle of this approach is to
enable the development team to work as a unit and
achieve common goals of the organization, enable
the development team to self-organize and work
at physical co-location where discipline and face
to face communication of all team members are
involved [62]. It is the responsibility of the scrum
team to define organizational goals and then give
their best to meet them.

3.3.1 Documents and Artifacts

Scrum team generally produced three main
documents and artifacts these are Sprint Burndown
chart, the Sprint Backlog, and the Product Backlog.

3.3.2 Sprint Burndown Chart

Burndown chart is one of the most common
mechanisms for sprint tracking used by the scrum
team. Burndown Chart is a graphical representation
of time versus work left to do, time is often at a
horizontal axis and work remaining on the vertical
axis.

3.3.3 Sprint Backlog

A sprint is a list of all possible business and
technology attributes and a list of all errors and
defects that have to be managed and scheduled for
the iteration on which we are currently working.
The spreadsheet is used for defining Sprint Backlog.
In which requirements are represented as tasks. The
spreadsheet consists of a short task description
region for each task. On basic daily spring, the
backlog is updated by a daily tracker that keeps the

latest estimate of work complete vs work remaining
to complete.

3.3.4 Product Backlog

It is the prioritized queue of all technical
functionalities that need to be developed by the
development team and evaluate all the defects that
need to be fixed. A unique identifier or ID is assigned
for each requirement in the product backlog. Product
Backlog is also kept in a spreadsheet. An overview
of the whole process is explained in Figure 5.

The main power of this technique is that
it conducts the meetings on daily purposes to
keep the team focused and save both time and
money Regular communication and interaction
between SCRUM team members helps in attaining
efficient completion [63]. In the SCRUM process,
frequent testing is conducted which ensures that
development work is going well. Regular feedback
means changes can easily be tackled before the
project grows too large [64]. This technique works
well with small teams and can be inefficient due to
slacking team members. Sometimes team member
is not open to the flexibility it means that removal
of one or two team members will cause disastrous
damage to the whole team [65].

3.4 Dynamic Systems Development Method
 (DSDM)

The dynamic systems development approach is
purely based on the development of such systems
that focuses on the development of that business
application whose purpose is to fulfill the needs
of the business [67]. DSDM is an evolutionary
development approach that uses the timebox and

Fig. 5. Scrum workflow [66]

Agile Software Development Techniques: A Survey

 7

Burndown Chart is a graphical representation of time
versus work left to do, time is often at a horizontal axis
and work remaining on the vertical axis.

3.3.3. Sprint Backlog

A sprint is a list of all possible business and technology
attributes and a list of all errors and defects that have to
be managed and scheduled for the iteration on which
we are currently working. The spreadsheet is used for
defining Sprint Backlog. In which requirements are
represented as tasks. The spreadsheet consists of a short
task description region for each task. On basic daily
spring, the backlog is updated by a daily tracker that
keeps the latest estimate of work complete vs work
remaining to complete.

3.3.4. Product Backlog

It is the prioritized queue of all technical functionalities
that need to be developed by the development team and
evaluate all the defects that need to be fixed. A unique
identifier or ID is assigned for each requirement in the
product backlog. Product Backlog is also kept in a
spreadsheet.

An overview of the whole process is explained in
Figure.5.

The main power of this technique is that it conducts
the meetings on daily purposes to keep the team
focused and save both time and money Regular
communication and interaction between SCRUM team
members helps in attaining efficient completion[63]. In
the SCRUM process, frequent testing is conducted
which ensures that development work is going well.
Regular feedback means changes can easily be tackled
before the project grows too large[64]. This technique
works well with small teams and can be inefficient due
to slacking team members. Sometimes team member is
not open to the flexibility it means that removal of one
or two team members will cause disastrous damage to
the whole team[65].

Fig.5. Scrum Workflow [66]

3.4. Dynamic Systems Development Method
(DSDM)

The dynamic systems development approach is purely
based on the development of such systems that focuses
on the development of that business application whose
purpose is to fulfill the needs of the business [67].
DSDM is an evolutionary development approach that
uses the timebox and task prioritization approach.
DSDM model has very strict standards and very
inflexible deadlines for project completion. DSDM
testing is an umbrella activity that occurs throughout
the entire development life cycle. Feedback is gathered
at each stage by the project team and project owner,
who shared a physical or virtual workplace for efficient
communication. DSDM works efficiently for large or
medium-sized projects [68].

Implementation Build and design iteration,
Functional Model iteration, Business study, and
feasibility study are the few phases involved in DSD
methodology.

3.4.1. Feasibility Study

In this stage feasibility report is generated, it is judged
that either it will be suitable to develop a product with
DSDM or not. Risk and other technical issues are also
explored during this phase.

3.4.2. Business Study

System architecture and product outline are prepared at
this phase. In this phase, primary business and technical
information are studied, the process is defined
according to business needs and requirements.

3.4.3. Functional Model Iteration

This is the iterative stage where the actual development
starts, at the end of this phase, code prototype and
analysis model are prepared.

 Agile Software Development Techniques: A Survey 23

task prioritization approach. DSDM model has
very strict standards and very inflexible deadlines
for project completion. DSDM testing is an
umbrella activity that occurs throughout the entire
development life cycle. Feedback is gathered at
each stage by the project team and project owner,
who shared a physical or virtual workplace for
efficient communication. DSDM works efficiently
for large or medium-sized projects [68].
Implementation Build and design iteration,
Functional Model iteration, Business study, and
feasibility study are the few phases involved in
DSD methodology.

3.4.1 Feasibility Study

In this stage feasibility report is generated, it is
judged that either it will be suitable to develop a
product with DSDM or not. Risk and other technical
issues are also explored during this phase.

3.4.2 Business Study

System architecture and product outline are
prepared at this phase. In this phase, primary
business and technical information are studied, the
process is defined according to business needs and
requirements.

3.4.3 Functional Model Iteration

This is the iterative stage where the actual
development starts, at the end of this phase, code

prototype and analysis model are prepared.

3.4.4 Build and Design Iteration

This is an iterative phase where customer
requirements are evaluated, and direct
communication is conducted with users to know that
if end-users need further changes in development or
not.

3.4.5 Implementation

This is also an iterative phase in which a completely
implemented product is handover to the customers.

In this approach, Users get a stronghold of the
software development process. As deadlines are un-
flexible so quick delivery of functionality is possible
[70]. But this technique is very costly to implement
and for the small organization, this method is not
suitable. If a user is not a domain expert, then the
involvement of the user may be dangerous.

3.5 Crystal Methods Agile Software
 Development

Alistair Cockburn developed a crystal family
(family of methodologies) [71]. Crystal methods
are considered “lightweight software development
methods” [72]. Cockburn [71] differentiates
methodologies, techniques, and policies as follows:

Policies: Organizational standards or roles and
regulations.
Techniques: Areas of expertise
Methodology: Practical tools

The Crystal family of methodologies assign
a different color to different methods according
to their “weight”. Crystal yellow, crystal orange,
or crystal-clear methods will be used if projects
are small one. For safety-critical systems, crystal
diamond or crystal sapphire will be used [37].
Crystal family has divided into the following
colors: i) Crystal Clear ii) Crystal Yellow iii)
Crystal Orange iv) Crystal Orange Web v) Crystal
Red vi) Crystal Maroon vii) Crystal Diamond viii)
Crystal Sapphire.

Some of the basic properties of the crystal
family are as follows:

Marriam Nawaz et al

3.4.4. Build and Design Iteration

This is an iterative phase where customer requirements
are evaluated, and direct communication is conducted
with users to know that if end-users need further
changes in development or not.

3.4.5. Implementation

This is also an iterative phase in which a completely
implemented product is handover to the customers.

Fig.6. Dynamic System Development Method Workflow
[69].

In this approach, Users get a stronghold of the
software development process. As deadlines are un-
flexible so quick delivery of functionality is possible
[70]. But this technique is very costly to implement and
for the small organization, this method is not suitable.
If a user is not a domain expert, then the involvement
of the user may be dangerous.

3.5. Crystal Methods Agile Software
Development

Alistair Cockburn developed a crystal family (family of
methodologies) [71]. Crystal methods are considered
―lightweight software development methods‖ [72].
Cockburn [71] differentiates methodologies,
techniques, and policies as follows:

Policies: Organizational standards or roles and
regulations.
Techniques: Areas of expertise
Methodology: Practical tools

The Crystal family of methodologies assign a
different color to different methods according to their
―weight‖. Crystal yellow, crystal orange, or crystal-
clear methods will be used if projects are small one. For
safety-critical systems, crystal diamond or crystal
sapphire will be used [37]. Crystal family has divided
into the following colors: i) Crystal Clear ii) Crystal
Yellow iii) Crystal Orange iv) Crystal Orange Web v)
Crystal Red vi) Crystal Maroon vii) Crystal Diamond
viii) Crystal Sapphire.

Some of the basic properties of the crystal family are
as follows:

3.5.1. Frequent delivery:

Frequent delivery of software products by iterative
development of the system. By releasing the product in
iteration, end users can early identify the problems, and
this then allows developers to tackle the problem earlier
and ultimately will reduce the time and cost for re-
development of a software system.

3.5.2. Reflective improvement

In this approach, developers take a break from regular
software development and explore new ways in which
they can better develop software systems, feedback is
taken at each iteration for further improvement.

3.5.3. Personal safety

All people in the team should be allowed to speak
freely about their ideas and suggestions, No one should
be ridicule otherwise, they will be less likely to speak
next time and overall team communication will be
affected.

3.5.4. Easy access to expert users

The developer will work with domain expert
individuals, the greater the involvement of expert users
the greater will be the chance of better product
development.

Crystal family methods are suitable for small to very
large projects. Face to face communication, consider
talents, people, and community are the main aspect of
these methods. But these approaches are not suited for
medium-sized systems. Customer‘s unavailability can
also degrade the performance of these methods.

Fig. 6. Dynamic System Development Method Work-
flow [69].

24 Nawaz et al

3.5.1 Frequent Delivery

Frequent delivery of software products by iterative
development of the system. By releasing the
product in iteration, end users can early identify the
problems, and this then allows developers to tackle
the problem earlier and ultimately will reduce the
time and cost for re-development of a software
system.

3.5.2 Reflective Improvement

In this approach, developers take a break from
regular software development and explore new
ways in which they can better develop software
systems, feedback is taken at each iteration for
further improvement.

3.5.3 Personal Safety

All people in the team should be allowed to speak
freely about their ideas and suggestions, No one
should be ridicule otherwise, they will be less likely
to speak next time and overall team communication
will be affected.

3.5.4 Easy Access to Expert Users

The developer will work with domain expert
individuals, the greater the involvement of expert
users the greater will be the chance of better product
development.

Crystal family methods are suitable for small
to very large projects. Face to face communication,
consider talents, people, and community are the main
aspect of these methods. But these approaches are
not suited for medium-sized systems. Customer’s
unavailability can also degrade the performance of
these methods.

3.6 Lean-Agile Software Development

Among all other agile software development
techniques, the lean-agile methods are one of the
most strategically focused methods. The main goal
of this method is to develop the software system
in one-third of the time with less budget and less
amount of workflow.

Basic principles of LEAN agile software
development are as follows [73]:

• Eliminate waste
• Respect people
• Optimize the whole
• Build quality
• Deliver fast
• Defer containment
• Create knowledge

By following this technique, the cost of the
software development system will potentially
reduce if elimination of overall efficiency is done
earlier [74, 75]. It results in the early delivery of
software systems and the efficient decision-making
ability of the software development team [76]. The
workflow of Lean agile software development is
given in Figure.7.

3.7 Agile Modeling

This technique is used for documenting and
modelling the software-based system by selecting
an approach based on best practices. It consists of
different values, practices, and principles which
are used for documenting and modelling different
software systems. This approach is more flexible
and easy to practice as compared to traditional
approaches [78]. The main objective of this
technique is to document the systems by keeping its
amount as low as, it is possible [79]. Different types
of cultural issues exist, but they are resolved by
encouraging and providing proper communication
among team members [80]. This technique is
used as an addition to other approaches of agile
development like Scrum, XP, etc [81]. Figure 8
shows the lifecycle of agile modeling.

This approach helps to better maintain the
significant documentation of the system. It provides
a better resolution of cultural issues by providing
good communication among team members [81,
83]. But it cannot provide a good result with poor
modelling techniques and complex with large team
size if proper tooling support is not available.

3.8 Adaptive Software Development

The adaptive software development (ASD)
technique has emerged from the rapid application
development approach. Different phases of this
technique like speculate, collaborate, and learn are
introduced to replace the traditional approaches
used for software development [84]. These

 Agile Software Development Techniques: A Survey 25

techniques are adaptable and can accommodate the
changes easily in an unstable environment. Mission-
focused, iterative in nature, provides tolerance to
change, feature-based approach, and risk driven are
basic characteristics of ASD [85, 86].

ASD consists of three phases:

3.8.1 Speculate

In this phase, the project is initiated, and all
risk-driven plans are developed here. The basic
motive of this phase is to completely understand
the requirements of users so that the programmer
can develop an understanding of the nature of
the system under consideration. The success of
this phase depends on bug identification and user
reports for better guiding the project.

3.8.2 Collaboration

The parallel development of different components is
performed in this phase. Proper customer and team
collaboration are very important for the successful
execution of this step which requires effective
communication, creativity, and co-operated
teamwork. For efficient requirements gathering
JAD (joint application development) approach is
preferred here. Instead of getting information about
design details, code structure, or testing techniques
‘collaboration’ among developing team and client
organization is the basic concern of this phase.

3.8.3 Learning

In this phase, all quality-related reviews are
performed, and the newly created version of the
project is made visible to users outside of the

Agile Software Development Techniques: A Survey

 9

3.6. Lean-Agile Software Development

Among all other agile software development
techniques, the lean-agile methods are one of the most
strategically focused methods. The main goal of this
method is to develop the software system in one-third
of the time with less budget and less amount of
workflow.

Basic principles of LEAN agile software
development are as follows[73]:
 Eliminate waste
 Respect people
 Optimize the whole
 Build quality
 Deliver fast
 Defer containment
 Create knowledge

By following this technique, the cost of the software
development system will potentially reduce if
elimination of overall efficiency is done earlier[74, 75].
It results in the early delivery of software systems and
the efficient decision-making ability of the software
development team[76]. The workflow of Lean agile
software development is given in Figure.7.

Fig. 7. Lean-Agile Software Development[77].

3.7. Agile Modeling

This technique is used for documenting and modelling
the software-based system by selecting an approach
based on best practices. It consists of different values,
practices, and principles which are used for
documenting and modelling different software systems.
This approach is more flexible and easy to practice as
compared to traditional approaches[78]. The main
objective of this technique is to document the systems

by keeping its amount as low as, it is possible[79].
Different types of cultural issues exist, but they are
resolved by encouraging and providing proper
communication among team members [80]. This
technique is used as an addition to other approaches of
agile development like Scrum, XP, etc [81].
Figure.8 shows the lifecycle of Agile modeling:

Fig. 8. Agile Modelling Lifecycle[82].

This approach helps to better maintain the significant
documentation of the system. It provides a better
resolution of cultural issues by providing good
communication among team members[81, 83]. But it
cannot provide a good result with poor modelling
techniques and complex with large team size if proper
tooling support is not available.

3.8. Adaptive software development

The adaptive software development (ASD) technique
has emerged from the rapid application development
approach. Different phases of this technique like
speculate, collaborate, and learn are introduced to
replace the traditional approaches used for software
development[84]. These techniques are adaptable and
can accommodate the changes easily in an unstable
environment. Mission-focused, iterative in nature,
provides tolerance to change, feature-based approach,
and risk driven are basic characteristics of ASD [85,
86].

ASD consists of three phases:

3.8.1. Speculate

In this phase, the project is initiated, and all risk-driven
plans are developed here. The basic motive of this
phase is to completely understand the requirements of
users so that the programmer can develop an
understanding of the nature of the system under
consideration. The success of this phase depends on

Agile Software Development Techniques: A Survey

 9

3.6. Lean-Agile Software Development

Among all other agile software development
techniques, the lean-agile methods are one of the most
strategically focused methods. The main goal of this
method is to develop the software system in one-third
of the time with less budget and less amount of
workflow.

Basic principles of LEAN agile software
development are as follows[73]:
 Eliminate waste
 Respect people
 Optimize the whole
 Build quality
 Deliver fast
 Defer containment
 Create knowledge

By following this technique, the cost of the software
development system will potentially reduce if
elimination of overall efficiency is done earlier[74, 75].
It results in the early delivery of software systems and
the efficient decision-making ability of the software
development team[76]. The workflow of Lean agile
software development is given in Figure.7.

Fig. 7. Lean-Agile Software Development[77].

3.7. Agile Modeling

This technique is used for documenting and modelling
the software-based system by selecting an approach
based on best practices. It consists of different values,
practices, and principles which are used for
documenting and modelling different software systems.
This approach is more flexible and easy to practice as
compared to traditional approaches[78]. The main
objective of this technique is to document the systems

by keeping its amount as low as, it is possible[79].
Different types of cultural issues exist, but they are
resolved by encouraging and providing proper
communication among team members [80]. This
technique is used as an addition to other approaches of
agile development like Scrum, XP, etc [81].
Figure.8 shows the lifecycle of Agile modeling:

Fig. 8. Agile Modelling Lifecycle[82].

This approach helps to better maintain the significant
documentation of the system. It provides a better
resolution of cultural issues by providing good
communication among team members[81, 83]. But it
cannot provide a good result with poor modelling
techniques and complex with large team size if proper
tooling support is not available.

3.8. Adaptive software development

The adaptive software development (ASD) technique
has emerged from the rapid application development
approach. Different phases of this technique like
speculate, collaborate, and learn are introduced to
replace the traditional approaches used for software
development[84]. These techniques are adaptable and
can accommodate the changes easily in an unstable
environment. Mission-focused, iterative in nature,
provides tolerance to change, feature-based approach,
and risk driven are basic characteristics of ASD [85,
86].

ASD consists of three phases:

3.8.1. Speculate

In this phase, the project is initiated, and all risk-driven
plans are developed here. The basic motive of this
phase is to completely understand the requirements of
users so that the programmer can develop an
understanding of the nature of the system under
consideration. The success of this phase depends on

Fig. 7. Lean-Agile Software Development[77]

Fig. 8. Agile modelling lifecycle [82].

26 Nawaz et al

development organization. Several bugs and user
reports are produced here. Component’s testing is
performed thoroughly here. Figure 9 presents the
flow of Adaptive software development.

All these phases show the dynamic and evolving
nature of ASD which has replaced determinism with
emergence [88]. This method is good to change
adaption but as there is a fixed time of development
so much pressure on the development team.

3.9 Kanban

This approach is gaining popularity in the field
of software development. It provides a way to
show and limit the progress of work during the
development lifecycle. Its main focus is on doing
proper scheduling of work so that product is timely
delivered to customer organization [89, 90]. So the
Kanban approach is responsible for the management

of product development by ensuring its continual
delivery to users without having to put a burden on
the development team [91, 92]. Figure 10 shows the
workflow of the Kanban methodology:

Distinguishes features of Kanban methodology
are as follows:

3.9.1 Kanban Board

It is a tool used for visualizing the workflow of the
project. It divides the work into different categories
which are as follows:
• Backlog
• To-do
• In progress
• Done

3.9.2 Maximizes Productivity

By dividing the work into different groups this
approach results in optimizing the workflow. It
increases team productivity by minimizing idle
time.

3.9.3 Continuous Delivery

This methodology is based on the continual releases
of software increments rather than delivering the
batches of functionalities.

Marriam Nawaz et al

bug identification and user reports for better guiding
the project.

3.8.2. Collaboration

The parallel development of different components is
performed in this phase. Proper customer and team
collaboration are very important for the successful
execution of this step which requires effective
communication, creativity, and co-operated teamwork.
For efficient requirements gathering JAD (joint
application development) approach is preferred here.
Instead of getting information about design details,
code structure, or testing techniques ‗collaboration‘
among developing team and client organization is the
basic concern of this phase.

3.8.3. Learning

In this phase, all quality-related reviews are performed,
and the newly created version of the project is made
visible to users outside of the development
organization. Several bugs and user reports are
produced here. Component‘s testing is performed
thoroughly here.

Figure.9 presents the flow of Adaptive software
development.

Fig.9. Adaptive software development Cycle[87].

All these phases show the dynamic and evolving
nature of ASD which has replaced determinism with
emergence[88]. This method is good to change
adaption but as there is a fixed time of development so
much pressure on the development team.

3.9. Kanban

This approach is gaining popularity in the field of
software development. It provides a way to show and
limit the progress of work during the development
lifecycle. Its main focus is on doing proper scheduling
of work so that product is timely delivered to customer

organization[89, 90]. So the Kanban approach is
responsible for the management of product
development by ensuring its continual delivery to users
without having to put a burden on the development
team[91, 92].

Figure.10 shows the workflow of the Kanban
methodology:

Fig. 10. Kanban Workflow[93].

Distinguishes features of Kanban methodology are as
follows:

3.9.1. Kanban Board

It is a tool used for visualizing the workflow of the
project. It divides the work into different categories
which are as follows:
 Backlog
 To-do
 In progress
 Done

3.9.2. Maximizes Productivity

By dividing the work into different groups this
approach results in optimizing the workflow. It
increases team productivity by minimizing idle time.

3.9.3. Continuous Delivery

This methodology is based on the continual releases
of software increments rather than delivering the
batches of functionalities.

Marriam Nawaz et al

bug identification and user reports for better guiding
the project.

3.8.2. Collaboration

The parallel development of different components is
performed in this phase. Proper customer and team
collaboration are very important for the successful
execution of this step which requires effective
communication, creativity, and co-operated teamwork.
For efficient requirements gathering JAD (joint
application development) approach is preferred here.
Instead of getting information about design details,
code structure, or testing techniques ‗collaboration‘
among developing team and client organization is the
basic concern of this phase.

3.8.3. Learning

In this phase, all quality-related reviews are performed,
and the newly created version of the project is made
visible to users outside of the development
organization. Several bugs and user reports are
produced here. Component‘s testing is performed
thoroughly here.

Figure.9 presents the flow of Adaptive software
development.

Fig.9. Adaptive software development Cycle[87].

All these phases show the dynamic and evolving
nature of ASD which has replaced determinism with
emergence[88]. This method is good to change
adaption but as there is a fixed time of development so
much pressure on the development team.

3.9. Kanban

This approach is gaining popularity in the field of
software development. It provides a way to show and
limit the progress of work during the development
lifecycle. Its main focus is on doing proper scheduling
of work so that product is timely delivered to customer

organization[89, 90]. So the Kanban approach is
responsible for the management of product
development by ensuring its continual delivery to users
without having to put a burden on the development
team[91, 92].

Figure.10 shows the workflow of the Kanban
methodology:

Fig. 10. Kanban Workflow[93].

Distinguishes features of Kanban methodology are as
follows:

3.9.1. Kanban Board

It is a tool used for visualizing the workflow of the
project. It divides the work into different categories
which are as follows:
 Backlog
 To-do
 In progress
 Done

3.9.2. Maximizes Productivity

By dividing the work into different groups this
approach results in optimizing the workflow. It
increases team productivity by minimizing idle time.

3.9.3. Continuous Delivery

This methodology is based on the continual releases
of software increments rather than delivering the
batches of functionalities.

Fig. 10. Kanban workflow[93].

Fig. 9. Adaptive software development Cycle [87].

 Agile Software Development Techniques: A Survey 27

Marriam Nawaz et al

Table 3. Comparative Analysis of Agile Methods in term of process

Factors Scrum

Methodology
Extreme
Programming

Feature-Driven
Development

Kanban
Approach

Dynamic System
Development System

Design
Standards

Use complex
design
principles.

Use simple
design and
coding
standards.

Use simple
design
approaches.

Guaranteed to
reduce the
waste by
limiting the
work in
progress.

independent Framework
for developing and
implementation

Roles
Description

Roles are
predefined.

Roles are not
predefined.

Roles are
predefined.

Roles are
predefined.

Roles are predefined.

Complexity
of Design

Design
complexity is
high

Low design
complexity.

Low design
complexity.

Simple design. Simple design

Workflow
Technique

Work in
iterations.
Sprints are
produced.

Does not work
in iteration
rather follow the
task flow
approach.

It is an
incremental and
iterative
approach. A set
of features is
delivered.

Works in small
iterations.

Iterative delivery of
functionality.

Technique
for
Requirement
s
Management

Product and
sprint backlog
is used for
managing
requirements in
term of
artifacts.

Story cards are
used for
requirement
management.

Manage user
requirements by
building an
object model of
them

Kanban Boards
are used for
requirement
management.

Timeboxing and
Moscow principle is
used.

Product
Delivery
Approach

Sprints are
delivered on a
defined time.

Continuous
Delivery

Continuous
Delivery

Continuous
Delivery

Continuous Delivery

Standards
used for
coding

Coding
standards are
not defined.

Use defined
coding
standards.

Development
practices are
defined in
advance.

Coding
standards are
not defined.

Coding standards are not
defined.

Testing
techniques

No formal
techniques are
defined for
performing
testing.

Use several
testing
techniques for
product auditing
like acceptance
testing.

Use standard
testing
techniques.

At the end of
each increment
or work
product testing
is performed
thoroughly.

Use standard testing
techniques.

Changes
acceptance

Changes are
not acceptable
in sprints.

It can accept
changes at any
phase of
development.

It can accept the
changing
requirements of
customers easily
at all levels.

I can accept the
changes at any
time.

I can accept the changes
at any time.

Process
Owner

Scrum Master Team
Ownership.

Each class is
owned by a
class owner who
works under a
chief
programmer.

Team
ownership

Team ownership

Table 3. Comparative analysis of agile methods in term of process

28 Nawaz et al

3.9.4 Waste Minimization

In this technique, tasks are only performed when
they are needed. So, this approach results in
avoiding over-production and wastage of time.
Therefore, this approach is time-efficient.

3.9.5 Limits Work in Progress

Limiting the work in progress is the basic focus of
this technique which optimizes the workflow of the
system according to its capacity level.

4. COMPARATIVE ANALYSIS

In the presented work, we have discussed the
detail of different agile development techniques.
Moreover, the features and various phases of all
approaches are also described.

In this section, we have presented a detailed
comparison of agile techniques according to
3 p’s (people, process, and product) of project
management. Table 3 shows the comparison of all
agile approaches concerning the process and Table.4
demonstrates the assessment of agile techniques
from the perspective of people involved. After a
detailed discussion of all agile techniques, we have
selected different factors, which are used to perform
the comparison of all approaches And for the third
‘P’ of project management, that is ‘Product’, it has
been found that all agile methods apply to products
of small and medium sizes.

5. RESULTS AND DISCUSSION

Software development approaches have been

changing since the 1970s. To overcome the problems
of traditional approaches, agile methodologies are
introduced as these are lightweight in nature and
help in accommodating the changes easily. In this
paper, we present a comparison between traditional
approaches and agile techniques used for software
development. A comparison of agile methodologies
is also performed in detail to highlight their various
aspects. This study will help the readers to make
a sense out of numerous agile techniques and can
decide on which method is most suited to their
problem. A major drawback of agile techniques is
their inability to be used for big projects.

6. REFERENCES

1. T. Dreesen, R. Linden, C. Meures, N. Schmidt, and
C. Rosenkranz. Beyond the Border: A Comparative
Literature Review on Communication Practices for
Agile Global Outsourced Software Development
Projects. in System Sciences (HICSS), 2016 49th

Hawaii International Conference on. (2016).
2. A. Zaitsev, U. Gal, and B. Tan, Coordination Artifacts

in Agile Software Development. Information
Organization. 30(2): p. 100288. (2020).

3. K. Suryaatmaja, D. Wibisono, and A. Ghazali,
The Missing Framework for Adaptation of Agile
Software Development Projects, in Eurasian
Business Perspectives. Springer. p. 113-127.(2019).

4. C. Baham and R. Hirschheim, Issues, Challenges,
and a Proposed Theoretical Core of Agile Software
Development Research. Information Systems
Journal. (2021).

5. Y. I. Alzoubi and A. Q. Gill. Agile Global Software
Development Communication Challenges: A
Systematic Review. in Pacific Asia Conference on
Information Systems. (2014).

Table 4. Comparative analysis of agile methods

Agile Software Development Techniques: A Survey

 13

Table 4 Comparative Analysis of Agile Methods

Factors Scrum Methodology Extreme
Programming

Feature-Driven
Development

Kanban Approach Dynamic System
Development
System

Customer
Involvement

The presence of a
customer on-site is not
essential.

On-site customer
presence and
interaction are
compulsory.

For the early two
phases of FDD,
customer
involvement is
mandatory.

Not essential for the
on-site availability of
customers.

It is a vendor or a
customer
independent
approach.

Project director Scrum Master Extreme
programming Coach

Project Manager Teamwork Teamwork

Collaboration
among Team

Cross-functional teams Self-organized teams Teamwork. The team consist of
specific resources

Teamwork.

And for the third ‗P‘ of project management, that is
‗Product‘, it has been found that all agile methods
apply to products of small and medium sizes.

5. CONCLUSION

Software development approaches have been changing
since the 1970s. To overcome the problems of
traditional approaches, agile methodologies are
introduced as these are lightweight in nature and help in
accommodating the changes easily. In this paper, we
present a comparison between traditional approaches
and agile techniques used for software development. A
comparison of agile methodologies is also performed in
detail to highlight their various aspects. This study will
help the readers to make a sense out of numerous agile
techniques and can decide on which method is most
suited to their problem. A major drawback of agile
techniques is their inability to be used for big projects.
T. Dreesen., R. Linden., C. Meures., N.Schmidt, and C.
Rosenkranz T., et al. Beyond the border: a comparative
literature review on communication practices for agile
global outsourced software development projects. in
System Sciences (HICSS), Institute of Electronics and
Electric Engineering (IEEE) (2016)
10.1109/HICSS.2016.612 (Sample Reference)

6. REFERENCES
1. T. Dreesen, R. Linden, C. Meures, N. Schmidt, and

C. Rosenkranz. Beyond the Border: A Comparative
Literature Review on Communication Practices for
Agile Global Outsourced Software Development
Projects. in System Sciences (HICSS), 2016 49th
Hawaii International Conference on. (2016).

2. A. Zaitsev, U. Gal, and B. Tan, Coordination
Artifacts in Agile Software Development.

Information Organization. 30(2): p. 100288.
(2020).

3. K. Suryaatmaja, D. Wibisono, and A. Ghazali, The
Missing Framework for Adaptation of Agile
Software Development Projects, in Eurasian
Business Perspectives. Springer. p. 113-127.(2019).

4. C. Baham and R. Hirschheim, Issues, Challenges,
and a Proposed Theoretical Core of Agile Software
Development Research. Information Systems
Journal. (2021).

5. Y. I. Alzoubi and A. Q. Gill. Agile Global Software
Development Communication Challenges: A
Systematic Review. in Pacific Asia Conference on
Information Systems. (2014).

6. M. Marinho, J. Noll, I. Richardson, and S.
Beecham. Plan-Driven Approaches Are Alive and
Kicking in Agile Global Software Development. in
2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement
(ESEM). (2019).

7. Y. B. Leau, W. K. Loo, W. Y. Tham, and S. F. Tan.
Software Development Life Cycle Agile Vs
Traditional Approaches. in International
Conference on Information and Network
Technology. (2012).

8. W. A. Cram, Agile Development in Practice:
Lessons from the Trenches. J Information Systems
Management. 36(1): p. 2-14. (2019).

9. A. P. Veiga, Project Success in Agile Development
Projects. arXiv preprint arXiv:1711.06851. (2017).

10. K. Petersen and C. Wohlin, A Comparison of Issues
and Advantages in Agile and Incremental
Development between State of the Art and an
Industrial Case. Journal of systems and software.
82(9): p. 1479-1490. (2009).

11. M. A. Akbar, J. Sang, A. A. Khan, S. Mahmood, S.
F. Qadri, H. Hu, and H. Xiang, Success Factors
Influencing Requirements Change Management
Process in Global Software Development. Journal
of Computer Languages. 51: p. 112-130. (2019).

 Agile Software Development Techniques: A Survey 29

6. M. Marinho, J. Noll, I. Richardson, and S. Beecham.
Plan-Driven Approaches Are Alive and Kicking
in Agile Global Software Development. in 2019
ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM).
(2019).

7. Y. B. Leau, W. K. Loo, W. Y. Tham, and S. F.
Tan. Software Development Life Cycle Agile Vs
Traditional Approaches. in International Conference
on Information and Network Technology. (2012).

8. W. A. Cram, Agile Development in Practice:
Lessons from the Trenches. J Information Systems
Management. 36(1): p. 2-14. (2019).

9. A. P. Veiga, Project Success in Agile Development
Projects. arXiv preprint arXiv:1711.06851. (2017).

10. K. Petersen and C. Wohlin, A Comparison of
Issues and Advantages in Agile and Incremental
Development between State of the Art and an
Industrial Case. Journal of systems and software.
82(9): p. 1479-1490. (2009).

11. M. A. Akbar, J. Sang, A. A. Khan, S. Mahmood,
S. F. Qadri, H. Hu, and H. Xiang, Success Factors
Influencing Requirements Change Management
Process in Global Software Development. Journal
of Computer Languages. 51: p. 112-130. (2019).

12. F. Almeida, Challenges in Migration from Waterfall
to Agile Environments. World. 5(3): p. 39-49.
(2017).

13. J. Karrenbauer, M. Wiesche, and H. Krcmar.
Understanding the Benefits of Agile Software
Development in Regulated Environments. in 14th
International Conference on Wirtschaftsinformatik.
(2019 of Conference).

14. M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson,
and J. Still, The Impact of Agile Practices on
Communication in Software Development.
Empirical Software Engineering. 13(3): p. 303-337.
(2008).

15. R. Lal, K. Kusuma, and S. Richter. Agility Practices
for Software Development: An Investigation of
Agile Organization Concepts. in 30th Australasian
Conference on Information Systems. (2019).

16. V. Holzmann and I. Panizel. Communications
Management in Scrum Projects. in European
Conference on Information Management and
Evaluation. (2013).

17. A. Jarzębowicz and P. Weichbroth, A Qualitative
Study on Non-Functional Requirements in Agile
Software Development. IEEE Access. 9: p. 40458-
40475. (2021).

18. S. Bock and R. S. Pusch, Application of Agile

Methodology in Human Performance Technology.
2017.

19. E. Lozada-Martinez, J. E. Naranjo, C. A. Garcia, D.
M. Soria, O. R. Toscano, and M. V. Garcia. Scrum
and Extreme Programming Agile Model Approach
for Virtual Training Environment Design. in 2019
IEEE Fourth Ecuador Technical Chapters Meeting
(ETCM). (2019).

20. M. Hummel, C. Rosenkranz, and R. Holten, The Role
of Communication in Agile Systems Development.
Business & Information Systems Engineering. 5(5):
p. 343-355. (2013).

21. S. Abdullahi and L. I. Bagiwa, A Review on the
Process of Adoptability of Agile Methods in
Software Development Practices. American Journal
of Engineering Research. p. 199-207. (2019).

22. Z. H. Malik, An Application of Agile Principles to
the Systems Engineering Lifecycle Process. 2017,
The George Washington University.

23. P. P. Joby, Exploring Devops: Challenges and
Benefits. Journal of Information Technology. 1(01):
p. 27-37. (2019).

24. A. A. Siqueira, S. Reinehr, and A. Malucelli. Using
a Statistical Method to Compare Agile and Waterfall
Processes Performance. in European Conference on
Software Process Improvement. (2017).

25. T. Kamal, Q. Zhang, and M. A. Akbar, Toward
Successful Agile Requirements Change Management
Process in Global Software Development: A Client–
Vendor Analysis. IET Software. (2019).

26. T. Dingsøyr, S. Nerur, V. Balijepally, and N. B.
Moe, A Decade of Agile Methodologies: Towards
Explaining Agile Software Development. 2012,
Elsevier.

27. M. Stadler, R. Vallon, M. Pazderka, and T. Grechenig,
Agile Distributed Software Development in Nine
Central European Teams: Challenges, Benefits,
and Recommendations. International Journal of
Computer Science Information Technology Vol. 11.
(2019).

28. F. Kamei, G. Pinto, B. Cartaxo, and A. Vasconcelos.
On the Benefits/Limitations of Agile Software
Development: An Interview Study with Brazilian
Companies. in Proceedings of the 21st International
Conference on Evaluation and Assessment in
Software Engineering. (2017).

29. K. Beck, Embracing Change with Extreme
Programming. Computer. 32(10): p. 70-77. (1999).

30. J. M. Felsing and S. R. Palmer, A Practical Guide to
Feature-Driven Development. IEEE Software. 7: p.
67-72. (2002).

30 Nawaz et al

31. K. Schwaber and M. Beedle, Agile Software
Development with Scrum. Vol. 1. Prentice Hall
Upper Saddle River.(2002).

32. J. A. Highsmith, Agile Software Development
Ecosystems. Addison-Wesley.(2002).

33. J. Stapleton, Dsdm, Dynamic Systems Development
Method: The Method in Practice. Cambridge
University Press.(1997).

34. O. Salo and P. Abrahamsson, Agile Methods in
European Embedded Software Development
Organisations: A Survey on the Actual Use and
Usefulness of Extreme Programming and Scrum.
IET Software. 2(1): p. 58-64. (2008).

35. Ö. Özcan-Top and F. McCaffery, To What Extent
the Medical Device Software Regulations Can
Be Achieved with Agile Software Development
Methods? Xp—Dsdm—Scrum. The Journal of
Supercomputing. 75(8): p. 5227-5260. (2019).

36. A. Moniruzzaman and D. S. A. Hossain,
Comparative Study on Agile Software Development
Methodologies. arXiv preprint arXiv:1307.3356.
(2013).

37. P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta,
Agile Software Development Methods: Review and
Analysis. arXiv preprint arXiv:1709.08439. (2017).

38. S. ATAWNEH, The Analysis of Current State of
Agile Software Development. Journal of Theoretical
Applied Information Technology. 97(22). (2019).

39. S. M. Saleh, S. M. Huq, and M. A. Rahman.
Comparative Study within Scrum, Kanban, Xp
Focused on Their Practices. in 2019 International
Conference on Electrical, Computer and
Communication Engineering (ECCE). (2019).

40. R. Narayan, Study of Various Software Development
Methodologies. EPRA International Journal of
Multidisciplinary Research. (2021).

41. A. M. Dima and M. A. Maassen, From Waterfall
to Agile Software: Development Models in the
It Sector, 2006 to 2018. Impacts on Company
Management. Journal of International Studies.
11(2): p. 315-326. (2018).

42. H. Sharp and T. Hall, Agile Processes in Software
Engineering and Extreme Programming. Springer.
(2016).

43. J. A. Highsmith and J. Highsmith, Agile Software
Development Ecosystems. Addison-Wesley
Professional.(2002).

44. A. Alashqur, Towards a Broader Adoption of Agile
Software Development Methods. International
Journal Of Advanced Computer Science And
Applications. 7(12): p. 94-98. (2016).

45. P. Abrahamsson, O. Salo, J. Ronkainen, and J.
Warsta, Agile Software Development Methods:
Review and Analysis. arXiv preprint arXiv:.08439.
(2017).

46. B. O. Egho-Promise EhigiatorIyobor, Hugah
Stephen, E-Agriculture Management System (a
Case Study of Aflao Ketu South Municipality in
Ghana). Journal of Software Engineering and
Simulation. 6(1): p. 38-49. (2020).

47. R. C. Martin, Agile Software Development:
Principles, Patterns, and Practices. Prentice Hall.
(2002).

48. B. Rumpe and A. Schröder, Quantitative Survey
on Extreme Programming Projects. arXiv preprint
arXiv:1409.6599. (2014).

49. F. Anwer, S. Aftab, S. M. Shah, and U. Waheed,
Comparative Analysis of Two Popular Agile
Process Models: Extreme Programming and
Scrum. International Journal of Computer Science
Telecommunications. 8(2): p. 1-7. (2017).

50. P. Kruchten, S. Fraser, and F. Coallier, Agile
Processes in Software Engineering and Extreme
Programming. Springer.(2019).

51. J. Shore, The Art of Agile Development: Pragmatic
Guide to Agile Software Development. " O'Reilly
Media, Inc.".(2007).

52. D. Mancl and S. D. Fraser. Xp 2019 Panel: Agile
Manifesto–Impacts on Culture, Education, and
Software Practices. in International Conference on
Agile Software Development. (2019).

53. S. Mohammadi, B. Nikkhahan, and S. Sohrabi,
Challenges of User Involvement in Extreme
Programming Projects. International Journal of
Software Engineering Its Applications. 3(1): p. 19-
32. (2009).

54. A. Firdaus, I. Ghani, and S. R. Jeong, Secure
Feature Driven Development (Sfdd) Model for
Secure Software Development. Procedia-Social
and Behavioral Sciences. 129: p. 546-553. (2014).

55. A. F. Arbain, I. Ghani, and S. R. Jeong, A Systematic
Literature Review on Secure Software Development
Using Feature Driven Development (Fdd) Agile
Model. Journal of Internet Computing and services.
15(1): p. 13-27. (2014).

56. K. Pathak and A. Saha, Review of Agile Software
Development Methodologies. International Journal
Of Advanced Computer Science And Applications.
3(2). (2013).

57. P. Aggarwal and R. M. Chandani, Agile Methodology
Influence on Sdlc (Software Development Life
Cycle). Studies in Indian Place Names. 40(50): p.

 Agile Software Development Techniques: A Survey 31

4579-4589. (2020).
58. S. A. K. Gahyyur, A. Razzaq, S. Z. Hasan, S.

Ahmed, and R. Ullah, Evaluation for Feature Driven
Development Paradigm in Context of Architecture
Design Augmentation and Perspective Implications.
International Journal Of Advanced Computer
Science Applications. 9(3): p. 236-247. (2018).

59. C. Budoya, M. Kissaka, and J. Mtebe, Instructional
Design Enabled Agile Method Using Addie
Model and Feature Driven Development Method.
International Journal of Education Development
using ICT. 15(1). (2019).

60. M. M. Jha, R. M. F. Vilardell, and J. Narayan. Scaling
Agile Scrum Software Development: Providing
Agility and Quality to Platform Development by
Reducing Time to Market. in Global Software
Engineering (ICGSE), 2016 IEEE 11th International
Conference on. (2016).

61. D. P. Harvie and A. Agah, Targeted Scrum: Applying
Mission Command to Agile Software Development.
IEEE Transactions on Software Engineering. 42(5):
p. 476-489. (2016).

62. M. Girma, N. M. Garcia, and M. Kifle. Agile
Scrum Scaling Practices for Large Scale Software
Development. in 2019 4th International Conference
on Information Systems Engineering (ICISE).
(2019).

63. T. Dingsøyr, T. Dybå, M. Gjertsen, A. O. Jacobsen,
T.-E. Mathisen, J. O. Nordfjord, K. Røe, and
K. Strand, Key Lessons from Tailoring Agile
Methods for Large-Scale Software Development. IT
Professional. 21(1): p. 34-41. (2019).

64. M. B. Firdaus, I. M. Patulak, A. Tejawati, A.
Bryantama, G. M. Putra, and H. S. Pakpahan. Agile-
Scrum Software Development Monitoring System.
in 2019 International Conference on Electrical,
Electronics and Information Engineering (ICEEIE).
(2019).

65. R. Vallon, B. J. da Silva Estacio, R. Prikladnicki,
T. J. I. Grechenig, and S. Technology, Systematic
Literature Review on Agile Practices in Global
Software Development. Information Software
Technology. 96: p. 161-180. (2018).

66. R. Banfield, C. T. Lombardo, and T. Wax, Design
Sprint: A Practical Guidebook for Building Great
Digital Products. " O'Reilly Media, Inc.".(2015).

67. L. R. Vijayasarathy and C. W. Butler, Choice
of Software Development Methodologies: Do
Organizational, Project, and Team Characteristics
Matter? IEEE Software. 33(5): p. 86-94. (2016).

68. F. S. Silva, F. S. F. Soares, A. L. Peres, I. M. de

Azevedo, A. P. L. Vasconcelos, F. K. Kamei, and
S. R. de Lemos Meira, Using Cmmi Together with
Agile Software Development: A Systematic Review.
Information and Software Technology. 58: p. 20-43.
(2015).

69. P. Lata, Agile Software Development Methods.
International Journal of Computer Science. 20.
(2016).

70. L. Rusdiana, Dynamic Systems Development
Method Dalam Membangun Aplikasi Data
Kependudukan Pada Kelurahan Rantau Pulut.
Jurnal Transformatika. 16(1): p. 84-90. (2018).

71. A. Cockburn, Writing Effective Use Cases, the
Crystal Collection for Software Professionals, 2000.
Addison-Wesley, MA, USA, http://www.amazon.
com/Writing-Effective-Cases ….

72. D. Turk, R. France, and B. Rumpe, Assumptions
Underlying Agile Software Development Processes.
arXiv preprint arXiv:1409.6610. (2014).

73. E. Kupiainen, M. V. Mäntylä, and J. Itkonen, Using
Metrics in Agile and Lean Software Development–a
Systematic Literature Review of Industrial Studies.
Information and Software Technology. 62: p. 143-
163. (2015).

74. J. Tripp and A. Aitken. Introduction to Agile and
Lean Software Engineering Minitrack. in System
Sciences (HICSS), 2015 48th Hawaii International
Conference on. (2015).

75. T. Stone, M. Gershon, and H. Meyers, Investments
in Lean Agile Software Development Training: The
Impact on Productivity and Financial Performance.
Available at SSRN 3359015. (2019).

76. P. Rodríguez, M. Mäntylä, M. Oivo, L. E.
Lwakatare, P. Seppänen, and P. Kuvaja, Advances
in Using Agile and Lean Processes for Software
Development, in Advances in Computers. Elsevier.
p. 135-224.(2019).

77. K. C. Kodali. Development of Web Based Application
for Supply Chain Management. in n Proceedings
of the 19th Panhellenic Conference on Informatics.
(2015). (2016 of Conference).

78. D. Karagiannis. Agile Modeling Method
Engineering. in Proceedings of the 19th Panhellenic
Conference on Informatics. (2015).

79. N. Santos, J. Pereira, F. Morais, J. Barros, N.
Ferreira, and R. J. Machado, An Agile Modeling
Oriented Process for Logical Architecture Design,
in Enterprise, Business-Process and Information
Systems Modeling. Springer. p. 260-275.(2018).

80. M. Amir, K. Khan, A. Khan, and M. Khan, An
Appraisal of Agile Software Development Process.

32 Nawaz et al

International Journal of Advanced Science &
Technology. 58(56): p. 20. (2013).

81. N. Santos, J. Pereira, F. Morais, J. Barros, N. Ferreira,
and R. J. Machado. Incremental Architectural
Requirements for Agile Modeling: A Case Study
within a Scrum Project. in Proceedings of the
19th International Conference on Agile Software
Development: Companion. (2018).

82. Sukasi, Agile Modeling (Am) - Product
Development. (2017).

83. F. Mognon and P. C. Stadzisz. Modeling in Agile
Software Development: A Systematic Literature
Review. in Brazilian Workshop on Agile Methods.
(2016).

84. J. Highsmith, Adaptive Software Development: A
Collaborative Approach to Managing Complex
Systems. Addison-Wesley.(2013).

85. A. Agovic and A. Agovic, Universal and Adaptive
Software Development Platform for Data-Driven
Applications. 2016, Google Patents.

86. A. F. Chowdhury and M. N. Huda. Comparison
between Adaptive Software Development and
Feature Driven Development. in Proceedings
of 2011 International Conference on Computer
Science and Network Technology. (2011).

87. Kanban and Adaptive Software Development.
(2013).

88. N.-T. Huynh, M.-T. Segarra, and A. Beugnard. A

Development Process Based on Variability Modeling
for Building Adaptive Software Architectures. in
2016 Federated Conference on Computer Science
and Information Systems (FedCSIS). (2016).

89. H. Lei, F. Ganjeizadeh, P. K. Jayachandran, and P.
Ozcan, A Statistical Analysis of the Effects of Scrum
and Kanban on Software Development Projects.
Robotics and Computer-Integrated Manufacturing.
43: p. 59-67. (2017).

90. I. Shamshurin and J. S. Saltz, Using a Coach to
Improve Team Performance When the Team Uses
a Kanban Process Methodology. Governance,
governmentality project performance: the role of
sovereignty. 7(2): p. 61-77. (2019).

91. J. Saltz and R. Heckman, Exploring Which
Agile Principles Students Internalize When
Using a Kanban Process Methodology. Journal
of Information Systems Education. 31(1): p. 51.
(2020).

92. K. Bhavsar, V. Shah, and S. Gopalan, Scrumbanfall:
An Agile Integration of Scrum and Kanban with
Waterfall in Software Engineering. International
Journal of Innovative Technology Exploring
Engineering. 9(4): p. 2075-2084. (2020).

93. Slideteam, Agile Kanban. Romanian Journal of
Information Technology and Automatic Control.
29(4): p. 7-16. (2019).

 Agile Software Development Techniques: A Survey 33

