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Abstract: This paper describes the architecture and the utilization for a facility planning optimization platform 
called GGOD, “Grid of Grids Optimal Designer” and applies it to expandable cluster-type micro-grid installations 
and operations. The expandable cluster-type micro-grid is defined as a group of micro-grids that are connected by 
bi-directional power transfer networks. Furthermore, power sources are also networked. Especially, by networking 
among power sources, powers necessary for social activities in-demand areas are secured. The proposed architecture 
is based on service-oriented architecture, meaning that optimization functions are executed as services. For flexibility, 
these services are executed by requests based on extensible mark-up language texts. The available optimizations are 
written in meta-data, which are accessible to end-users from the meta-data database system called clearinghouse. The 
meta-data are of two types, one for single optimization and the other for combined optimization. The processes in 
GGOD are conducted by the management function which interprets descriptions in meta-data. In meta-data, the names 
of optimization functions and activation orders are written. The basic executions follow sequential, branch, or loop 
flow processes, which execute combined optimizations, compare more than two kinds of optimization processes, and 
perform iterative simulations, respectively. As an application of the proposed architecture, the power generation sites 
and transmission networks are optimized in a geospatial integrated-resource planning scenario. In this application, 
a structure and a method for the combination of component functions in GGOD are exemplified. Moreover, GGOD 
suggests promotions of a lot of applications by effective combinations of basic optimization functions.

Keywords: Clearinghouse,  Grid of Grids Optimal Designer, Power Generation Sites,  Service-Oriented Architecture, 
Transmission Networks.

1.   INTRODUCTION 

A micro-grid is a feasible power supply                
system [1, 2] with sustainable power generation; 
accordingly, it has been introduced in many areas 
of the world. Moreover, new micro-grid concepts, 
the cluster-type micro-grids [3, 4], are expected to 
be introduced in non-electrified areas. Cluster-type 
micro-grids offer local power generation, resilient 

and sustainable operation using renewable powers, 
and power transfer with other micro-grids to 
balance power generations and consumptions over 
a large area.

However, reducing the installation and 
operation costs of micro-grids is imperative. This 
can be achieved by optimizing the installation and 
operation in simulations. Two well-known planning 
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dispatch functions. The meta-data provided by 
the clearinghouse function explain optimization 
and analysis components to end-users. The data 
conversion function converts a request data sent by 
end-users to a command sequence of optimization 
and analysis. The acceptance-and-dispatch function 
receives requests from end-users and returns 
optimization results to requesting client systems 
(result dispatch). The manager function activates 
optimization and/or analysis components in the 
service execution layer, and monitors and manages 
the progress of the optimization processes.

- Service execution layer(supplier). The 
service execution layer contains optimization and/
or analysis components, which are registered in a 
database called a repository. There are two types 
of components: wrapped functions for automatic 
execution, and non-wrapped functions that enable 
the use of commercial software packages by 
manual operation. Examples of optimization and 
analysis components are shown in Table 1. As 
GGOD is an evolving system, the registration of 
new components enables the execution of new 
optimizations and analyses.

2.2  Optimization Method and Process in GGOD

Optimizations and analyses in GGOD are executed 
by two processing flows, the meta-data reference, 
and the optimization. The optimization execution is 
shown in Figure 2.

optimization simulators are Hybrid Optimization 
Models for Multiple Energy Resources (HOMER) 
[5] and the Wien Automatic System Planning 
Package (WASP) [6].

HOMER, developed by National Renewable 
Energy Laboratory (NREL) in the USA, optimizes 
the installation and operation costs of various 
renewable power generators within a designated 
operation period. However, it does not optimize the 
facility specifications.

WASP considers the construction and operation 
costs in power-generation planning but ignores the 
construction costs of transmission networks that 
connect the power generating sites to the main grids 
or demand areas.

To resolve the above optimization problems, 
this study proposes a new planning optimization 
simulator called GGOD, “Grid of Grids Optimal 
Designer. GGOD is an evolving simulator, and the 
planning simulation platform and testbed have been 
developed in the current stage. This paper explains 
the GGOD architecture and presents an example of 
its application.

2.   MATERIALS AND METHODS 

2.1  Architecture of GGOD

The GGOD simulator is developed according to 
service-oriented architecture (SOA), which stores 
and executes the optimization functions as services. 
GGOD is incorporated into a total structure 
comprising three layers: the end-user layer, the 
service-manager layer, and the service execution 
layer. Figure 1 shows the architecture of GGOD. 
The functions of each layer are described below.

- End-user layer: The end-user layer represents 
the client systems, which send optimization 
requests to and receive optimization results from 
the service-manager layer.

- Service manager layer(broker): The service-
manager layer includes web-adjusted interface 
functions and management functions. The 
web-adjusted interface functions comprise the 
clearinghouse function for storing meta-data, the 
data conversion function, and the acceptance-and-
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- End-user layer: The end-user layer represents the 
client systems, which send optimization requests to and 
receive optimization results from the service-manager 
layer. 

- Service manager layer(broker): The service-
manager layer includes web-adjusted interface functions 
and management functions. The web-adjusted interface 
functions comprise the clearinghouse function for 
storing meta-data, the data conversion function, and the 
acceptance-and-dispatch functions. The meta-data 
provided by the clearinghouse function explain 
optimization and analysis components to end-users. The 
data conversion function converts a request data sent by 
end-users to a command sequence of optimization and 
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requests from end-users and returns optimization results 
to requesting client systems (result dispatch). The 
manager function activates optimization and/or analysis 
components in the service execution layer, and monitors 
and manages the progress of the optimization processes. 

Table 1. Examples of components 

Component 
Content of functions Classification Component 

name 

Optimization 

Facility 
installation and 
operation  

Introduction cost 
minimization for micro-
grid power facilities 

Renewable power 
generation site 
selection 

Clustering of renewable 
sites based on 
geographical portfolio 
theory 

Transmission 
network 
generation 

Transmission network 
generation based on cost 
minimization of facility 
construction 

Economical 
estimation 

Techno-economical 
transmission expansion 
analysis 

Analysis 

Combinatorics 
Shortest path finding, 
Minimum spanning tree 
search 

Power flow 
analysis 

Stochastic power flow 
analysis 

Impact analysis 
Impact assessment on the 
environment and social 
activities 

- Service execution layer(supplier). The service 
execution layer contains optimization and/or analysis 
components, which are registered in a database called a 
repository. There are two types of components: wrapped 
functions for automatic execution, and non-wrapped 
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2.2.1 Meta-data based method for optimizations      
         process

The clearinghouse function in the web-adjusted 
interface provides the meta-data for optimization 
and analysis to end-users. The meta-data explain the 
optimization/analysis processing and indicate the 
input and output data specifications. Optimization 
component suppliers register the optimization/
analysis components into the repository and the 
meta-data into the meta-database. The end-users 
confirm the meta-data and decide optimization 
processes to be executed.

Meta-data are written in the extensible mark-up 
language (XML) format. XML data are expressed 
by a start-tag (<*>), the contents, and an end-tag 
(</*>), for instance, <Name> Content </Name>. 
Meta-data of single components differ from those of 

combinations of more than two single components. 
Meta-data for single components give the name 
of optimization, the explanation of optimization 
processing, and the input and output data forms 
and specifications. The meta-data of combined 
components provide the names of the single 
components and their execution order. Multiple 
optimizations can be ordered in three basic ways 
(Figure 3): sequential process type for executing 
the multiple optimizations in series, branch process 
type for performance comparisons of more than 
two types of optimization components, and loop 
process type for iterative executions.

2.2.2 Optimization process

The optimization service starts when a request 
arrives from the acceptance-and-dispatch function 
in the web-adjusted interface. The management 
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Fig. 2. Optimization process in GGOD.
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2.2.1 Meta-data based method for optimizations 
process 

The clearinghouse function in the web-adjusted interface 
provides the meta-data for optimization and analysis to 
end-users. The meta-data explain the 
optimization/analysis processing and indicate the input 
and output data specifications. Optimization component 
suppliers register the optimization/analysis components 
into the repository and the meta-data into the meta-
database. The end-users confirm the meta-data and 
decide optimization processes to be executed. 

Meta-data are written in the extensible mark-up 
language (XML) format. XML data are expressed by a 
start-tag (<*>), the contents, and an end-tag (</*>), for 
instance, <Name> Content </Name>. Meta-data of 
single components differ from those of combinations of 
more than two single components. Meta-data for single 
components give the name of optimization, the 
explanation of optimization processing, and the input 
and output data forms and specifications. The meta-data 
of combined components provide the names of the single 

components and their execution order. Multiple 
optimizations can be ordered in three basic ways  
(Figure 3): sequential process type for executing the 
multiple optimizations in series, branch process type for 
performance comparisons of more than two types of 
optimization components, and loop process type for 
iterative executions. 

2.2.1 Optimization process 

The optimization service starts when a request arrives 
from the acceptance-and-dispatch function in the web-
adjusted interface. The management function analyzes 
the request texts, converts the single optimizations into 
a group of requests, and determines the optimization 
processing order, thereby monitoring and managing the 
optimization processes. After the optimization process, 
the output of processing results is temporarily stored in 
the memory for use by the subsequent 
optimization/analysis components. 

3. RESULTS 

In this chapter, GGOD optimization is applied to 
geospatial integrated-resource planning (GIRP),                                 
a facility installation planning of renewable power 
generation clusters and power transmission networks 
that transfer renewable powers to the access points (APs) 
of main grids or demand areas. The GIRP planning 
corresponds to geospatial planning in the International 
Renewable Energy Agency report [7]. The objectives of 
GIRP are (i) optimizing the selection of renewable 
power generation sites to minimize the total variance of 
generated powers, and (ii) optimizing transmission 
routes to minimize the total construction cost. In the 
present application, the power is generated from winds. 
The optimization processing order, contents of input and 
output data are shown in Figure 4. 
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function analyzes the request texts, converts the 
single optimizations into a group of requests, and 
determines the optimization processing order, 
thereby monitoring and managing the optimization 
processes. After the optimization process, the 
output of processing results is temporarily stored in 
the memory for use by the subsequent optimization/
analysis components.

3.   RESULTS

GGOD optimization is applied to geospatial 
integrated-resource planning (GIRP),   a facility 
installation planning of renewable power generation 
clusters and power transmission networks that 
transfer renewable powers to the access points 
(APs) of main grids or demand areas. The GIRP 
planning corresponds to geospatial planning in the 
International Renewable Energy Agency report 
[7]. The objectives of GIRP are (i) optimizing 
the selection of renewable power generation 
sites to minimize the total variance of generated 
powers, and (ii) optimizing transmission routes to 
minimize the total construction cost. In the present 
application, the power is generated from winds. 
The optimization processing order, contents of 
input and output data are shown in Figure 4.

3.1  Renewable Power Selection

Wind power generation sites are obtained based on 
the modern portfolio selection theory in financial 
research [8]. First, feasible wind power generation 
areas are determined using three-dimensional 
geographic data (terrain data) and wind velocity 
data. Terrain geographic data are ground-height 
data that corresponds to a digital elevation model 
(DEM), which also provides mesh data. All meshes 
are regular squares and the height values are 
assigned at four corner points. The wind velocities 
are measured at observation stations. The velocities 
at the centers of all squares in the DEM mesh are 
calculated by interpolating at least four measured 
data.

Next, a mesh of the highest velocities is 
selected. Then, the neighboring meshes are 
gathered to minimize the fluctuation variance of 
power generations among the selected meshes. 
The selection processes are iterated [9] until the 
variances at the wind power generation areas and 

wind farm (WF) sites are minimized.

3.2  Shortest-Transmission Route-Finding

Step 1 of the proposed flow selects the wind power 
generation sites. The power transmission routes are 
then searched using the shortest-transmission route-
finding algorithm in the DEM. This scheme applies 
the Dijkstra algorithm [10] to obtain the power 
transmission routes among the WFs searched in 
the renewable power selection, and the APs (i.e., 
the connection points in the existing transmission 
network or demand areas). Thus, all routes that 
combine the WFs and AP points are calculated.

3.3  Transmission Network Selection

The final optimization process is transmission 
network selection. All WF candidates are selected 
by renewable power selection, and all candidates 
of the transmission routes are searched by shortest-
transmission route finding. The transmission 
networks without loops are then selected and 
connected to the APs or demand areas. The 
selection is constrained by insisting that the total 
power generation capacity of the WFs exceeds 
the target capacity. The objective is to select 
the transmission networks that minimize the 
total facility construction costs of both WFs and 
transmission network lines [11, 12].

The total number of selections of 100 WF sites 
is 2100. As checking all selections is impractical, the 
appropriate WFs and their transmission networks 
are found by meta-heuristics based on the genetic 
algorithm. The genetic algorithm minimizes 
objective functions (of the construction costs in 
this example) by performing crossover, mutations, 
and selections to achieve its goal [10]. The final 
optimized selections of WFs and transmission 
network networks are shown in Figure 5.

The target value of total power selection is set to  
2 GW previously.  The main results by optimization 
are as follows.

- Selected total power capacity: 2.02 GW.
- The total length of transmission networks: 

279.2 km

The target of the power selection is satisfied. 
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Fig. 5. Results of GIRP (Optimized selections of WFs and Transmission networks). 

The target value of total power selection is set to  2 GW 
previously.  The main results by optimization are as 
follows. 
- Selected total power capacity: 2.02 GW. 
- The total length of transmission networks: 279.2 km 

The target of the power selection is satisfied. The 
total length changes according to the selection of power 
sites. In other power selection cases, the total lengths of 
transmission networks are more than 298.1 km. Thus the 
optimization is accomplished. Total processing time is 
optimization processing times. The time of processing 
management by GGOD is negligible. 

4. DISCUSSION 

The GGOD executed optimization processes based on 
meta-data interpretation. The important points are 
described below. 

- Optimization processes are decomposed into basic 
functions, renewable power selection, shortest-
transmission route finding, and transmission 
network selection. These functions can be developed 
separately and each function would be utilized in 
other applications.  A combination of basic functions 
generates interesting results. By enriching basic 
functions, application fields would be expanded. 

- The management function properly analyzes meta-
data and activates optimization and analysis 
functions. 

- Optimization and analysis functions are developed 
by a lot of researchers and engineers. The 
availability of these functions depends on meta-data 

description. Especially, accuracies for descriptions 
of input/ output data specifications are important. 

- Geographical processing is an important 
characteristic of GGOD. 

5. CONCLUSION 

This paper introduced an SOA-based facility planning 
optimization platform called GGOD, a flexible 
optimization service that offers many kinds of 
optimization services. 

GGOD is composed of three layers: the end-user 
layer, the service manager layer, and the service 
execution layer. The end-user layer is composed of client 
systems, while the service manager and service 
execution layers are implemented in GGOD. The service 
manager layer is the broker function that activates and 
manages the optimization functions in the service 
execution layer. The service execution layer includes 
optimization and analysis tools. 

The important characteristics of GGOD are listed 
below. (i) By registering various optimization and 
analysis components in GGOD, GGOD will become 
more available to many applications. (ii) The stored 
geospatial data enables analyses of real-world 
conditions. (iii) GGOD is an evolving system that 
registers and applies new optimization/analysis 
components. These components are easily incorporated 
by updating the previous components and meta-data. 
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2100. As checking all selections is impractical, the 
appropriate WFs and their transmission networks are 
found by meta-heuristics based on the genetic algorithm. 
The genetic algorithm minimizes objective functions (of 
the construction costs in this example) by performing 
crossover, mutations, and selections to achieve its goal 
[10]. The final optimized selections of WFs and 
transmission network networks are shown in Figure 5. 
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Fig. 3. Processing orders for basic optimizations in GGOD. 

Fig. 4. The optimization process of GGOD.

Fig. 5. Results of GIRP (Optimized selections of WFs and Transmission networks).
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The total length changes according to the selection 
of power sites. In other power selection cases, the 
total lengths of transmission networks are more than 
298.1 km. Thus the optimization is accomplished. 
Total processing time is optimization processing 
times. The time of processing management by 
GGOD is negligible.

4.   DISCUSSION

The GGOD executed optimization processes based 
on meta-data interpretation. The important points 
are described below.

- Optimization processes are decomposed into 
basic functions, renewable power selection, 
shortest-transmission route finding, and 
transmission network selection. These 
functions can be developed separately and each 
function would be utilized in other applications.  
A combination of basic functions generates 
interesting results. By enriching basic functions, 
application fields would be expanded.

- The management function properly analyzes 
meta-data and activates optimization and 
analysis functions.

- Optimization and analysis functions are 
developed by a lot of researchers and 
engineers. The availability of these functions 
depends on meta-data description. Especially, 
accuracies for descriptions of input/ output data 
specifications are important.

- Geographical processing is an important 
characteristic of GGOD.

5.   CONCLUSION

This paper introduced an SOA-based facility 
planning optimization platform called GGOD, a 
flexible optimization service that offers many kinds 
of optimization services. GGOD is composed of 
three layers: the end-user layer, the service manager 
layer, and the service execution layer. The end-
user layer is composed of client systems, while the 
service manager and service execution layers are 
implemented in GGOD. The service manager layer 
is the broker function that activates and manages 
the optimization functions in the service execution 
layer. The service execution layer includes 

optimization and analysis tools.

The important characteristics of GGOD are 
listed below. (i) By registering various optimization 
and analysis components in GGOD, GGOD will 
become more available to many applications. (ii) 
The stored geospatial data enables analyses of 
real-world conditions. (iii) GGOD is an evolving 
system that registers and applies new optimization/
analysis components. These components are easily 
incorporated by updating the previous components 
and meta-data.

The optimization processing comprises meta-
data selection and optimization steps. The meta-
data is written in the XML format, which flexibly 
states the optimization name, an explanation of the 
optimization, and the specifications of the input and 
output data.

To demonstrate the usefulness of the platform, 
GGOD was applied to GIRP. The GIRP was executed 
by sequentially executing three optimization/
analysis components: renewable power selection, 
shortest-transmission route finding, and 
transmission network selection. The result shows 
that optimization is executed successfully. The 
processing capability and processing time depend 
on the effectiveness of optimization components.

In future work, the available optimization/
analysis components will be extended to distribute 
optimal components to various power researchers 
and engineers.
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