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1.  INTRODUCTION 

Non-linear equations are frequently used in many 
areas of engineering and science. Due to this reason, 
various researchers and scientists have been taken 
an interest and given numerous methods for solving 
non-linear application equations [1-2]. Therefore, 
there are some basic numerical iterated methods 
for solving non-linear equation, such as, Bisection  
method 

These methods are very useful methods for 

estimating non-linear solving equations but keeping 
pitfall [3,5,7]. Correspondingly, by using the 
bisection method, regular false method and newton 
raphson method numerous numerical methods have 
been developed [4,6]. Furthermore, the newton 
raphson method is one of the most attractive 
approaches in the field of research. Therefore, 
many scientist and researcher have taken an interest 
and develop a different root location technique to 
get good accuracy as well as iteration perception 
by modified the Newton Raphson Method [9, 10], 
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𝑏𝑏−𝑎𝑎
𝑚𝑚+1 𝑓𝑓(𝑥𝑥𝑛𝑛)

𝑓𝑓 (𝑥𝑥𝑛𝑛 + 𝑏𝑏−𝑎𝑎
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and 
𝑥𝑥𝑛𝑛+1

= 𝑥𝑥𝑛𝑛 − 𝑓𝑓(𝑥𝑥𝑛𝑛−1)
𝑓𝑓(𝑥𝑥𝑛𝑛−1 + 𝑓𝑓(𝑥𝑥𝑛𝑛−1)) − 𝑓𝑓(𝑥𝑥𝑛𝑛−1) 𝑓𝑓(𝑥𝑥𝑛𝑛) 

Similarly, this paper has suggested an iterated 
method for solving non-linear problems 
without second order derivative. The proposed 
deprived of second derivative iterated method 
is derived from newton raphson method and 
Taylor series [12]. The developed iterated 
technique tested a C++/MATLAB and 
compare with the newton raphson method [11] 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛) 

and modified newton raphson method  [13]  

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 𝑓𝑓(𝑥𝑥𝑛𝑛)𝑓𝑓`(𝑥𝑥𝑛𝑛)
𝑓𝑓`2(𝑥𝑥𝑛𝑛) − 𝑓𝑓(𝑥𝑥𝑛𝑛)𝑓𝑓``(𝑥𝑥𝑛𝑛) 

During the research, it is observed that 
proposed method is decent attainment for 
solving non-linear problems. 
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Hence, the eq. (6) is proposed iterated method for 
solving non-linear equations.

3.   CONVERGENCE ANALYSIS

In this section, we are giving the main results of 
this paper. We will be shown that the new iterative 
method has super linear Convergence.

Proof:
Suppose `a` be a simple zero of f(x) for finding 
f(x_n ) and f`(x_n ) by Taylor’s Series about `a`, 
we have

Similarly, this paper has suggested an iterated 
method for solving non-linear problems without 
second order derivative. The proposed deprived of 
second derivative iterated method is derived from 
newton raphson method and Taylor series [12]. 
The developed iterated technique tested a C++/
MATLAB and compare with the newton raphson 
method [11]

and modified newton raphson method  [13] 

During the research, it is observed that proposed 
method is decent attainment for solving non-linear 
problems.

2.   PROPOSED METHOD

In this segment, we have developed a method 
for solving non-linear equations with the help of 
taylor series, finite difference, and newton raphson 
method, such a taylor series
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2

2
𝑓𝑓``(𝑥𝑥𝑛𝑛)           (1) 

Where 𝑓𝑓(𝑥𝑥𝑟𝑟) = 0, we obtain 

𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ𝑓𝑓`(𝑥𝑥𝑛𝑛) + ℎ
2

2
𝑓𝑓``(𝑥𝑥𝑛𝑛) = 0     (2) 

By using finite difference, such as 

𝑓𝑓``(𝑥𝑥𝑛𝑛) = 𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)
ℎ              (3) 

Substitute (3) in (2), we get  

𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ𝑓𝑓`(𝑥𝑥𝑛𝑛)

+ ℎ
2

2
(𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)

ℎ ) = 0 

Or 

𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ
2 (2𝑓𝑓`(𝑥𝑥𝑛𝑛) + 𝑓𝑓`(𝑥𝑥𝑛𝑛)

− 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)) = 0         (4) 
 
Where ℎ = 𝑥𝑥 −  𝑥𝑥𝑛𝑛, then (4) become 
 

2𝑓𝑓(𝑥𝑥𝑛𝑛) + (𝑥𝑥 −  𝑥𝑥𝑛𝑛)(3𝑓𝑓`(𝑥𝑥𝑛𝑛)
− 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)) = 0 

 
Or 

𝑥𝑥 = 𝑥𝑥𝑛𝑛 − 2𝑓𝑓(𝑥𝑥𝑛𝑛)
3𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)            (5) 

 

Where Newton Raphson Method as, 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 – 𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓`(𝑥𝑥𝑛𝑛) 

Finally, we get 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 2𝑓𝑓(𝑥𝑥𝑛𝑛)
3𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓` (𝑥𝑥𝑛𝑛 – 𝑓𝑓(𝑥𝑥𝑛𝑛)

𝑓𝑓`(𝑥𝑥𝑛𝑛))
(6) 

Hence, the eq. (6) is proposed iterated method 
for solving non-linear equations. 
 
3. CONVERGENCE ANALYSIS 
 

In this section, we are giving the main results 
of this paper. We will be shown that the new 
iterative method has super linear Convergence. 
 
Proof: 
Suppose `a` be a simple zero of 𝑓𝑓(𝑥𝑥) for 
finding 𝑓𝑓(𝑥𝑥𝑛𝑛) and 𝑓𝑓`(𝑥𝑥𝑛𝑛) by Taylor’s Series 
about `a`, we have 

𝑓𝑓(𝑥𝑥𝑛𝑛) = 𝑓𝑓`(𝑎𝑎)(𝑒𝑒𝑛𝑛 + 𝑐𝑐2𝑒𝑒2
𝑛𝑛 + 𝑐𝑐3𝑒𝑒3

𝑛𝑛
+ ⋯ )     − − − (𝑖𝑖) 

𝑓𝑓`(𝑥𝑥𝑛𝑛) = 𝑓𝑓`(𝑎𝑎)(1 + 2𝑐𝑐2𝑒𝑒𝑛𝑛 + 3𝑐𝑐3𝑒𝑒2
𝑛𝑛

+ ⋯ )    − − − (𝑖𝑖𝑖𝑖) 

By using 𝑐𝑐𝑘𝑘 = 𝑓𝑓𝑘𝑘(𝑎𝑎)
𝑘𝑘!𝑓𝑓𝑘𝑘−1(𝑎𝑎), k=2,3, 4… and  

𝑒𝑒𝑛𝑛 = 𝑥𝑥𝑛𝑛 − a 
From(𝑖𝑖)and(𝑖𝑖𝑖𝑖), we have 

𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓`(𝑥𝑥𝑛𝑛) = 𝑒𝑒𝑛𝑛 − 𝑐𝑐2𝑒𝑒2

𝑛𝑛

+ 2(𝑐𝑐2
2  − 𝑐𝑐3)𝑒𝑒3

𝑛𝑛
+ ⋯  − − − (𝑖𝑖𝑖𝑖𝑖𝑖)  

From (iii), we get 
𝑓𝑓(𝑥𝑥𝑛𝑛+1) = 𝑐𝑐2𝑒𝑒2

𝑛𝑛 − 2(𝑐𝑐2
2  − 𝑐𝑐3)𝑒𝑒3

𝑛𝑛
+ ⋯         − − − (𝑖𝑖𝑖𝑖) 

Expanding 𝑓𝑓(𝑥𝑥𝑛𝑛+1) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓′(𝑥𝑥𝑛𝑛+1) in Taylor’s 
Series about `a` and using(𝑖𝑖𝑖𝑖), we have 

𝑓𝑓(𝑥𝑥𝑛𝑛+1) = 𝑓𝑓`(a)[𝑐𝑐2𝑒𝑒2
𝑛𝑛

+ 2(𝑐𝑐3 − 𝑐𝑐2
2)𝑒𝑒3

𝑛𝑛
+ ⋯ ] 

0𝑟𝑟 
𝑓𝑓′(𝑥𝑥𝑛𝑛+1) = 𝑓𝑓`(a)[1 + 2𝑐𝑐2

2𝑒𝑒2
𝑛𝑛

+ ⋯ ]       − − − (𝑖𝑖) 
𝐵𝐵𝐵𝐵 𝑢𝑢𝑢𝑢𝑖𝑖𝑎𝑎𝑢𝑢 (𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑖𝑖) 𝑖𝑖𝑎𝑎 (6), we get 
𝑒𝑒𝑛𝑛+1
= 𝑒𝑒𝑛𝑛

− 2𝑒𝑒𝑛𝑛𝑓𝑓`(𝑎𝑎)(1 + 𝑐𝑐2𝑒𝑒𝑛𝑛 + ⋯ )
𝑓𝑓`(𝑎𝑎)[3 + 6𝑐𝑐2𝑒𝑒𝑛𝑛 − 1 − 2𝑐𝑐22𝑒𝑒2𝑛𝑛 … ] 

 

𝑒𝑒𝑛𝑛+1
= 𝑒𝑒𝑛𝑛

− 2𝑒𝑒𝑛𝑛𝑓𝑓`(𝑎𝑎)(1 + 𝑐𝑐2𝑒𝑒𝑛𝑛 + ⋯ )
𝑓𝑓`(𝑎𝑎)[2 + 6𝑐𝑐2𝑒𝑒𝑛𝑛 − 2𝑐𝑐22𝑒𝑒2𝑛𝑛 … ] (𝑖𝑖𝑖𝑖) 

Further solving to overlooking higher order of 
term and 𝑐𝑐 = 𝑐𝑐2, thus (𝑖𝑖𝑖𝑖) become 

𝑒𝑒𝑛𝑛+1 = 𝑒𝑒𝑛𝑛 − 2𝑒𝑒𝑛𝑛𝑓𝑓`(𝑎𝑎)(1 + 𝑐𝑐𝑒𝑒𝑛𝑛)
2𝑓𝑓`(𝑎𝑎)[1 + 3𝑐𝑐𝑒𝑒𝑛𝑛]  

𝑒𝑒𝑛𝑛+1 = 𝑒𝑒𝑛𝑛 − 𝑒𝑒𝑛𝑛(1 + 𝑐𝑐𝑒𝑒𝑛𝑛)[1 + 3𝑐𝑐𝑒𝑒𝑛𝑛]−1 
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2. PROPOSED METHOD 
 
In this segment, we have developed a method 
for solving non-linear equations with the help 
of taylor series, finite difference, and newton 
raphson method, such a taylor series 

𝑓𝑓(𝑥𝑥𝑟𝑟) = 𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ𝑓𝑓`(𝑥𝑥𝑛𝑛)

+ ℎ
2

2
𝑓𝑓``(𝑥𝑥𝑛𝑛)           (1) 

Where 𝑓𝑓(𝑥𝑥𝑟𝑟) = 0, we obtain 

𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ𝑓𝑓`(𝑥𝑥𝑛𝑛) + ℎ
2

2
𝑓𝑓``(𝑥𝑥𝑛𝑛) = 0     (2) 

By using finite difference, such as 

𝑓𝑓``(𝑥𝑥𝑛𝑛) = 𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)
ℎ              (3) 

Substitute (3) in (2), we get  

𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ𝑓𝑓`(𝑥𝑥𝑛𝑛)

+ ℎ
2

2
(𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)

ℎ ) = 0 

Or 

𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ
2 (2𝑓𝑓`(𝑥𝑥𝑛𝑛) + 𝑓𝑓`(𝑥𝑥𝑛𝑛)

− 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)) = 0         (4) 
 
Where ℎ = 𝑥𝑥 −  𝑥𝑥𝑛𝑛, then (4) become 
 

2𝑓𝑓(𝑥𝑥𝑛𝑛) + (𝑥𝑥 −  𝑥𝑥𝑛𝑛)(3𝑓𝑓`(𝑥𝑥𝑛𝑛)
− 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)) = 0 

 
Or 

𝑥𝑥 = 𝑥𝑥𝑛𝑛 − 2𝑓𝑓(𝑥𝑥𝑛𝑛)
3𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)            (5) 

 

Where Newton Raphson Method as, 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 – 𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓`(𝑥𝑥𝑛𝑛) 

Finally, we get 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 2𝑓𝑓(𝑥𝑥𝑛𝑛)
3𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓` (𝑥𝑥𝑛𝑛 – 𝑓𝑓(𝑥𝑥𝑛𝑛)

𝑓𝑓`(𝑥𝑥𝑛𝑛))
(6) 

Hence, the eq. (6) is proposed iterated method 
for solving non-linear equations. 
 
3. CONVERGENCE ANALYSIS 
 

In this section, we are giving the main results 
of this paper. We will be shown that the new 
iterative method has super linear Convergence. 
 
Proof: 
Suppose `a` be a simple zero of 𝑓𝑓(𝑥𝑥) for 
finding 𝑓𝑓(𝑥𝑥𝑛𝑛) and 𝑓𝑓`(𝑥𝑥𝑛𝑛) by Taylor’s Series 
about `a`, we have 

𝑓𝑓(𝑥𝑥𝑛𝑛) = 𝑓𝑓`(𝑎𝑎)(𝑒𝑒𝑛𝑛 + 𝑐𝑐2𝑒𝑒2
𝑛𝑛 + 𝑐𝑐3𝑒𝑒3

𝑛𝑛
+ ⋯ )     − − − (𝑖𝑖) 

𝑓𝑓`(𝑥𝑥𝑛𝑛) = 𝑓𝑓`(𝑎𝑎)(1 + 2𝑐𝑐2𝑒𝑒𝑛𝑛 + 3𝑐𝑐3𝑒𝑒2
𝑛𝑛

+ ⋯ )    − − − (𝑖𝑖𝑖𝑖) 

By using 𝑐𝑐𝑘𝑘 = 𝑓𝑓𝑘𝑘(𝑎𝑎)
𝑘𝑘!𝑓𝑓𝑘𝑘−1(𝑎𝑎), k=2,3, 4… and  

𝑒𝑒𝑛𝑛 = 𝑥𝑥𝑛𝑛 − a 
From(𝑖𝑖)and(𝑖𝑖𝑖𝑖), we have 

𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓`(𝑥𝑥𝑛𝑛) = 𝑒𝑒𝑛𝑛 − 𝑐𝑐2𝑒𝑒2

𝑛𝑛

+ 2(𝑐𝑐2
2  − 𝑐𝑐3)𝑒𝑒3

𝑛𝑛
+ ⋯  − − − (𝑖𝑖𝑖𝑖𝑖𝑖)  

From (iii), we get 
𝑓𝑓(𝑥𝑥𝑛𝑛+1) = 𝑐𝑐2𝑒𝑒2

𝑛𝑛 − 2(𝑐𝑐2
2  − 𝑐𝑐3)𝑒𝑒3

𝑛𝑛
+ ⋯         − − − (𝑖𝑖𝑖𝑖) 

Expanding 𝑓𝑓(𝑥𝑥𝑛𝑛+1) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓′(𝑥𝑥𝑛𝑛+1) in Taylor’s 
Series about `a` and using(𝑖𝑖𝑖𝑖), we have 

𝑓𝑓(𝑥𝑥𝑛𝑛+1) = 𝑓𝑓`(a)[𝑐𝑐2𝑒𝑒2
𝑛𝑛

+ 2(𝑐𝑐3 − 𝑐𝑐2
2)𝑒𝑒3

𝑛𝑛
+ ⋯ ] 

0𝑟𝑟 
𝑓𝑓′(𝑥𝑥𝑛𝑛+1) = 𝑓𝑓`(a)[1 + 2𝑐𝑐2

2𝑒𝑒2
𝑛𝑛

+ ⋯ ]       − − − (𝑖𝑖) 
𝐵𝐵𝐵𝐵 𝑢𝑢𝑢𝑢𝑖𝑖𝑎𝑎𝑢𝑢 (𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑖𝑖) 𝑖𝑖𝑎𝑎 (6), we get 
𝑒𝑒𝑛𝑛+1
= 𝑒𝑒𝑛𝑛

− 2𝑒𝑒𝑛𝑛𝑓𝑓`(𝑎𝑎)(1 + 𝑐𝑐2𝑒𝑒𝑛𝑛 + ⋯ )
𝑓𝑓`(𝑎𝑎)[3 + 6𝑐𝑐2𝑒𝑒𝑛𝑛 − 1 − 2𝑐𝑐22𝑒𝑒2𝑛𝑛 … ] 

 

𝑒𝑒𝑛𝑛+1
= 𝑒𝑒𝑛𝑛

− 2𝑒𝑒𝑛𝑛𝑓𝑓`(𝑎𝑎)(1 + 𝑐𝑐2𝑒𝑒𝑛𝑛 + ⋯ )
𝑓𝑓`(𝑎𝑎)[2 + 6𝑐𝑐2𝑒𝑒𝑛𝑛 − 2𝑐𝑐22𝑒𝑒2𝑛𝑛 … ] (𝑖𝑖𝑖𝑖) 

Further solving to overlooking higher order of 
term and 𝑐𝑐 = 𝑐𝑐2, thus (𝑖𝑖𝑖𝑖) become 

𝑒𝑒𝑛𝑛+1 = 𝑒𝑒𝑛𝑛 − 2𝑒𝑒𝑛𝑛𝑓𝑓`(𝑎𝑎)(1 + 𝑐𝑐𝑒𝑒𝑛𝑛)
2𝑓𝑓`(𝑎𝑎)[1 + 3𝑐𝑐𝑒𝑒𝑛𝑛]  

𝑒𝑒𝑛𝑛+1 = 𝑒𝑒𝑛𝑛 − 𝑒𝑒𝑛𝑛(1 + 𝑐𝑐𝑒𝑒𝑛𝑛)[1 + 3𝑐𝑐𝑒𝑒𝑛𝑛]−1 
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2. PROPOSED METHOD 
 
In this segment, we have developed a method 
for solving non-linear equations with the help 
of taylor series, finite difference, and newton 
raphson method, such a taylor series 

𝑓𝑓(𝑥𝑥𝑟𝑟) = 𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ𝑓𝑓`(𝑥𝑥𝑛𝑛)

+ ℎ
2

2
𝑓𝑓``(𝑥𝑥𝑛𝑛)           (1) 

Where 𝑓𝑓(𝑥𝑥𝑟𝑟) = 0, we obtain 

𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ𝑓𝑓`(𝑥𝑥𝑛𝑛) + ℎ
2

2
𝑓𝑓``(𝑥𝑥𝑛𝑛) = 0     (2) 

By using finite difference, such as 

𝑓𝑓``(𝑥𝑥𝑛𝑛) = 𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)
ℎ              (3) 

Substitute (3) in (2), we get  

𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ𝑓𝑓`(𝑥𝑥𝑛𝑛)

+ ℎ
2

2
(𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)

ℎ ) = 0 

Or 

𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ
2 (2𝑓𝑓`(𝑥𝑥𝑛𝑛) + 𝑓𝑓`(𝑥𝑥𝑛𝑛)

− 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)) = 0         (4) 
 
Where ℎ = 𝑥𝑥 −  𝑥𝑥𝑛𝑛, then (4) become 
 

2𝑓𝑓(𝑥𝑥𝑛𝑛) + (𝑥𝑥 −  𝑥𝑥𝑛𝑛)(3𝑓𝑓`(𝑥𝑥𝑛𝑛)
− 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)) = 0 

 
Or 

𝑥𝑥 = 𝑥𝑥𝑛𝑛 − 2𝑓𝑓(𝑥𝑥𝑛𝑛)
3𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)            (5) 

 

Where Newton Raphson Method as, 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 – 𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓`(𝑥𝑥𝑛𝑛) 

Finally, we get 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 2𝑓𝑓(𝑥𝑥𝑛𝑛)
3𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓` (𝑥𝑥𝑛𝑛 – 𝑓𝑓(𝑥𝑥𝑛𝑛)

𝑓𝑓`(𝑥𝑥𝑛𝑛))
(6) 

Hence, the eq. (6) is proposed iterated method 
for solving non-linear equations. 
 
3. CONVERGENCE ANALYSIS 
 

In this section, we are giving the main results 
of this paper. We will be shown that the new 
iterative method has super linear Convergence. 
 
Proof: 
Suppose `a` be a simple zero of 𝑓𝑓(𝑥𝑥) for 
finding 𝑓𝑓(𝑥𝑥𝑛𝑛) and 𝑓𝑓`(𝑥𝑥𝑛𝑛) by Taylor’s Series 
about `a`, we have 

𝑓𝑓(𝑥𝑥𝑛𝑛) = 𝑓𝑓`(𝑎𝑎)(𝑒𝑒𝑛𝑛 + 𝑐𝑐2𝑒𝑒2
𝑛𝑛 + 𝑐𝑐3𝑒𝑒3

𝑛𝑛
+ ⋯ )     − − − (𝑖𝑖) 

𝑓𝑓`(𝑥𝑥𝑛𝑛) = 𝑓𝑓`(𝑎𝑎)(1 + 2𝑐𝑐2𝑒𝑒𝑛𝑛 + 3𝑐𝑐3𝑒𝑒2
𝑛𝑛

+ ⋯ )    − − − (𝑖𝑖𝑖𝑖) 

By using 𝑐𝑐𝑘𝑘 = 𝑓𝑓𝑘𝑘(𝑎𝑎)
𝑘𝑘!𝑓𝑓𝑘𝑘−1(𝑎𝑎), k=2,3, 4… and  

𝑒𝑒𝑛𝑛 = 𝑥𝑥𝑛𝑛 − a 
From(𝑖𝑖)and(𝑖𝑖𝑖𝑖), we have 

𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓`(𝑥𝑥𝑛𝑛) = 𝑒𝑒𝑛𝑛 − 𝑐𝑐2𝑒𝑒2

𝑛𝑛

+ 2(𝑐𝑐2
2  − 𝑐𝑐3)𝑒𝑒3

𝑛𝑛
+ ⋯  − − − (𝑖𝑖𝑖𝑖𝑖𝑖)  

From (iii), we get 
𝑓𝑓(𝑥𝑥𝑛𝑛+1) = 𝑐𝑐2𝑒𝑒2

𝑛𝑛 − 2(𝑐𝑐2
2  − 𝑐𝑐3)𝑒𝑒3

𝑛𝑛
+ ⋯         − − − (𝑖𝑖𝑖𝑖) 

Expanding 𝑓𝑓(𝑥𝑥𝑛𝑛+1) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓′(𝑥𝑥𝑛𝑛+1) in Taylor’s 
Series about `a` and using(𝑖𝑖𝑖𝑖), we have 

𝑓𝑓(𝑥𝑥𝑛𝑛+1) = 𝑓𝑓`(a)[𝑐𝑐2𝑒𝑒2
𝑛𝑛

+ 2(𝑐𝑐3 − 𝑐𝑐2
2)𝑒𝑒3

𝑛𝑛
+ ⋯ ] 

0𝑟𝑟 
𝑓𝑓′(𝑥𝑥𝑛𝑛+1) = 𝑓𝑓`(a)[1 + 2𝑐𝑐2

2𝑒𝑒2
𝑛𝑛

+ ⋯ ]       − − − (𝑖𝑖) 
𝐵𝐵𝐵𝐵 𝑢𝑢𝑢𝑢𝑖𝑖𝑎𝑎𝑢𝑢 (𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑖𝑖) 𝑖𝑖𝑎𝑎 (6), we get 
𝑒𝑒𝑛𝑛+1
= 𝑒𝑒𝑛𝑛

− 2𝑒𝑒𝑛𝑛𝑓𝑓`(𝑎𝑎)(1 + 𝑐𝑐2𝑒𝑒𝑛𝑛 + ⋯ )
𝑓𝑓`(𝑎𝑎)[3 + 6𝑐𝑐2𝑒𝑒𝑛𝑛 − 1 − 2𝑐𝑐22𝑒𝑒2𝑛𝑛 … ] 

 

𝑒𝑒𝑛𝑛+1
= 𝑒𝑒𝑛𝑛

− 2𝑒𝑒𝑛𝑛𝑓𝑓`(𝑎𝑎)(1 + 𝑐𝑐2𝑒𝑒𝑛𝑛 + ⋯ )
𝑓𝑓`(𝑎𝑎)[2 + 6𝑐𝑐2𝑒𝑒𝑛𝑛 − 2𝑐𝑐22𝑒𝑒2𝑛𝑛 … ] (𝑖𝑖𝑖𝑖) 

Further solving to overlooking higher order of 
term and 𝑐𝑐 = 𝑐𝑐2, thus (𝑖𝑖𝑖𝑖) become 

𝑒𝑒𝑛𝑛+1 = 𝑒𝑒𝑛𝑛 − 2𝑒𝑒𝑛𝑛𝑓𝑓`(𝑎𝑎)(1 + 𝑐𝑐𝑒𝑒𝑛𝑛)
2𝑓𝑓`(𝑎𝑎)[1 + 3𝑐𝑐𝑒𝑒𝑛𝑛]  

𝑒𝑒𝑛𝑛+1 = 𝑒𝑒𝑛𝑛 − 𝑒𝑒𝑛𝑛(1 + 𝑐𝑐𝑒𝑒𝑛𝑛)[1 + 3𝑐𝑐𝑒𝑒𝑛𝑛]−1 
  (1)

 (5)

 (4)

 (6)

 (2)

 (3)

 (4)
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Hence, this has proven from (vii) that the proposed 
method is converge quadratically.

4.   NUMERICAL DISCUSSIONS

This section has investigated some numerical 
functions. C++/MATLAB and EXCEL are used 
to inspect the numerical fallouts with stopping 
criteria such as|x_(n+1)-x_n |<10^10. The results 
experimented with newton raphson method and 
modified newton raphson method. In below Table-1, 
Table-2 and graphical representation, it is observed 
that the proposed second order method receipts less 
iterations and well accuracy as the assessment of 
newton raphson method, and conversely modified 
newton raphson method gives same number of 
iterations but developed method superior than time 
as well as number of evolution as the assessment of 
modified newton raphson method, such as in below 
tables and graphs.
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2. PROPOSED METHOD 
 
In this segment, we have developed a method 
for solving non-linear equations with the help 
of taylor series, finite difference, and newton 
raphson method, such a taylor series 

𝑓𝑓(𝑥𝑥𝑟𝑟) = 𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ𝑓𝑓`(𝑥𝑥𝑛𝑛)

+ ℎ
2

2
𝑓𝑓``(𝑥𝑥𝑛𝑛)           (1) 

Where 𝑓𝑓(𝑥𝑥𝑟𝑟) = 0, we obtain 

𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ𝑓𝑓`(𝑥𝑥𝑛𝑛) + ℎ
2

2
𝑓𝑓``(𝑥𝑥𝑛𝑛) = 0     (2) 

By using finite difference, such as 

𝑓𝑓``(𝑥𝑥𝑛𝑛) = 𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)
ℎ              (3) 

Substitute (3) in (2), we get  

𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ𝑓𝑓`(𝑥𝑥𝑛𝑛)

+ ℎ
2

2
(𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)

ℎ ) = 0 

Or 

𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ
2 (2𝑓𝑓`(𝑥𝑥𝑛𝑛) + 𝑓𝑓`(𝑥𝑥𝑛𝑛)

− 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)) = 0         (4) 
 
Where ℎ = 𝑥𝑥 −  𝑥𝑥𝑛𝑛, then (4) become 
 

2𝑓𝑓(𝑥𝑥𝑛𝑛) + (𝑥𝑥 −  𝑥𝑥𝑛𝑛)(3𝑓𝑓`(𝑥𝑥𝑛𝑛)
− 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)) = 0 

 
Or 

𝑥𝑥 = 𝑥𝑥𝑛𝑛 − 2𝑓𝑓(𝑥𝑥𝑛𝑛)
3𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)            (5) 

 

Where Newton Raphson Method as, 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 – 𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓`(𝑥𝑥𝑛𝑛) 

Finally, we get 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 2𝑓𝑓(𝑥𝑥𝑛𝑛)
3𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓` (𝑥𝑥𝑛𝑛 – 𝑓𝑓(𝑥𝑥𝑛𝑛)

𝑓𝑓`(𝑥𝑥𝑛𝑛))
(6) 

Hence, the eq. (6) is proposed iterated method 
for solving non-linear equations. 
 
3. CONVERGENCE ANALYSIS 
 

In this section, we are giving the main results 
of this paper. We will be shown that the new 
iterative method has super linear Convergence. 
 
Proof: 
Suppose `a` be a simple zero of 𝑓𝑓(𝑥𝑥) for 
finding 𝑓𝑓(𝑥𝑥𝑛𝑛) and 𝑓𝑓`(𝑥𝑥𝑛𝑛) by Taylor’s Series 
about `a`, we have 

𝑓𝑓(𝑥𝑥𝑛𝑛) = 𝑓𝑓`(𝑎𝑎)(𝑒𝑒𝑛𝑛 + 𝑐𝑐2𝑒𝑒2
𝑛𝑛 + 𝑐𝑐3𝑒𝑒3

𝑛𝑛
+ ⋯ )     − − − (𝑖𝑖) 

𝑓𝑓`(𝑥𝑥𝑛𝑛) = 𝑓𝑓`(𝑎𝑎)(1 + 2𝑐𝑐2𝑒𝑒𝑛𝑛 + 3𝑐𝑐3𝑒𝑒2
𝑛𝑛

+ ⋯ )    − − − (𝑖𝑖𝑖𝑖) 

By using 𝑐𝑐𝑘𝑘 = 𝑓𝑓𝑘𝑘(𝑎𝑎)
𝑘𝑘!𝑓𝑓𝑘𝑘−1(𝑎𝑎), k=2,3, 4… and  

𝑒𝑒𝑛𝑛 = 𝑥𝑥𝑛𝑛 − a 
From(𝑖𝑖)and(𝑖𝑖𝑖𝑖), we have 

𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓`(𝑥𝑥𝑛𝑛) = 𝑒𝑒𝑛𝑛 − 𝑐𝑐2𝑒𝑒2

𝑛𝑛

+ 2(𝑐𝑐2
2  − 𝑐𝑐3)𝑒𝑒3

𝑛𝑛
+ ⋯  − − − (𝑖𝑖𝑖𝑖𝑖𝑖)  

From (iii), we get 
𝑓𝑓(𝑥𝑥𝑛𝑛+1) = 𝑐𝑐2𝑒𝑒2

𝑛𝑛 − 2(𝑐𝑐2
2  − 𝑐𝑐3)𝑒𝑒3

𝑛𝑛
+ ⋯         − − − (𝑖𝑖𝑖𝑖) 

Expanding 𝑓𝑓(𝑥𝑥𝑛𝑛+1) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓′(𝑥𝑥𝑛𝑛+1) in Taylor’s 
Series about `a` and using(𝑖𝑖𝑖𝑖), we have 

𝑓𝑓(𝑥𝑥𝑛𝑛+1) = 𝑓𝑓`(a)[𝑐𝑐2𝑒𝑒2
𝑛𝑛

+ 2(𝑐𝑐3 − 𝑐𝑐2
2)𝑒𝑒3

𝑛𝑛
+ ⋯ ] 

0𝑟𝑟 
𝑓𝑓′(𝑥𝑥𝑛𝑛+1) = 𝑓𝑓`(a)[1 + 2𝑐𝑐2

2𝑒𝑒2
𝑛𝑛

+ ⋯ ]       − − − (𝑖𝑖) 
𝐵𝐵𝐵𝐵 𝑢𝑢𝑢𝑢𝑖𝑖𝑎𝑎𝑢𝑢 (𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑖𝑖) 𝑖𝑖𝑎𝑎 (6), we get 
𝑒𝑒𝑛𝑛+1
= 𝑒𝑒𝑛𝑛

− 2𝑒𝑒𝑛𝑛𝑓𝑓`(𝑎𝑎)(1 + 𝑐𝑐2𝑒𝑒𝑛𝑛 + ⋯ )
𝑓𝑓`(𝑎𝑎)[3 + 6𝑐𝑐2𝑒𝑒𝑛𝑛 − 1 − 2𝑐𝑐22𝑒𝑒2𝑛𝑛 … ] 

 

𝑒𝑒𝑛𝑛+1
= 𝑒𝑒𝑛𝑛

− 2𝑒𝑒𝑛𝑛𝑓𝑓`(𝑎𝑎)(1 + 𝑐𝑐2𝑒𝑒𝑛𝑛 + ⋯ )
𝑓𝑓`(𝑎𝑎)[2 + 6𝑐𝑐2𝑒𝑒𝑛𝑛 − 2𝑐𝑐22𝑒𝑒2𝑛𝑛 … ] (𝑖𝑖𝑖𝑖) 

Further solving to overlooking higher order of 
term and 𝑐𝑐 = 𝑐𝑐2, thus (𝑖𝑖𝑖𝑖) become 

𝑒𝑒𝑛𝑛+1 = 𝑒𝑒𝑛𝑛 − 2𝑒𝑒𝑛𝑛𝑓𝑓`(𝑎𝑎)(1 + 𝑐𝑐𝑒𝑒𝑛𝑛)
2𝑓𝑓`(𝑎𝑎)[1 + 3𝑐𝑐𝑒𝑒𝑛𝑛]  

𝑒𝑒𝑛𝑛+1 = 𝑒𝑒𝑛𝑛 − 𝑒𝑒𝑛𝑛(1 + 𝑐𝑐𝑒𝑒𝑛𝑛)[1 + 3𝑐𝑐𝑒𝑒𝑛𝑛]−1 
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2. PROPOSED METHOD 
 
In this segment, we have developed a method 
for solving non-linear equations with the help 
of taylor series, finite difference, and newton 
raphson method, such a taylor series 

𝑓𝑓(𝑥𝑥𝑟𝑟) = 𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ𝑓𝑓`(𝑥𝑥𝑛𝑛)

+ ℎ
2

2
𝑓𝑓``(𝑥𝑥𝑛𝑛)           (1) 

Where 𝑓𝑓(𝑥𝑥𝑟𝑟) = 0, we obtain 

𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ𝑓𝑓`(𝑥𝑥𝑛𝑛) + ℎ
2

2
𝑓𝑓``(𝑥𝑥𝑛𝑛) = 0     (2) 

By using finite difference, such as 

𝑓𝑓``(𝑥𝑥𝑛𝑛) = 𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)
ℎ              (3) 

Substitute (3) in (2), we get  

𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ𝑓𝑓`(𝑥𝑥𝑛𝑛)

+ ℎ
2

2
(𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)

ℎ ) = 0 

Or 

𝑓𝑓(𝑥𝑥𝑛𝑛) + ℎ
2 (2𝑓𝑓`(𝑥𝑥𝑛𝑛) + 𝑓𝑓`(𝑥𝑥𝑛𝑛)

− 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)) = 0         (4) 
 
Where ℎ = 𝑥𝑥 −  𝑥𝑥𝑛𝑛, then (4) become 
 

2𝑓𝑓(𝑥𝑥𝑛𝑛) + (𝑥𝑥 −  𝑥𝑥𝑛𝑛)(3𝑓𝑓`(𝑥𝑥𝑛𝑛)
− 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)) = 0 

 
Or 

𝑥𝑥 = 𝑥𝑥𝑛𝑛 − 2𝑓𝑓(𝑥𝑥𝑛𝑛)
3𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓`(𝑥𝑥𝑛𝑛+1)            (5) 

 

Where Newton Raphson Method as, 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 – 𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓`(𝑥𝑥𝑛𝑛) 

Finally, we get 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 2𝑓𝑓(𝑥𝑥𝑛𝑛)
3𝑓𝑓`(𝑥𝑥𝑛𝑛) − 𝑓𝑓` (𝑥𝑥𝑛𝑛 – 𝑓𝑓(𝑥𝑥𝑛𝑛)

𝑓𝑓`(𝑥𝑥𝑛𝑛))
(6) 

Hence, the eq. (6) is proposed iterated method 
for solving non-linear equations. 
 
3. CONVERGENCE ANALYSIS 
 

In this section, we are giving the main results 
of this paper. We will be shown that the new 
iterative method has super linear Convergence. 
 
Proof: 
Suppose `a` be a simple zero of 𝑓𝑓(𝑥𝑥) for 
finding 𝑓𝑓(𝑥𝑥𝑛𝑛) and 𝑓𝑓`(𝑥𝑥𝑛𝑛) by Taylor’s Series 
about `a`, we have 

𝑓𝑓(𝑥𝑥𝑛𝑛) = 𝑓𝑓`(𝑎𝑎)(𝑒𝑒𝑛𝑛 + 𝑐𝑐2𝑒𝑒2
𝑛𝑛 + 𝑐𝑐3𝑒𝑒3

𝑛𝑛
+ ⋯ )     − − − (𝑖𝑖) 

𝑓𝑓`(𝑥𝑥𝑛𝑛) = 𝑓𝑓`(𝑎𝑎)(1 + 2𝑐𝑐2𝑒𝑒𝑛𝑛 + 3𝑐𝑐3𝑒𝑒2
𝑛𝑛

+ ⋯ )    − − − (𝑖𝑖𝑖𝑖) 

By using 𝑐𝑐𝑘𝑘 = 𝑓𝑓𝑘𝑘(𝑎𝑎)
𝑘𝑘!𝑓𝑓𝑘𝑘−1(𝑎𝑎), k=2,3, 4… and  

𝑒𝑒𝑛𝑛 = 𝑥𝑥𝑛𝑛 − a 
From(𝑖𝑖)and(𝑖𝑖𝑖𝑖), we have 

𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓`(𝑥𝑥𝑛𝑛) = 𝑒𝑒𝑛𝑛 − 𝑐𝑐2𝑒𝑒2

𝑛𝑛

+ 2(𝑐𝑐2
2  − 𝑐𝑐3)𝑒𝑒3

𝑛𝑛
+ ⋯  − − − (𝑖𝑖𝑖𝑖𝑖𝑖)  

From (iii), we get 
𝑓𝑓(𝑥𝑥𝑛𝑛+1) = 𝑐𝑐2𝑒𝑒2

𝑛𝑛 − 2(𝑐𝑐2
2  − 𝑐𝑐3)𝑒𝑒3

𝑛𝑛
+ ⋯         − − − (𝑖𝑖𝑖𝑖) 

Expanding 𝑓𝑓(𝑥𝑥𝑛𝑛+1) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓′(𝑥𝑥𝑛𝑛+1) in Taylor’s 
Series about `a` and using(𝑖𝑖𝑖𝑖), we have 

𝑓𝑓(𝑥𝑥𝑛𝑛+1) = 𝑓𝑓`(a)[𝑐𝑐2𝑒𝑒2
𝑛𝑛

+ 2(𝑐𝑐3 − 𝑐𝑐2
2)𝑒𝑒3

𝑛𝑛
+ ⋯ ] 

0𝑟𝑟 
𝑓𝑓′(𝑥𝑥𝑛𝑛+1) = 𝑓𝑓`(a)[1 + 2𝑐𝑐2
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𝑒𝑒𝑛𝑛+1 = 𝑒𝑒𝑛𝑛 − 𝑒𝑒𝑛𝑛(1 + 𝑐𝑐𝑒𝑒𝑛𝑛)(1
− 3𝑐𝑐𝑒𝑒𝑛𝑛)        

           𝑒𝑒𝑛𝑛+1 = 2𝑐𝑐𝑒𝑒2
𝑛𝑛 + 3𝑐𝑐2𝑒𝑒3

𝑛𝑛  − −(𝑣𝑣𝑣𝑣𝑣𝑣) 
Hence, this has proven from (vii) that the 
proposed method is converge quadratically. 
 
4. NUMERICAL DISCUSSIONS 
 
This section has investigated some numerical 
functions. C++/MATLAB and EXCEL are 
used to inspect the numerical fallouts with 
stopping criteria such as|𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛| < 1010. 

The results experimented with newton raphson 
method and modified newton raphson method. 
In below Table-1, Table-2 and graphical 
representation, it is observed that the proposed 
second order method receipts less iterations 
and well accuracy as the assessment of newton 
raphson method, and conversely modified 
newton raphson method gives same number of 
iterations but developed method superior than 
time as well as number of evolution as the 
assessment of modified newton raphson 
method, such as in below tables and graphs, 
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Fig. 2. Absolute error for problem 02 

 
 

Table 2. List of Accuracy and Iteration  
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4 0.25753 0.25753 0.25753 
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1.61094 1.15287 1.15287 

2 2.11905 1.93463 1.92372 
3.00811 0.151913 0.151913 

3 1.94444 1.94537 1.93452 
0.174606 0.0108035 0.0108035 

4 1.93460 1.93456 1.92372 
0.00984478 1.69277e-005 1.69277e-005 

5 1.93456   
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5.   CONCLUSION

This study has been presented a new iterative method 
for solving non-linear equations. In conclusion, it 
has been determined that the developed iterative 
method performs better than Newton Raphson 
Method and Modified Newton Raphson Method 
from accuracy as well as iteration perception. 
Henceforth, the new iterative method is significant 
execution and superlative performance with the 
contrast of existent methods for solving non-linear 
equations. 
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