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Abstract: In this present era, power system delivery has to be reliable and sustainable. The growth of demands 
increasing the complexity of the power system operations. An interrupted power supply must not occur for any reason. 
Hence, the improvement of the controller and protection devices is mandatory. One of the unnecessary interruptions 
in the power system is a false trip due to the incorrect setting of the protection devices. Therefore, a method to classify 
the symptom of the power system based on the voltage, current, and frequency measurements is required. However, 
since there are a ton of maneuver options and fault types, the number of data becomes complex, enormous, and 
irregular. This is where deep learning takes place. This paper proposed the use of Convolutional Neural Networks 
(CNN) combined with Long-Short Term Memory (LSTM) to recognize the categorize the type of events in a medium 
voltage power distribution network. As CNN's models are great at decreasing frequency variation, LSTM is great for 
temporal modeling, we take benefit of CNN's and LSTM's complementarity in this study by integrating it into a unified 
architecture. The simulation results indicate that CNN and LSTM can recognize the symptoms in power system 
operation with accuracy up to 79 % with a total epoch 350.

Keywords: Artificial Intelligence-based Model, Deep Learning Algorithm,  Electrical Protection System, Energy 
Efficiency, Sustainable Power System 

1.   INTRODUCTION 

As far as the many appealing challenges faced by 
the industry today, the most critical part is to be able 
to compete in the market by figuring and shaping 
the new technology revolution. The successful 
technology revolution requires a support system. 
One of the most crucial parts is the power system.
It has been a common secret that everyone demands 
a reliable power system. When the blackout occurs, 
every second of the power outages leads to an 
economic loss in every business sector. To tackle 
this issue, the power system must be fortified with 

a defensive scheme that considers the possible 
fault. On the other hand, with the recent trends 
of distributed energy resources (DER), a lot 
of intermittent generators penetrate the system 
that might cause system instability [1–3]. The 
combination of a bunch of operation schemes 
and the possibility of distributed generator (DG) 
penetration equal with no shortage of challenges 
for the engineers.

A reliable and sustainable power system 
network means it has a ton of operation maneuvers 
and a dependable protection system. The operation 
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The study aims to fill the gap of providing 
timeless power system monitoring to witness the 
symptoms by planting an artificial intelligence-
based model in electrical protection devices 
(EPD). The EPD has to be able to determine what 
is happening in the system and decide the precise 
action to overcome the situation. This paper intends 
to show the opportunity of implementing a deep 
learning computation to solve a protection scheme 
problem in power system operations. It is known 
that deep learning has an undoubted performance 
in terms of image processing [10]. In this case, the 
pattern of data series based on the simulated power 
system events will be used as a feature to be extracted. 
Deep learning is based on the convolutional neural 
networks (CNN) since its powerful ability to 
recognize the pattern [11]. The objective is to use 
CNN to perform an event classification based on 
large data sets gathered in the operation of medium 
voltage power system distribution networks. 
Later, the CNN is combined with the long-short 
term memory (LSTM) technique to increase the 
accuracy of recognizing and classifying the power 
system distribution network symptoms.

2.   COMMON PROBLEM ON MEDIUM 
VOLTAGE POWER SYSTEM 
DISTRIBUTION NETWORK 

2.1  Fault and Fault-like Event in Power System

An event in the electrical system such as ground fault, 
phase fault, start or cease of electrical machines, 
and network topology changes has its symptoms. 
These symptoms are categorized based on the 
electrical parameter, i.e., frequency, current flow, 
and voltage. As an illustration, during the event of 
a short circuit fault, the closest source feeder relay 
to the fault location will experience a drop voltage 

and protection of the power system must work 
independently but with a correlated purpose. The 
false or unsafe operation during power system 
maneuver that might be caused by DER penetration 
[4], sudden load injection or rejection, networks 
topology variation, and a fault condition shall be 
anticipated by a proper protection system [5]. 
However, the protection system shall not limit the 
flexibility of power system operations. For this 
particular reason, a trade-off point is compulsory to 
achieve a robust power system [6]. An illustration 
regarding the correlation between power system 
operation and protection is presented in Figure 1.

As the electrical protection device, a relay 
works by comparing the reading value to a specific 
threshold and delay time before it trips the circuit 
breaker (CB) [7]. The relay must work to limit the 
interruption, diminish the damage of the component 
involved, and minimize the affected area. If the 
closest relay to the fault location cannot handle 
the situation, then it must be backup by another 
relay that has a greater time and more area banned 
from the system. The coordination of the relays 
constructs an electrical protection system.

The fault in the power system could be 
categorized into two types, i.e., series faults such 
as an open line condition and shunt faults such as 
the short circuit condition [8, 9]. It is very easy to 
distinguish the type of fault in a direct observation 
by witnessing the broken equipment or conductor. 
Per contra, if the fault is located in a remote area, 
then the observation-only can be proceeded by 
examining the electrical parameters, i.e., voltage, 
current flow, and frequency. Chiefly, it is impossible 
to witness every single piece of equipment on the 
system. This is where the protection device takes 
place.
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Fig. 1. Reliable and sustainable power system is a 
result of an appropriate protection system and proper 
power system operations 
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neural networks (CNN) since its powerful ability to 
recognize the pattern [11]. The objective is to use CNN 
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sets gathered in the operation of medium voltage power 
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power system circumstance in the industrial perspective 
on Section 2, followed by the experimental result and 
analysis on Section 3, and closed by a conclusion in 
Section 4. 
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The fault conditions require CB to trip while it is 
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Somehow, due to an improper setting, there is a record 
of CB trip during the motor starting. This happens quite 
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followed by increasing current flow and a higher 
frequency rate at the source site. Meanwhile, in the 
event of motor starting, the feeder may sense a dip 
voltage, surge current, and frequency drop. These 
two events are different even though the symptom 
of voltage and current is similar.

The fault conditions require CB to trip while it 
is prohibited to trip during motor starting events. 
Somehow, due to an improper setting, there is a 
record of CB trip during the motor starting. This 
happens quite often in most petrochemical or oil-
and-gas companies [12]. The root cause is because 
the multi-function relay was installed with a default 
setting and not considering the in-rush condition. 
As a containment action, the engineer usually 
broader the setting or disabling to anticipate the 
drop voltage or the surge current during motor 
starting. This action comes with a risk that the relay 
may do not trip when the short circuit occurs during 
the start process. To validate this hypothesis, time-
series data is gathered using a commercial software 
called ETAP in a transient stability domain.

To set the simulation, the sequence of events 
is divided into three domains, which are: i) PRE-
event, ii) ON-event, and iii) POST-event [13]. To 
visualize these time domains, Figure 2 represents 
the voltage, frequency, and current measurements 
of a feeder that suffering a short circuit condition 
at t = +1 s. 

As shown in Figure 2, PRE-event denoted as 
the state where there is no switching condition. 
meaning to say, this domain happens before                  
t = 1 s and might be stated as the normal or basic 

condition. Meanwhile, ON-event just after the 
switching. In this domain, the event is happening 
without any controller react to overcome the 
events. The ON-event occurs at t = +1 s until any 
reactions or following events. Regarding that, the 
EPD must take action or decision during this time 
domain. The POST-event is any event that happens 
with regard to the previous events. It could be an 
opening of CB to clear the fault. However, in this 
POST event, there is a possibility that the system 
might go unstable or being stable. This condition 
is most likely depending on how long the time 
required of the CB to react.

2.2  Power System Network and The Protection    
System

The simple system consists of two generators where 
one of them is considered as a distributed generator 
(DG). The main transfer bus of this system is an 
11 kV that is connected into four different feeders. 
Every feeder on this system is equipped with a relay 
that able to observe voltage (V), frequency (f), and 
current flow (I) in rms. The relay ID is namely A 
until F as shown in the single line diagram (SLD) 
Figure 3.

There are several loads connected to the main 
bus of 11 kV. However, this paper is focused on 
the 11 kV events only. Several situations that taken 
into consideration are i) normal condition, ii) three-
phase symmetrical (LLL) fault of phase a-b-c in    
11 kV, iii) line to line (LL) fault of phase a-b in 
11 kV, iv) line to ground (LG) fault of phase a-b 
in 11 kV, v) the event of DG outage, and vi) direct 
online (DOL) motor starting of 3 000 kW induction 

Fig. 2. The sequence of events in the power system on the perspective of voltage, frequency, and current flows
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machine. Those six situations will be simulated 
under several circumstances, such as the penetration 
of DG and the total load connected. 

2.3  Event Classification Based on Convolutional  
Neural Network (CNN)

2.3.1 CNN Architecture

Recently, Artificial Intelligence (AI) has witnessed 
a massive development that could bridge the divide 
between human and machine capacities. This field 
aims to allow computers to see the environment as 
people do, to interpret it in the same way, and even 
to use understanding for many functions such as the 
identification of images and videos, image analyses 
and classification, recommendation systems, 
linguist processing, etc. In power system generation 
with intelligent electricity meters increasing and 
the widespread use of power generation technology 
such as solar panels, we have much information 
on the use of electricity. This information is a 
multivariate time sequence of power that could 
be used in turn for modeling and even predicting 
future energy usage. The progress made in Artificial 
Intelligence (AI) by Deep Learning, mainly through 
one specific algorithm – Convolutional Neural 
Network (CNN), has been built and improved 
over the moment. CNN can learn characteristics 
from sequence information, assist multiple-variate 
information automatically, and able to immediately 
generate a multi-step forecasting vector [10]. A CNN 
is a deep learning algorithm capable of capturing 
input data, assigning significance (learnable 
weights and biases) to multiple aspects/objects, and 
being prepared to distinguish between them [14]                                                                                  
Figure 4 depicts the typical CNN block scheme that 
later will be used on the power system operations.

The fundamental objective in implementing 
deep learning is to eliminate the complicated and 
eventually restricting choice of features. The role 
of a convolutional layer can be articulated merely: 
it uses a three-dimensional quantity of data to 
generate a fresh three-dimensional quantity of data.
 

As shown Figure 5, illustrates the 3D 
convolution process used in CNNs, and input 
features are used for the convolution operation. The 
first convolution layer uses low-level characteristics 
like edges, rows, and angles. The input is N ×  N × 
D and is converted with H kernels, each of which 

is separately k × k × D. Convolution of with one 
kernel generates an output function and separately 
generates features map with kernels. Each kernel 
passes one element at a time from the top-left corner. 
One element will be moved down from the kernel 
and one item will be passed over again from left to 
right. This method is performed until the kernel hits 
the bottom-right corner. If input height and width 
are equal to 32 and the kernel value is 5, there will 
be 32 distinctive places from left to correct and 
32 distinctive places from top to upper that the 
kernel can hold. According to these locations, each 
function in the output will comprise 32 × 32 ((N-
k+1) × (N-k+1)) components. To be able to achieve 
a single component in a single output, multiplier 
activities between two components are input=(k × 
k × D) and kernel=(k × k × D) are needed for each 
place in the sliding window method.

 In Figure 6, the same color links are limited 
to having the same weight at all times. This can be 
achieved by initializing all the connections within 
a group with the same weights and by always 
averaging a group's weight updates before applying 
them at the end of each backpropagation iteration. 
This filter produces the output layer of the function 
map. A neuron is triggered in the feature map where 
a filter is identified at the respective place in the 
prior layer to contribute to its activities.

3.   RESULTS AND DISCUSSION

3.1 Data Gathering

As stated in Section 2.1. The most crucial part 
of the electrical circumstances is the ON-event. 
Therefore, by considering that the relay sampling is 
one cycle (equal to 20 ms for 50 Hz system) and the 
relay must react within five cycles, the data consist 
of five samplings construct by the PRE-event and 
ON-event as shown in Figure 7. 

Says there are five rows of data to be 
recognized by the CNN, then the first two data 
consist of the PRE-event data or the normal (basis) 
condition. When the event is occurring, there will 
be a deviation between the PRE and ON events. 
Using the SLD, as shown in Figure 3, the whole 
relay on the system is assumed able to measure the 
current, voltage the frequency. Each phase on every 
feeder will be measured regarding the voltage and 
current flows in rms value. While the frequency is 
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Fig. 3. Single Line Diagram (SLD) being used for the simulation and data gathering.
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measured only in a single phase. The illustration of 
data measurement is shown in Figure 8.

Generally speaking, there are two types of 
feeders in Figure 3. The upper side of the 11 kV bus 
might be called a source feeder while the lower side 
is the load feeder. Figure 9 shows the illustration 
of the current reading for the whole relay with a 
variety of conditions, as stated in Section 2.2. 
Moreover, Figure 10 shows the illustration voltage 
and frequency reading in accordance with the 
data counter. In total, there are 193 symptoms 
constructed based on the combination of the power 
system operations and events.

3.1.1 Current flow analysis
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operates on 2.4 and 11 kV. During the LLL fault, 

Fig. 7. Visualization of the data required to be trained 
in ANN

Fig. 8. Practical measurement data from the simulation
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hold. According to these locations, each function in the 
output will comprise 32 × 32 ((N-k+1) × (N-k+1)) 
components. To be able to achieve a single component 
in a single output, multiplier activities between two 
components are                   and        
            are needed for each place in the sliding 
window method. 

 

 

Fig. 6. The filters and maps are represented as neurons 
in a convolutional layer [15] 

In Fig. 6, the same color links are limited to having 
the same weight at all times. This can be achieved by 
initializing all the connections within a group with the 
same weights and by always averaging a group's weight 
updates before applying them at the end of each 
backpropagation iteration. This filter produces the 
output layer of the function map. A neuron is triggered 
in the feature map where a filter is identified at the 
respective place in the prior layer to contribute to its 
activities. 
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As stated in Section 2.1. The most crucial part of the 
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Fig. 9. Voltage (a) and Frequency (b) reading on each relay with a varied event in 11 kV bus: LG fault, LLL fault, DG 
Outage, and Motor Starting (MS). 
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relay with a varied event in 11 kV bus: LG fault, LLL 
fault, DG Outage, and Motor Starting (MS).  
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Fig. 9. Voltage (a) and Frequency (b) reading on each 
relay with a varied event in 11 kV bus: LG fault, LLL 
fault, DG Outage, and Motor Starting (MS).  

both relays sense a huge current spike since the 
motor is acting as a generator that feeds the current 
to the fault location. A minor current spike happens 
during the motor starting while there is such a big 
difference in terms of current reading during DG 
outage and LG fault.

3.1.2 Voltage analysis

Since all the relay is connected in parallel to the 
11-kV bus, the voltage reading of the all-six 
relays must be the same. It might be known from 

Figure 10.a. that the voltage collapse is immensely 
happening during the LLL fault. There is also a 
voltage collapse condition that happens during the 
motor starting, but not as severe as the LLL fault. In 
the event of a DG outage, the voltage reading shows 
if there is no deviation compared to the PRE-event 
condition. There is a minor increment of voltage 
during the LF fault.

3.1.3  Frequency analysis

Similarly, to the voltage measurement, the frequency 
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reading only needs a one-perspective measurement 
since the system is fully synchronized. Figure 10.b. 
shows that the major frequency collapse happens 
when the DG outage. A minor frequency collapse 
also happening when there are a motor starting and 
the LG fault. Meanwhile, during the LLL fault, the 
frequency is increasing dramatically.

3.2 Training and Classification using CNN

3.2.1 Implementation of CNN

The network input is a 135 × 35 matrix that is 
considered as a single data channel. The first layer, 
C1, conducts four input conversions with 2 × 2 
kernels, creating four-function maps of size 133 × 
33. In the second layer, C2, execute 2 × 2 kernels. 
The information is rescaled to suit the Keras 
sequential model's three-dimensional input criteria. 
For a simple univariate model, the input form is 35-
time stages with one feature. In the convolutional 
layer, the sequence was not divided into several 
subsequences, but rather 32-time stages. Six 
neurons in the thick layer generate six outputs.
One of the popular Recurring Neural Network 
(RNN) models is LSTM. As shown in, the 
schematic of LSTM and σ denotes a sigmoid 
feature. There are three basic gates on LSTM: i) an 
input, ii) output and iii) a forget gate. The procedure 
operation between these three doors allows LSTM 
able to fix long-term dependencies which are not 
learned by particular RNNs.

 Both in Keras, a CNN-LSTM can be defined 
for training. A CNN LSTM can be described by 
bringing the first layer is CNN layers, and the 
second layer is followed by LSTM layers with a 
Dense layer at the output layer. It is helpful to think 
of this architecture as defining two sub-models. The 
CNN Model for features extraction and the LSTM 
Model for analysis of features over time phases. 
Figure 12 depicts the illustration of the feeding 
process from CNN to LSTM while the architecture 
based on CNN is summarized in Table 1. Figure 13 
shows the Keras sequential model.
 
3.2.2 Experimental Result

Figure 14 shows the experimental result of the 
proposed CNN to recognize the symptoms of power 
system operations. It might be known that the 
model with 200 epochs might reach 69 % accuracy, 
as shown in Figure 14.a. An increasing epoch up 
to 350 shows that there is an accuracy spike that 
reaches 79 % at epoch 275 as depicts in Figure 
14.b. This result later is confirmed by the heatmap 
of the dataset of features 1-35 (x-axis) with the 
value of each feature per row (y-axis) as shown in 
Figure 14.c. This indicates that CNN and LSTM 
can generalize and not just memorizing the pattern. 
Furthermore, this might be preliminary proof that 
CNN and LSTM might be helpful to supervise the 
power system operations.

Layer Kernel/Pooling Window Layer Size

Input - 1@135x35

Lstm (C1) [32@2x2] 32@133x33

Lstm (C2) [32@2x2] 32@122x31

Lstm (C3) [32@2x2] 32@110x9

Dense (P2) [6@2x2] 6@58

Full Out (F1) - 58

Table 1. CNN based architecture
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Fig. 9. Current reading on each relay with a varied 
event in 11 kV bus: LG fault, LLL fault, DG Outage, 
and Motor Starting (MS). 
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Fig. 10. Voltage (a) and Frequency (b) reading on each relay with a varied event in 11 kV bus: LG fault, LLL fault, 
DG Outage, and Motor Starting (MS).
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operations. It might be known that the model with 200 
epochs might reach 69 % accuracy, as shown in  
Fig. 13.a. An increasing epoch up to 350 shows that 
there is an accuracy spike that reaches 79 % at epoch 
275 as depicts in Fig. 13.b. This result later is 
confirmed by the heatmap of the dataset of features 1-
35 (x-axis) with the value of each feature per row (y-
axis) as shown in Fig. 13.c. This indicates that CNN 
and LSTM can generalize and not just memorizing the 
pattern. Furthermore, this might be preliminary proof 
that CNN and LSTM might be helpful to supervise the 
power system operations. 

 

(a) 

 

(b) 

 

(c) 

Fig. 13. Trial result of the CNN to recognize the 
symptoms of power system operations: (a) 200 epoch 
(b) 275 epoch, (c) heatmap dataset  

4. CONCLUSION  

The learning time would also improve proportionately 
if the conventional Neural Network (NN) were to be 
equal to a CNN, as the number of parameters would be 
much greater. With a significant reduction in 
parameters in a CNN, the learning period is reduced 
proportionately. In an ideal practice, a conventional NN 
might be built with the same performance as a CNN. A 
standard CNN-equivalent neural network would have 
more parameters that add to greater noise during the 
training stage. Therefore, the output of conventional 
CNN is always less efficient. In the future, it is 
expected that the expenditure of more time in a 
customized CNN architecture can result in an ideal 
model for the future task. Ensemble designs have 
shown that other classification activities are achieving 
stronger outcomes. Given that a model is better at 
rating specific event types, while its overall accuracy is 
low, multiple models can increase the classification 
performance. Lastly, the research was restricted to six 
events in power system operation with several kinds of 
circumstances of the case. A further kind of events and 
symptoms might be achieved by working with a greater 
number of the bus that could assist to develop stronger 
CNN models and produce precious fresh findings. 
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4.   CONCLUSION 
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the learning period is reduced proportionately. 
In an ideal practice, a conventional NN might 
be built with the same performance as a CNN. A 
standard CNN-equivalent neural network would 
have more parameters that add to greater noise 
during the training stage. Therefore, the output of 
conventional CNN is always less efficient. In the 
future, it is expected that the expenditure of more 
time in a customized CNN architecture can result in 
an ideal model for the future task. Ensemble designs 
have shown that other classification activities are 
achieving stronger outcomes. Given that a model is 
better at rating specific event types, while its overall 
accuracy is low, multiple models can increase the 
classification performance. Lastly, the research was 
restricted to six events in power system operation 
with several kinds of circumstances of the case. 
A further kind of events and symptoms might be 
achieved by working with a greater number of 
the bus that could assist to develop stronger CNN 
models and produce precious fresh findings.
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