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Abstract: Microgrids are one example of a low voltage distributed generation pattern that can cover a variety of 
energy, such as conventional generators and renewable energy. Economic dispatch (ED) is an important function and a 
key of a power system operation in microgrids. There are several procedures to find the optimum generation. The first 
step is to find every feasible state (FS) for thermal generator ED. The second step is to find optimum generation based 
on FS using incremental particle swarm optimization (IPSO), FS is assumed that all units are activated. The third step 
is to train the input and output of the IPSO into deep learning (DL). And the last step is to compare DL output with 
IPSO. The microgrids system in this paper considered 10 thermal units and a wind plant with power generation based 
on probabilistic data. IPSO shows good results by being capable to generate a total generation as the load requirement 
every hour for 24 h. However, IPSO has a weakness in execution times, from 10 experiments the average IPSO 
process takes 30 min. DL based on IPSO can make the execution time of its ED function faster with an 11 input and 
10 output architecture. From the same experiments with IPSO, DL can produce the same output as IPSO but with a 
faster execution time. From the total cost side, wind energy is affecting to reduce total cost until USD 22.86 million 
from IPSO and USD 22.89 million from DL. 

Keywords: Conventional Thermal Generator,  Economic Dispatch,  Low Voltage Distribution,  Power System 
Operation, Probabilistic, Renewable Energy.

1.   INTRODUCTION 

Microgrids are one example of low voltage 
distributed generation with a variety of energy 
sources, such as conventional thermal generators 
and renewable energy (RE) [1, 2]. RE like a wind 
turbine (WTs) [3–11] has big uncertainty and 
produces unstable generation because of nature. 
With probabilistic data, it can give important 
information about the RE plant area also information 

about the power generation produced by WTs [11]. 
A microgrid has a lower cost of energy supply with 
less carbon emission because the system can be 
operated to handle some level load or to support 
the main grid with a small source [1, 2]. One of the 
main functions of microgrid generation control is 
to decide unit commitment (UC) and the economic 
dispatch (ED) but this research will concern ED [1, 
2]. 
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A is rotor area (m2), Cp is coefficient power and V3 
is wind speed (m s-1).

In this research-based on wind plant data, 
equation [1, 2] power output of the wind generator 
can be presented as shown in Equation (2):

Pout = aV4
w+ bV3

w + cV2
w + dVw + e (2)

Where Pout is power generated (W) and V is 
wind speed (m s-1).

2.2  Constraint

In this research, ED is determined based on several 
constraints with the mathematical [1, 2, 6] equations 
as shown in Equation (3) to Equation (6)

2.2.1 Thermal Cost

Fi (PTi (t)) = ai + bi PTi (t) + ci PTi(t)
2        (3)

Where, ai, bi and ci are quadratic cost coefficients, 
Ti

down is minimum downtime (hr), Ti
up is minimum 

uptime (hr), Ti,cold is cold start hours (hr), and Ti,0 is 
unit first initialize (hr).

2.2.2 Generation Limit

 Pi,min Xi,t  ≤  Ps
i,t  ≤  Pi,max Xi,t           (4)

Where, Pi,min is minimum power generation (W), Pi,t 
is the output power of unit i at time t (W), Pi,max is 
maximum power generation (W).

2.2.3 Spinning Reserve

 (5)

2.2.4 Net Load

        Load(t) = Thermal load(t) - Wind(t)         (6)

2.3 Load

The wind speed probability data [23, 24] used is 
wind data in December 2015 as shown in Figure 1 at 
an altitude of 50 m above ground in the Sidrap wind 
plant [24] with a geographical position between 
03043′ to 04009 S 11 & 119041′ to 120010′E or 
Long: 3 980, Lat 119 710.

Economic dispatch (ED) is the key to power 
system operation to find the optimum generation 
from every feasible initial of unit combination 
[6, 9, 12–14]. To find a better feasible solution, a 
priority list (PL) is a good initializer and has shown 
promising results [6, 15–18]. Optimum generation 
from every feasible solution can be defined by 
some promising method [15–18] such as particle 
swarm optimization (PSO), genetic algorithm 
(GA), Lagrange relaxation (LR), etc. hybrid models 
which are compared one method with another may 
have a better result than individuals method. 

In this manuscript, proposed incremental 
particle swarm optimization (IPSO) to solve ED 
in a microgrid system. IPSO is a combination of 
PSO and ISL (incremental social learning) [19] to 
improve the performance of PSO and to eliminate 
local optimal [20–25]. The feasibility state is 
assumed that all units are activated both before and 
after WTs are affected. Feasibility state and output 
generation from IPSO is trained into a DL [26, 27] 
to speed up the execution time. Not only to speed up 
the execution time, but DL also to be a promising 
algorithm to make quickly and precisely decisions 
maker function with large training data [28–32].

2.   MATERIALS AND METHODS 

A microgrids system consists of a conventional 
generator or thermal plant and RE based on the 
generator [1, 2].

2.1 Generator

The thermal plant in this paper used a 10 unit 
generator with a 24 h load [1, 2] for the unit 
generates. For the wind plant, the total capacity 
installed [1, 2] of wind power is 560 kW from four 
generators and each capacity is 140 kW. In this 
manuscript, a detailed model for the simulation of 
wind power generation is often used in the field.

Wind plant converts from wind speed or kinetic 
energy to electric energy and equation [1, 2, 4, 5] 
to convert power from a wind plant is shown in                         
Equation (1).

 P = 0.5 ρ A Cp  V 3 (1)

Where P is power (W), ρ is air density (kg m-3),        
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                (1) 

Where P is power (W), ρ is air density (kg m-3), A is 
rotor area (m2), Cp is coefficient power and V3 is wind 
speed (m s-1). 

In this research-based on wind plant data, equation 
[1, 2] power output of the wind generator can be 
presented as shown in Equation (2): 

        
     

     
        (2) 

Where Pout is power generated (W) and V is wind 
speed (m s-1). 

2.2 Constraint 

In this research, ED is determined based on several 
constraints with the mathematical [1, 2, 6] equations as 
shown in Equation (3) to Equation (6) 
 

2.2.1 Thermal Cost 

  (   ( ))          ( )       ( )  (3) 

Where, ai, bi and ci are quadratic cost coefficients, 
Ti

down is minimum downtime (hr), Ti
up is minimum 

uptime (hr), Ti,cold is cold start hours (hr), and Ti,0 is 
unit first initialize (hr). 

2.2.2 Generation Limit 

                 
               (4) 

Where, Pi,min is minimum power generation (W), Pi,t is 
the output power of unit i at time t (W), Pi,max is 
maximum power generation (W). 

2.2.3 Spinning Reserve 

∑   ( )
 

   
   ( )    ( )   

    (5) 

 

2.2.4 Net Load 

    ( )              ( )      ( ) (6) 

2.3 Load 

The wind speed probability data [23, 24] used is wind 
data in December 2015 as shown in Figure 1 at an 
altitude of 50 m above ground in the Sidrap wind plant 
[24] with a geographical position between 03043′ to 
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WTs generation [(determined by Equation (2)] 
as shown in Figure 2 (blue line) is determined 
based on hourly wind speed probability data on 
25 December 2015 and thermal load [1, 2] before 
WTs is affected as shown in Figure 2 (orange line). 
Based on Equation (6), the new loads after the wind 
turbine effect are shown in Figure 2 (grey line).

2.4  Initial State

All states are based on PL defined by FLAC [6] 
to sort generators from the lowest to the highest.     
Table 1 is a table of the priority list.

The feasibility state is determined based on 
the Pmax value which must be greater than the 
load. The feasibility state in this paper takes into 
account the spinning reserve by 10 %. Pmax is the 
sum of the maximum active generator limits. In 
this section, all units are assumed to be active. If all 
units are active, the generation limit has a minimum 
value of 800 kW and a maximum of 3 200 kW as 
shown in Table 2.

2.5  IPSO based solution method for ED

IPSO used in this paper is developed by Oca  et 
al. [20]. IPSO is combined by ISL [20] to schedule 
time for adding particles [20, 21] to the population 
and PSO. For growing the new population from 
IPSO [25] can be calculated using Equation (7).

x'new,j = x'new,j + U (pmode el,j - x new,j)             (7)

Where x'new,j new,j is new particle’s update 
position, x'new,j is new particle’s original random 
position, pmode el,j is the model particle’s position and 
U is a random number (0–1).

As shown in Figure 3 of the IPSO process, it 
is the overall process. FLAC data input is used to 
determine all state PL and the result as shown in 
Table 3. Then based on the load at a certain hour 
IPSO determines the feasibility state. There are two 
cases to determine feasibility state in this paper, 
before wind turbines, and after WTs are affected. 
The feasibility state before and after the wind 
turbine effect is shown the same as Table 4, then 
the IPSO optimization process starts. The optimal 
solution to determine the generation value of an 
active unit based on state conditions that can meet 
the load supply at certain times in every iteration. 
The generation value is adjusted to the Pmin and 
Pmax limits. The objective function from each 
iteration of the new individual should be compared 
with another one in the next iteration and the lower 
cost from the objective function at all iterations 
is used as local best condition and global best 
condition after all particles were evaluated.

2.6  Deep Learning (DL) based on IPSO

DL used in this paper is constructed from 11 input 
describe load then feasibility state and 10 output 
describe power generation of active generator. DL 
construction is shown in Figure 4.
 
       DL training input is determined from the load 
and feasible combination of generators while the 
data output for DL training is taken from IPSO 
generation output based on a combination of 
generators that allow at certain hours. The DL 
training process uses MATLAB software as shown 
in Figure 4.
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Fig. 1. Wind speed during December 2015. 

WTs generation [(determined by Equation (2)] as 
shown in Figure 5 (blue line) is determined based on 
hourly wind speed probability data on 25 December 
2015 and thermal load [1, 2] before WTs is affected as 
shown in Figure 5 (orange line). Based on Equation 
(6), the new loads after the wind turbine effect are 
shown in Figure 5 (grey line). 

2.4 Initial State 

All states are based on PL defined by FLAC [6] to sort 
generators from the lowest to the highest. Table 1 is a 
table of the priority list. 

Table 1. PL generator microgrid. 
Unit 1 2 3 4 5 6 7 8 9 10 

The feasibility state is determined based on the 
Pmax value which must be greater than the load. The 
feasibility state in this paper takes into account the 
spinning reserve by 10 %. Pmax is the sum of the 
maximum active generator limits. In this section, all 
units are assumed to be active. If all units are active, 
the generation limit has a minimum value of 800 kW 
and a maximum of 3 200 kW as shown in Table 2. 

Table 2. Initial unit. 
Unit Limit (kW) 

1 2 3 4 5 6 7 8 9 10 Min max 
1 1 1 1 1 1 1 1 1 1 800 3 200 

2.5 IPSO based solution method for ED 

IPSO used in this paper is developed by Oca  et al. 
[20]. IPSO is combined by ISL [20] to schedule time 
for adding particles [20, 21] to the population and 
PSO. For growing the new population from IPSO [25] 
can be calculated using Equation (7). 

      
        

   (                 ) (7) 

Where 𝑥𝑥′new,j is new particle’s update position, 
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𝑒𝑒𝑙𝑙,𝑗𝑗 is the model particle’s position and U is a random 
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As shown in Figure 3 of the IPSO process, it is the 
overall process. FLAC data input is used to determine 
all state PL and the result as shown in Table 6. Then 
based on the load at a certain hour IPSO determines 
the feasibility state. There are two cases to determine 
feasibility state in this paper, before wind turbines, and 
after WTs are affected. The feasibility state before and 
after the wind turbine effect is shown the same as 
Table 5, then the IPSO optimization process starts. The 
optimal solution to determine the generation value of 
an active unit based on state conditions that can meet 
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limits. The objective function from each iteration of 
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2.6 Deep Learning (DL) based on IPSO 

DL used in this paper is constructed from 11 input 
describe load then feasibility state and 10 output 
describe power generation of active generator. DL 
construction is shown in Figure 2. 
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3.   RESULTS AND DISCUSSION

There are several experiments and simulations have 
been carried out in this study, including ED based 
on IPSO, ED DL based on IPSO, total cost results, 
comparison of ED IPSO and ED DL before and 
after being affected by WTs. For the thermal unit 
data [1, 2] as shown in Table 5 and wind generator 
data as shown in Table 6.

Where, Pr is rate power (kW), Vci is wind speed 
cut in (m s-1), Vco is wind speed cut off (m s-1) and 
Vr is rating speed (m s-1).
3.1 Output generation IPSO

IPSO in this paper construct by a total of 1 500 
particles in the last iterations, 1 000 iterations. The 
incremental function which makes a new population 
in every iteration of the IPSO process makes this 
method out from the local optimum and makes the 
output generation shows good result. Total power 
generation is equal to load at a certain hour, both 
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at certain hours. The DL training process uses 
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Table 5. Thermal unit data. 

Unit Pi,max Pi,min ai bi ci 
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Table 3. Data of input train DL. 
Load 
(kW) 1 055 1 072 1 097 1 100 >> 2 637 2 650 2 670 2 700 

Unit 1 1 1 1 1 

>> 

1 1 1 1 
Unit 2 1 1 1 1 1 1 1 1 
Unit 3 1 1 1 1 1 1 1 1 
Unit 4 1 1 1 1 1 1 1 1 
Unit 5 1 1 1 1 1 1 1 1 
Unit 6 1 1 1 1 1 1 1 1 
Unit 7 1 1 1 1 1 1 1 1 
Unit 8 1 1 1 1 1 1 1 1 
Unit 9 1 1 1 1 1 1 1 1 

Unit 10 1 1 1 1 1 1 1 1 
 

Table 7. Data of output train DL. 
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>> 
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Unit 9 50 50 50 50 50 50 50 50 

Unit 10 50 50 50 50 50 50 50 50 
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Table 8. DL output both before and after WTs is affected. 

Time (hr) 
Before wind After wind 
is affected is affected 

Load (kW) DL Load (kW) DL 
1 1 100 1 100 1 097 1 097 
2 1 200 1 201 1 148 1 148 
3 1 400 1 401 1 355 1 356 
4 1 600 1 601 1 515 1 515 
5 1 700 1 700 1 604 1 605 
6 1 900 1 901 1 717 1 717 
7 2 000 2 000 1 809 1 809 
8 2 100 2 100 1 910 1 910 
9 2 300 2 301 2 086 2 086 

10 2 500 2 500 2 368 2 368 
11 2 600 2 599 2 572 2 572 
12 2 700 2 700 2 670 2 670 
13 2 650 2 651 2 637 2 638 
14 2 600 2 600 2 582 2 582 
15 2 500 2 500 2 498 2 498 
16 2 300 2 301 2 197 2 198 
17 2 000 2 000 1 852 1 852 
18 1 850 1 850 1 757 1 758 
19 1 700 1 700 1 661 1 661 
20 1 600 1 601 1 452 1 452 
21 1 500 1 500 1 491 1 491 
22 1 400 1 401 1 369 1 369 
23 1 300 1 300 1 246 1 246 
24 1 200 1 201 1 156 1 156 
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Time 
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3.2 Output generation DL 

DL in this paper has been trained using 2 700 data 
based on the output process from IPSO. DL training 
input as shown in Table 6 and output data in Table 7. 
Sorted by the smallest to largest load both before and 
after being affected by WTs. DL structure is regulated 
with 15 neurons. The training process needs almost 2 h 
to finish. After the training process is successful, DL is 
tested as an economic dispatch function that replaces 
IPSO both before and after the WTs are affected. As 
shown in Table 8, all hour load both before and after 
WTs is affected, DL can produce a total load according 
to each hour of loading. DL can produce total power 
generation equal to or slightly higher than the load 
should be. 
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3.3 Total Cost Results 

After checking the total generation process in this 
chapter shown the results of the total cost data as the 
objective function in this research from before wind is 
affected the system as shown in Figure 6 and after as 
shown in Figure 7. Because the total generation from 
both methods is quite the same, the total cost from 
both methods too in every each hour. The reduction of 
total cost from before wind is affected and after are 
USD 22.86 Million for IPSO and USD  22.89 Million 
for DL. 

 

Fig. 6. Total cost before the wind is affected 
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Table 7. Data of output train DL. 
Load 
(kW) 1 055 1 072 1 097 1 100 >> 2 637 2 650 2 670 2 700 

Unit 1 355 372 397 400 

>> 

600 600 600 600 

Unit 2 100 100 100 100 600 600 600 600 
Unit 3 100 100 100 100 400 400 400 400 

Unit 4 100 100 100 100 387 400 400 400 

Unit 5 50 50 50 50 300 300 300 300 

Unit 6 100 100 100 100 100 100 120 150 
Unit 7 100 100 100 100 100 100 100 100 

Unit 8 50 50 50 50 50 50 50 50 
Unit 9 50 50 50 50 50 50 50 50 

Unit 10 50 50 50 50 50 50 50 50 

 

 

 

Table 8. DL output both before and after WTs is affected. 

Time 
(hr) 

Before wind After wind 
is affected is affected 

Load (kW) DL Load (kW) DL 
1 1 100 1 100 1 097 1 097 
2 1 200 1 201 1 148 1 148 
3 1 400 1 401 1 355 1 356 
4 1 600 1 601 1 515 1 515 
5 1 700 1 700 1 604 1 605 
6 1 900 1 901 1 717 1 717 
7 2 000 2 000 1 809 1 809 
8 2 100 2 100 1 910 1 910 
9 2 300 2 301 2 086 2 086 
10 2 500 2 500 2 368 2 368 
11 2 600 2 599 2 572 2 572 
12 2 700 2 700 2 670 2 670 
13 2 650 2 651 2 637 2 638 
14 2 600 2 600 2 582 2 582 
15 2 500 2 500 2 498 2 498 
16 2 300 2 301 2 197 2 198 
17 2 000 2 000 1 852 1 852 
18 1 850 1 850 1 757 1 758 
19 1 700 1 700 1 661 1 661 
20 1 600 1 601 1 452 1 452 
21 1 500 1 500 1 491 1 491 
22 1 400 1 401 1 369 1 369 
23 1 300 1 300 1 246 1 246 
24 1 200 1 201 1 156 1 156 

3.3 Total Cost Results 

After checking the total generation process in this 
chapter shown the results of the total cost data as the 
objective function in this research from before wind is 
affected the system as shown in Figure 6 and after as 
shown in Figure 7. Because the total generation from 
both methods is quite the same, the total cost from 
both methods too in every each hour. The reduction of 
total cost from before wind is affected and after are 
USD 22.86 Million for IPSO and USD  22.89 Million 
for DL. 

 

Fig. 6. Total cost before the wind is affected 
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3.4 Comparison of ED IPSO and ED DL 

Based on the test results of IPSO and DL is shown a 
good result but the execution time from these two 
methods are very different. IPSO produces an average 
execution time of more than 30 min in 10 ED tests 
with 24 h of loading and DL managed to speed up ED 
IPSO execution time to 3.5 s on average in 10 tests. 
The effect of WTs has an impact on the total load that 
must be generated by the thermal generator and the 
total cost generated by the thermal generator. 

3.5 Future research 

The wind turbine (WTs) in this study is one of the RE. 
In future research, the application of a microgrid with 
several other REs will be studied, including solar 
panels, biogas, and others [33–41]. 

4. CONCLUSION 

IPSO shows good results in the ED process, being able 
to generate according to the feasibility state with total 
generation according to the total targeted load, but 
IPSO produces a long enough execution time of 30 
min on average in 10 tests. DL structure in this 
research successfully replaces the ED function in the 
IPSO method, by producing the same output with load 
or slightly higher than the load should be and being 
able to accelerate execution time to 3.5 s on average in 
10 tests. From the total cost side, wind energy is 
affecting the reduction cost for USD 22.86 Million as 
the result of IPSO and USD 22.89 Million as the result 
from DL. 
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structure is regulated with 15 neurons. The training 
process needs almost 2 h to finish. After the training 
process is successful, DL is tested as an economic 
dispatch function that replaces IPSO both before 
and after the WTs are affected. As shown in Table 8, 
all hour load both before and after WTs is affected, 
DL can produce a total load according to each hour 
of loading. DL can produce total power generation 
equal to or slightly higher than the load should be.

3.3  Total Cost Results

After checking the total generation process in this 
chapter shown the results of the total cost data as 
the objective function in this research from before 
wind is affected the system as shown in Figure 6 
and after as shown in Figure 7. Because the total 
generation from both methods is quite the same, the 
total cost from both methods too in every each hour. 
The reduction of total cost from before wind is 
affected and after are USD 22.86 Million for IPSO 
and USD  22.89 Million for DL.

3.4  Comparison of ED IPSO and ED DL

Based on the test results of IPSO and DL is shown 
a good result but the execution time from these 
two methods are very different. IPSO produces 
an average execution time of more than 30 min in 
10 ED tests with 24 h of loading and DL managed 
to speed up ED IPSO execution time to 3.5 s on 
average in 10 tests. The effect of WTs has an impact 
on the total load that must be generated by the 
thermal generator and the total cost generated by 
the thermal generator.

3.5  Future research

The wind turbine (WTs) in this study is one of 
the RE. In future research, the application of a 
microgrid with several other REs will be studied, 
including solar panels, biogas, and others [33–41].

5.   CONCLUSION

AIPSO shows good results in the ED process, being 
able to generate according to the feasibility state 
with total generation according to the total targeted 
load, but IPSO produces a long enough execution 
time of 30 min on average in 10 tests. DL structure in 
this research successfully replaces the ED function 

in the IPSO method, by producing the same output 
with load or slightly higher than the load should 
be and being able to accelerate execution time to        
3.5 s on average in 10 tests. From the total cost side, 
wind energy is affecting the reduction cost for USD 
22.86 Million as the result of IPSO and USD 22.89 
Million as the result from DL.
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