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Abstract: The problem related to the dielectric cylinder placed in non-integer dimensional space (FD space) is 
thoroughly investigated in this paper. The FD space describes complex phenomena of physics and electromagnetism.   
We have solved  Laplacian equation in FD space to obtain the solution of a dielectric cylinder in low frequency. The 
problem is solved by the method of  separation of variables analytically. The classical solution of the problem can be 
easily recovered from the derived solution in non-integer dimensional space. 
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1. INTRODUCTION

The concept of non-integer dimensional space (FD 
-space) has been considered a very useful in various 
areas of physics and electromagnetism and many 
researchers  [1 – 16]  have  discussed and applied it 
previously. Wilson [3] has employed this idea in the 
quantum field theory. Further,  it was suggested that 
the FD-space can be used as a parameter in the Ising 
limit in quantum field theory [6]. Stillinger [4] has 
provided  an axiomatic basis of this concept for the 
formulation of Schrodinger wave mechanics and 
Gibbsian statistical mechanics in  α -dimensional 
space. Svozil and  Zeilinger  [10]  have presented 
operationalized definition of the of space–time 
which has provided the possibility of experimental 
determination of space–time dimension. It has 
also been stated that the non-integer dimension of 
space–time is slightly less than 4. Gauss law [11] 
has been formulated in α-dimensional fractional 
space. The solution of electrostatic problems                                            
[13 − 18] have also been investigated in the FD 
space considering  (2 < α ≤ 3). In the present 
work, we have extended the dielectric cylinder 

problem and solved it analytically in non-integer 
dimensional space. The main objective is to use 
the Laplacian equation to find electric potential and 
the field due to a dielectric cylinder in non-integer 
dimensional space. To retrieve the integer order, 
we may consider  α = 3. As a result, the original 
solution is recovered.

2.   MATHEMATICAL MODEL 

We have considered an infinitely long circular 
cylinder of  radius  ‘a’, which is made up of a 
material having a dielectric constant ( ϵ/ϵ_0  )   and 
is placed in uniform electric field E0. The cylinder 
is oriented with its axis at the right angle to the 
applied primary field  E0r(α − 2) cosθ. We will find 
the potential and electric field in non-integer space
( 2 < α ≤ 3) in the three regions. We will employ 
the cylindrical coordinates (r,θ) for the appropriate 
solutions.

Since the total charge enclosed within the region is 
zero,  so we can use Poisson’s equation:
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Fig.1: Dielectric Cylinder Placed in Fractional Space 

Since the total charge enclosed within the 
region is zero,  so we can use Poisson’s equation: 
                              ∇2Φ(r,θ) = 0                         (1) 

This is also known as cylindrical wave 
equation and is expressed as follows, 
      
 

(1) 

 Φ = 0  (2) (2) 

We will deal with this problem in electrostatic 
and magnetostatics,  where ω = 0 so that k = 0. As 
the translational symmetry of the cylinder is 
considered to be along z-axis,  so  ‘Φ’ is 
independent of  ‘z’ and we need to consider the 
problem in the (r,θ )- plane only. Further, 
symmetry in this problem leads us to choose 
cylindrical coordinates in which Poisson’s 
equation is expressed as follows,    
 

          = 0             (3) 
 

The separation of variable method solves the 
Eq. (3) and its possible solutions in the uniform 
electric field  are r cosθ  and  r−1 cosθ. The general 
solution for low frequency can be expressed as 
follows, 

     (4) 

                   where,  P1(cosθ) = cosθ. 

Eq.(3) can also be solved by separable method in 
non-integer  space. 
Let suppose, 
                      φ(r,θ) = R(r)Θ(θ)                            (5) 

 (5) 

) = 0   (6) 
 (6) 

) = 0            (7) (7) 
 

The solutions of the above angular differential 
equation (6) is obtained from [10] and expressed 
as Follows, 

                        )                   (8) 

Similarly, the solutions of the above radial 
differential equation  (7)  is obtained from [12] as  
rl  and  r−(l+α−3). Therefore, the general solution of 
scalar potential of dielectric cylinder in fraction 
space can be expressed as, 
Ψe(r,φ) = Xhalrl + blr−(l+α−3)iPlα/2−1(cosθ)l=0                (9) 
For our convenience,   we can limit the above 
form of the solution only within outside and inside 
of the cylindrical regions. For the outside region, 
we need to have the electric field at infinity, but 
we certainly don’t want the field to diverge. It is 
that  the logarithmic and rl   terms with l > 1 
diverge as ‘r’ goes to infinity. Hence , these terms 
are unphysical and can not  be considered. 
Therefore, we are interested only in the solution, 
 for l = 1 
            
         . 
Because each region has the same symmetry with 
respect to the external field, so the expressions of 
potentials in each region are written as, 
Outside the region: 

  (10) 

Here, for large values of ‘r’ the field is supposed to 
reduce to  −E0r(α−2) cosφ,  corresponding  to  the 
uniform field. 
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Inside the region: 

              Ψi(r,φ) = A r(α − 2) cosφ         r < a    (11) 

For the determination of unknown coefficients  
‘A’ and ‘B’ boundary conditions are applied. The 
fields must be continuous across the boundary at r 
= a, so using the boundary conditions we find the 
unknown coefficients  A  and  B, which are 
expressed as follows. 

                                                 (12) 

                                (13) 

 

The total electric field intensity is 

 
The secondary electric field intensity is 

 

 

3.   CONCLUSION  

In this paper the Laplace equation has been studied 
in α -dimensional fractional space. The potential 
and electric field of the dielectric cylinder is 
obtained in fractional space. The classical results 
are recovered from the investigated solution for α 
= 3. Further, this solution can be applied for 
various materials. The host medium and core 
medium can be studied for multiple materials like 
meta-materials, plasma etc. 
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