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1. INTRODUCTION 
 

The bounded distributions, which are based on the 
unit interval, are useful for modeling the behavior 
of random variables with intervals (0,1). The Beta 
distribution [1] is considered a bounded 
distribution and is extensively used for modeling 
such data sets. There is always a need for other 
models for modeling bounded data sets. Some 
such important well-known distributions include 
Kumaraswamy distribution [2], Unit Burr-III [4], 
Unit Gompertz distribution [5], Unit Lindley 
distribution [6], Unit Gamma distribution [7], Unit 
Birnbaum-Saunders distribution [8], Unit-inverse 
Gaussian distribution [3], Unit Weibull 
distribution [9], Unit Logistic distribution [10], 
Unit modified Burr III distribution [11], unit 
Rayleigh distribution [12], Unit power-logarithmic 
distribution [13], odd Frechet power function 
distribution [14], Unit Burr XIII distribution [15], 
modified Kumaraswamy distribution [16], Unit 
Teissier distribution [17], inflated unit Birnbaum- 
Saunders distribution [18]  and log-XLindley 
distribution  [19]. We are motivated to propose a  
 
 
 
 
 
 

distribution because (i) it can be considered as an 
appropriate distribution to model the skewed data 
where other competent models available in the 
literature may not be adequately fitted; (ii) it can 
also be applied to model various real data sets in 
the fields of survival and industrial reliability. 

The Xgamma distribution was introduced [20] 
to model lifetime data sets. The Xgamma 
distribution was derived using a finite gamma and 
exponential distribution mixture. A random 
variable Y has Xgamma distribution, if its 
probability density function (pdf)      and 
cumulative distribution function (cdf)      are, 
respectively, given by:  
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where θ is the scale parameter. 

The inspiration of this work is to propose a 
new distribution from the Xgamma distribution by 
a transformation         ⁄   where Y has the 
Xgamma distribution.  

 The proposed distribution comprises the 
behavior of the Beta distribution and provides 
better fits than some well-known lifetime 
probability distributions, such as the 
Kumaraswamy distribution.  

 The proposed distribution is capable of data 
analysis of increasing hazard rate function. 

 It can be viewed as the most suitable probability 
model for fitting negatively skewed data sets.  

The paper is structured as follows: In Section 
2, we present the Unit-Xgamma distribution 
(UXG) along with graphical representations of its 
pdf, cdf, and reliability function. In Section 3, 
some mathematical properties, including moments 
and associated measures, actuarial measures, and 
order statistics. The new distribution is also 
characterized based on truncated moments and 
hazard function. The parameter is estimated using 
five different estimation methods in Section 4. 
Monte-Carlo simulations are performed in Section 
5 to investigate the performance of these 
estimators. The analysis of a real data set has been 
presented in Section 6. In the last section, we 
conclude our study. 

2.  UNIT-XGAMMA DISTRIBUTION 

The Unit-Xgamma distribution is derived using 
the transformation         ⁄  with support 
on the unit interval. The cdf and pdf of the 
proposed distribution respectively are given by 
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Figure 1 shows the shapes of the UXG distribution's pdf 
and cdf for various parameter values. 

 

Fig. 1: Plots of pdf and cdf for UXG Distribution  
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Figure 2 shows the survival and hazard functions 
of the UXG distribution for various parameter 
values. 

Fig. 2: Survival and hazard plots for UXG distribution  

The shape of a pdf can be studied by limiting 
behavior at origin and one. The hazard function 
also showed the same results at the origin. That is 

   
   

         
   

       
    

and shapes of pdf and hazard function at the upper 
limit  are given by 
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 3  
 

This shows that distribution begins from a point on 
the vertical axis. Now, it is needed to get more 
knowledge about its trend at origin by taking the 
limit of f′(x). f′(x) may be negative (positive), the 
pdf goes downward (upward) at the origin.  

The first derivative of (4) is 

   
   

     
          

    

For    , the pdf goes down and upwards 
otherwise. 

3. MATHEMATICAL PROPERTIES 

3.1. Moments 

If the random variable X is UXG distribution, then 
its rth moment about the origin can be given as 
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Now taking the second term of Eq. (7) 
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The final expression of ordinary moments is  
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The moment generating function of UXG 
distribution is obtained by using Eq. (10), given as 
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The numerical values of mean, variance, 
dispersion index, skewness, and kurtosis for some 
selected values of parameters are presented in 
Table 1. The behavior of UXG distribution is 
negatively for lower values of     and 
positively skewed for     . The UXG 
distribution is leptokurtic for              
and     model is mesokurtic. Also, for      
   , UXG model is platykurtic. 

3.2. Actuarial Measures  

In this subsection we derived two risk measures, 
value at risk (VaR) and tail value at risk (TVaR). 
For more information about actuarial measures, 
readers can consult the following studies [21] [22] 
[23].  

The VaR of UXG is derived as          , 
where   is the solution of the equation 
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Table 1: Some descriptive measures for some specific values of θ.  
θ      DI Skewness Kurtosis 

0.3 0.82190 0.02792 0.03397 -2.40551 9.18987 

0.5 0.72439 0.04266 0.05889 -1.53032 4.76441 

0.8 0.61147 0.05271 0.08620 -0.90568 2.85768 

1.0 0.55274 0.05452 0.09864 -0.64885 2.36971 

2.0 0.36979 0.04554 0.12315 0.04662 1.91532 

3.0 0.27578 0.03378 0.12249 0.40451 2.19210 

4.0 0.21908 0.02527 0.11535 0.64096 2.57963 

5.0 0.18134 0.01939 0.10693 0.81396 2.97398 

7.0 0.13445 0.01228 0.09134 1.05525 3.69344 

9.0 0.10660 0.00840 0.07880 1.21769 4.29919 

12 0.08117 0.00526 0.06480 1.38233 5.02381 

15 0.06547 0.00359 0.05483 1.49321 5.58091 

20 0.04945 0.00215 0.04348 1.61401 6.25796 

 

Table 2: The risk measures (VaR and TVaR) for the UXG distribution 
  Significance level            

0.50 

0.70 0.85683 0.26838 
0.75 0.86887 0.22525 
0.80 0.88061 0.18149 
0.85 0.89244 0.13719 
0.90 0.90506 0.09224 
0.95 0.92016 0.04664 
0.99 0.94051 0.00947 

1.0 

0.70 0.72049 0.23814 
0.75 0.74382 0.20153 
0.80 0.76660 0.16378 
0.85 0.78961 0.12487 
0.90 0.81414 0.08479 
0.95 0.84349 0.04339 
0.99 0.88306 0.00896 

2.0 

0.70 0.51093 0.18823 
0.75 0.54572 0.16181 
0.80 0.58118 0.13364 
0.85 0.61831 0.10366 
0.90 0.65914 0.07175 
0.95 0.70943 0.03760 
0.99 0.77929 0.00804 

5.0 

0.70 0.24178 0.10797 
0.75 0.27041 0.09519 
0.80 0.30284 0.08087 
0.85 0.34069 0.06482 
0.90 0.38733 0.04666 
0.95 0.45238 0.02579 
0.99 0.55669 0.00598 
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Using Eq. (4) in (12), we get  
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Some numerical values of VaR and TVaR are 
presented in Table 2.  
 
3.3. Order Statistics 
 
Order statistics is commonly used and performed 
in the statistical literature. Let            
represent r.v. with cdf     . If 
                     are the related ordered 
random samples of size n, then the pdf of rth order 
statistic is given as 
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By using exponential expansion 
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3.4. Characterizations  
 

The presence of a new stochastic function must be 
validated against the underlying model's 
requirements. Glänzel [24] suggests that studying 
characterizations could be useful in this approach. 
The ratio of two truncated moments is used to 
characterize the UXG distribution. So we use the 
idea of Glänzel to characterize the UXG 
distribution.  

Proposition 1:  Let X:          be distributed as Eq. 
(4) and 
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The random variable X follows UXG if and only if 
the function η defined in Theorem [24] is of the 
form  
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1.0 0.55274 0.05452 0.09864 -0.64885 2.36971 

2.0 0.36979 0.04554 0.12315 0.04662 1.91532 

3.0 0.27578 0.03378 0.12249 0.40451 2.19210 

4.0 0.21908 0.02527 0.11535 0.64096 2.57963 

5.0 0.18134 0.01939 0.10693 0.81396 2.97398 

7.0 0.13445 0.01228 0.09134 1.05525 3.69344 

9.0 0.10660 0.00840 0.07880 1.21769 4.29919 

12 0.08117 0.00526 0.06480 1.38233 5.02381 

15 0.06547 0.00359 0.05483 1.49321 5.58091 

20 0.04945 0.00215 0.04348 1.61401 6.25796 

 

Table 2: The risk measures (VaR and TVaR) for the UXG distribution 
  Significance level            

0.50 

0.70 0.85683 0.26838 
0.75 0.86887 0.22525 
0.80 0.88061 0.18149 
0.85 0.89244 0.13719 
0.90 0.90506 0.09224 
0.95 0.92016 0.04664 
0.99 0.94051 0.00947 

1.0 

0.70 0.72049 0.23814 
0.75 0.74382 0.20153 
0.80 0.76660 0.16378 
0.85 0.78961 0.12487 
0.90 0.81414 0.08479 
0.95 0.84349 0.04339 
0.99 0.88306 0.00896 

2.0 

0.70 0.51093 0.18823 
0.75 0.54572 0.16181 
0.80 0.58118 0.13364 
0.85 0.61831 0.10366 
0.90 0.65914 0.07175 
0.95 0.70943 0.03760 
0.99 0.77929 0.00804 

5.0 
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0.75 0.27041 0.09519 
0.80 0.30284 0.08087 
0.85 0.34069 0.06482 
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0.95 0.45238 0.02579 
0.99 0.55669 0.00598 
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Now by Proposition (1), X has density (4). 

Corollary 1: Assume X:         be a 
continuous random variable, then       is the 
same as in Proposition 1. The pdf of X is (4) if and 
only if the differential equation is satisfied by 
functions       and η(x) stated in Theorem [24]. 
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D is the constant in this equation. Note that in 
Proposition 1 with    ,                      
are set of functions that satisfy the differential 
Eq.(21).  

The hazard function-related characterization of the 
UXG distribution is now given. The hazard 
function h(x) is known to satisfy the following 
differential equation. 
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4. PARAMETER ESTIMATION 

In this section, we investigate the estimation of 
unknown parameter θ of UXG distribution using 
different well-known estimation methods. The 
considered estimation methods are; maximum 
likelihood, Anderson Darling, Cramer Von Mises, 
ordinary least squares, weighted least square, and 
maximum product spacing. For more detail reader 
can consult following studies [25], [26] [27]. Now 
onwards, a random sample is denoted by  
              from the        distribution of 
size n. The nonlinear equations of different 
estimation methods can be solved using statistical 
software (e.g., R, Mathematica). We used R in this 
study. 
 
4.1. Maximum Likelihood Estimation 

The most favorable parametric estimating method 
is the MLE method. The reason is described by 
theoretical acceptance of the estimators' limiting 
characteristics, such as consistency, efficiency, 
and asymptotic normality. The method of MLE of 
the UXG model is given below. The MLE of   is 
obtained by maximizing the log-likelihood 
function for  , the log-likelihood function      is 
equal to 
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equating    to zero and it can be solved using 
statistical software R. 
 
4.2. Least Squares and Weighted Least 

Squares 

We now take into account the methods of ordinary 
least squares (OLS) estimation and weighted least-
squares (WLS) estimation. OLS estimation 
method was firstly presented by Swain (1988). It 
is a nonlinear method of estimation, especially 
when the MLEs cannot be obtained in an explicit 
form. The OLS of θ can be obtained by 
minimizing the least square function L(θ)  
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with respect to θ, where x(i), (i=1,2,3,…..,n) is the 
ith element of the ordered observations 
             and  ̂(.) is empirical CDF of ith 
observation. i.e.,  ̂     
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By using Eq. (3) and   ̂(.), we have 
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Thus, the LSE can be obtained by equating the 
equation to zero, i.e.,        ⁄    
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The weighted least square estimate (WLS) of θ, 
can be obtained by minimizing the weighted least 
square function with respect to θ, defined by 
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where    is given by Eq. (23). 

4.3. Cramer-von Misses Estimation 

Another method for obtaining estimates is the 
Cramer-von Mises (CVM) estimates by 
minimizing its function with respect to θ. It is 
defined by 
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where    is given by Eq. (23). 

The CVE shows that this estimator's bias (θ) is 
lower than those of other minimum distance 
estimators. 

4.4. Anderson-Darling Estimation 

The Anderson-Darling (AD) estimate of θ can be 
obtained by minimizing the following function, 
with respect to θ, which is given by  
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Thus, the AD estimate can be determined by 
solving the following equation:         ⁄   ,  
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where    is given in Eq. (23). 

Note that all estimation methods can be obtained 
by using numerical methods. 
 
4.5. Maximum Product Spacing Estimation 

For              , assume       
 (      |   )    (       |  )  be the uniform 
spacings of a random sample from the UXG 
model, where  (    | )   ,  (      | )    
and ∑         

     . The MPSE of the parameter 
 , say  ̂, can be estimated by maximizing the 
geometric mean of the spacings 
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with respect to the parameter  . 
 

5. SIMULATION STUDY 

In this section, some simulation studies are 
presented for the comparison of different 
estimation methods such as maximum likelihood 
estimation (MLE),  least-squares estimation 
(OLS), weighted least square estimation  (WLS), 
Cramer-von Mises estimation (CVM), Anderson-
Darling estimation (AD) and maximum product 
spacing (MPS). In simulation studies, both small 
and large sample sizes are considered. We 
evaluate the performance of the estimators by bias, 
mean squared errors. 

We consider the UXG model, and data are 
simulated using          with sample sizes 
n=20, 50, 80, 100, and 200 for some specific 
values of a parameter. Simulated bias and MSE 
are given in Tables 2-8. 

Table 2: The simulated biases and MSEs of the UXG model for (θ=0.3) 
n  ML AD CVM OLS WLS MPS 

20 Bias 0.00685 0.00467 0.00646 0.00508 0.00454 0.00499 
 MSE 0.00185 0.00201 0.00231 0.00228 0.00214 0.00168 

50 Bias 0.00259 0.00184 0.00259 0.00204 0.00189 0.00341 
 MSE 0.00074 0.00081 0.00090 0.00089 0.00083 0.00071 

80 Bias 0.00057 0.00019 0.00018 0.00017 0.00008 0.00354 
 MSE 0.00044 0.00048 0.00052 0.00052 0.00049 0.00044 

100 Bias 0.00191 0.00111 0.00137 0.00109 0.00120 0.00156 
 MSE 0.00034 0.00038 0.00042 0.00042 0.00039 0.00033 

200 Bias 0.00031 0.00027 0.00058 0.00044 0.00033 0.00167 
 MSE 0.00017 0.00019 0.00021 0.00020 0.00019 0.00017 

 
Table 3: The simulated biases and MSEs of the UXG model for (θ=0.5) 

n  ML AD CVM OLS WLS MPS 
20 Bias 0.01231 0.00812 0.01221 0.00662 0.00618 0.00959 
 MSE 0.00597 0.00662 0.00766 0.00737 0.00676 0.00534 

50 Bias 0.00477 0.00264 0.00368 0.00269 0.00402 0.00658 
 MSE 0.00217 0.00245 0.00274 0.00271 0.00246 0.00207 

80 Bias 0.00260 0.00169 0.00260 0.00185 0.00164 0.00479 
 MSE 0.00133 0.00150 0.00164 0.00163 0.00151 0.00128 

100 Bias 0.00187 0.00155 0.00210 0.00144 0.00172 0.00448 
 MSE 0.00106 0.00117 0.00131 0.00129 0.00120 0.00103 

200 Bias 0.00122 0.00095 0.00091 0.00097 0.00093 0.00248 
 MSE 0.00051 0.00059 0.00064 0.00063 0.00061 0.00052 
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Table 4: The simulated biases and MSEs of the UXG model for (θ=1.0) 
n  ML AD CVM OLS WLS MPS 
20 Bias 0.03171 0.01993 0.02883 0.01879 0.01888 0.01950 

 MSE 0.02842 0.03072 0.03716 0.03601 0.03413 0.02487 
50 Bias 0.01168 0.00620 0.01049 0.00872 0.00720 0.01592 

 MSE 0.00994 0.01135 0.01291 0.01339 0.01188 0.00970 
80 Bias 0.00728 0.00368 0.00688 0.00514 0.00465 0.01012 

 MSE 0.00632 0.00711 0.00806 0.00815 0.00733 0.00609 
100 Bias 0.00595 0.00471 0.00545 0.00405 0.00392 0.00901 

 MSE 0.00499 0.00564 0.00629 0.00628 0.00578 0.00474 
200 Bias 0.00315 0.00121 0.00260 0.00178 0.00121 0.00518 

 MSE 0.00239 0.00281 0.00311 0.00310 0.00281 0.00240 
 
 
Table 5: The simulated biases and MSEs of the UXG model for (θ=1.5) 

n  ML AD CVM OLS WLS MPS 
20 Bias 0.04783 0.03207 0.04273 0.03108 0.02652 0.02727 

 MSE 0.07092 0.07885 0.09671 0.09256 0.08777 0.06315 
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Table 7: The simulated biases and MSEs of the UXG model for (θ=3.0) 
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Table 8: The simulated biases and MSEs of the UXG model for (θ=5.0) 

n  ML AD CVM OLS WLS MPS 
20 Bias 0.21736 0.13968 0.20750 0.16371 0.13319 0.11997 

 MSE 1.14258 1.28215 1.62899 1.57041 1.41972 0.99647 
50 Bias 0.08943 0.06451 0.06921 0.06478 0.04772 0.08697 

 MSE 0.39571 0.46983 0.52545 0.53176 0.47153 0.37371 
80 Bias 0.05461 0.03895 0.04216 0.03479 0.03175 0.07200 

 MSE 0.24553 0.28065 0.31496 0.31822 0.28564 0.23001 
100 Bias 0.04117 0.02626 0.04053 0.03854 0.02625 0.05860 

 MSE 0.19236 0.22304 0.26136 0.25799 0.22927 0.18659 
200 Bias 0.09231 0.10894 0.12467 0.12419 0.10977 0.09221 

 MSE 0.01840 0.01645 0.02161 0.01445 0.01007 0.02868 
 

The following observations can be made from 
Table 2-8. 

1. The estimators of θ show the characteristic 
of consistency i.e., the MSE decreases as 
the sample size (n) increases.  

2. The bias of  ̂ drops with increasing n for all 
the methods of estimation.  

3. The bias of  ̂ generally increases with 
increasing   for any given   and n. 

 
6.  MODELING REAL DATA 

In this section, we present an analysis on a real 
data set to display the modeling behaviour of UXG 
distribution in comparison with the competitive 
distributions. The data set comprises water 
capacity month-wise from the Shasta reservoir in 
California in the month of February from 1991–
2010. The observations are: 0.338936, 0.431915, 
0.759932, 0.724626, 0.757583, 0.811556, 
0.785339, 0.783660, 0.815627, 0.847413, 
0.768007, 0.843485, 0.787408, 0.849868, 
0.695970, 0.842316, 0.828689, 0.580194, 
0.430681 and 0.742563.  

To begin, we plot the total time test (TTT) plot 
and the box plot in Figure 3 to analyze the 
underlying distribution of the given data set. The 
TTT plot depicts the empirical hazard rate 
function as it increases. The data is negatively 
skewed, as seen by the box plot. To see if this data 
set follows the UXG and most popular lifespan 
distributions, we use the Anderson-Darling (AD),  

 
 
Cramer von-Misses (CVM) and Kolmogorov-
Smirnov (KS) test statistics. 

 
Fig. 3. Box plot for water capacity data 

 
 

 
Fig. 4. TTT plot for water capacity data 
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Leon distributions as a model to the water capacity 
data set and Table 10 provides the ML estimates 
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(MLEs) and the goodness of fit measures 
including log-likelihood (LogL), AIC, BIC, CVM, 

AD and KS values. 

 

Table 9: Some competitive models for the UXG distribution 
Sr. Distribution Author(s) References 
1 Beta distribution (BD) Gupta & NADarajah, (2004) [1] 
2 Kumaraswamy distribution (KwD) Kumaraswamy, (1980) [2] 
3 Unit Burr III distribution (UBIII) Modi & Gill, (2019) [3] 
4 Topp leon distribution (TLD) Nadarajah & Kotz, (2003) [24] 
5 Unit Lindley distribution (ULin) Mazucheli et al., (2019) [5] 

 
Table 10: ML estimates and Model selection measures 

Model MLEs LogL AIC BIC CVM AD KS 

KwD(α,β) 6.3475 (1.5574) 
4.4890 (2.0406) 

13.475 -22.949 -20.958 0.2505 1.5325 0.2209 

BD(α,β) 7.3157 (2.3181) 
2.9099 (0.8755) 

12.562 -21.124 -19.132 0.2861 1.6137 0.2359 

UBIIID(α,β) 3.4965 (0.8154) 
1.5291 (0.2243) 

11.077 -18.154 -16.163 0.2999 1.6658 0.2379 

TLD(λ) 8.6653 (1.9376) 11.588 -21.175 -20.179 0.3319 1.7858 0.2549 
ULinD(θ) 0.4958 (0.0806) 13.827 -25.654 -24.659 6.0498 1.8333 0.7484 
UXGD(θ) 0.6810 (0.0985) 14.024 -26.048 -25.052 0.2452 1.4224 0.2066 

According to Table 10, the UXG distribution fits 
the water capacity data set better than the other 
competitive distributions since the accuracy 
measures for determining the ideal distribution for 
a given data set are smaller. The histogram of the 
water capacity data set and the fitted densities,  

estimated HR and PP plots are displayed in Figure 
4. From Figure 4, it is observed that the fitted 
density of UXG distribution fits the data well and 
fitted (estimated) HR shows an increasing trend 
which is also confirmed by the TTT plot. 

  

Fig. 4: (Left) Fitted densities, (middle) estimated HRF and (right) PP plot for the data set. 
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Figure 5 gives the value of the MLE of parameter 
θ. The maximum value of the LogL function is at          
θ = 0.6810 for UXG distribution. Conclusively, 
Table 10 and Figure 4 show that the UXG model 
has a very adequate fitting to the empirical data of 
the water capacity. 

 
Fig. 5: Profile Log-Likelihood plot 

7.  CONCLUDING REMARKS 

The UXG distribution is a new model introduced 
in this study. Some mathematical properties of the 
new distribution, such as its moments and 
associated measures, are derived. Two actuarial 
measures; VaR and TVaR are derived. For this 
model, we obtained a density of ordered     
statistics and two different characterizations. 
Comprehensive simulation studies on multiple 
sample sizes; small, moderate, and large sizes are  
used to compare the efficiency of the five methods 
of estimate stated above. The simulation results 
showed that the ML estimator is the best 
performing estimator for bias and MSE criteria for 
all sample sizes. UXG distribution presents a 
better fit to the water capacity data than other 
competent models. Thus we can say that the UXG 
distribution being a parsimonious model provides 
adequate and preferable modeling performance for 
water capacity data and is more flexible than some 
well-known probability distributions that are 
extensively famous for the application of lifetime 
data sets.  
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