
Proceedings of the Pakistan Academy of Sciences: A  Pakistan Academy of Sciences
Physical and Computational Sciences 59(4): 37-44 (2022)
Copyright © Pakistan Academy of Sciences
ISSN (Print): 2518-4245; ISSN (Online): 2518-4253 
https://doi.org/10.53560/PPASA(59-4)801

Research Article

————————————————
Received: November 2022; Accepted: December 2022
*Corresponding author: Muhammad Atif Idrees <atif.idrees@dsu.edu.pk>

Analysis of Stochastic Patterns of Daily Minimum Extreme 
Temperature of Karachi in Global Climate Change Perspective

Muhammad Atif Idrees*1, Syed Ahmed Hassan2, and Muhammad Arif Hussain1

1Department of Basic Sciences, DHA SUFFA University, Karachi, Pakistan
2Department of Mathematics, University of Karachi, Karachi, Pakistan

 
Abstract: Effects of climate change are a critical and globally accepted phenomenon and gradually becoming 
inevitable and catching the attention of policymakers around the world. Temperature is a principal climatic factor and 
is defined as the degree or intensity of heat causing huge consequences on human beings’ lives. This paper suggests 
some stochastic approaches to do an analysis of the Karachi region’s daily minimum extreme temperature from Jan 
1, 2010, to Dec 31, 2014. It is observed that the average daily minimum temperature fits the Markov chain and its 
limiting probability has reached steady-state conditions after 20 to 87 steps or transitions. The results indicate that after 
20 to 87 days the distribution becomes stationary. The smaller steady-state time represents the stationary of the data 
series, whereas long-term behavior shows non-stationarity in trend behavior in the respective seasonal time series. 
Furthermore, the overall annual dormancy of 24 oC to 31oC daily minimum temperature was analyzed early part of the 
summer season.  This study can be useful for weather variability forecasting.
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1. INTRODUCTION

Climatologists have studied a drastic change in 
temperature that has been a cause for concern for 
many years. The consequences of climate change 
are becoming more and more inevitable and are 
drawing the attention of policymakers around 
the world. Several studies have shown links 
between high temperatures and other extreme 
weather conditions like urban heat in Iceland, 
unexpected variations in the urban humidity index, 
heatstroke, sea levelevele, etc., which may cause 
many casualties and even deaths. Idrees and Hira 
analyzed that the steady rise in annual temperature 
is often related to a significant increase in the local 
heat index (energy). Moreover, being the world’s 
seventh-largest (total area of 3,527 km2) and most 
crowded city in Pakistan, situated on the shores of 
the Arabian Sea, Karachi has recently (2015) faced 
thousands of deaths due to high temperatures/
heat stroke. Most of the deaths were in densely 
populated areas of Karachi, possibly due to the 

effects of the urban heat island effect [1]. Usually, 
Karachi’s weather is overall quite pleasant and its 
climate tends to be moderate due to marine impact. 
However, instead of four seasonal types, it has 
typically six seasonal kinds, Winter (Mid Dec. - 
Feb.), Spring (March - Mid April), First Summer 
(Mid-April - May), Monsoon (June - Mid Sep.), 
Second Summer (Mid Sep. - Oct.), Autumn (Nov. - 
Mid Dec.) (Table 1). 

Climate events predictions are a fascinating 
research topic that meteorologists have been paying 
attention to for a long time. Tawfeek et al.[2], Daren 
et al.[3], Mustafa et al. [4] used multiple models to 
see the expected changes in the future. Squintu et al. 
[5] and Sillmann et al. [6] concluded that the climate 
model is the main resource of climate analysis, it 
can reconstruct the current environment and the 
unpredictability of current climate conditions and 
represent future climate scenarios.

Christidis et al. [7] suggested that the people 



need to understand the weather conditions in the 
next few days and other times in the future. Since 
the weather is such an important part of people’s 
lives, they need to understand whether there is a 
pattern that determines when these events occur 
and how serious they may be. Climate change put 
some burdens on arranging some regular alterations 
in people’s lifestyles and planning at the national 
level, for example, special preparations for regular 
outings to work or school and make economic 
developments of energy resources. 

Turner et al. [8], You et al. [9], Stone et al. 
[10], and Dasari et al. [11] suggested that when 
analyzing climate activities under different 
conditions of selected Antarctic stations, the 
researchers proposed various linear trend models 
of sea surface temperature, showing most of 
these had warmed patterns and some had cooling 
patterns. Shumway et al. [12], Hassan et al. [13], 
and Khan et al. [14] concluded that in a couple of 
years, a variety of time-series studies have been 
undertaken to determine the essence of climate 
change in various regions of the world. The analysis 
of the time series is to offer future predictions 
by modeling the past data. The Autoregressive 
Integrated Moving Average (ARIMA) model is the 
most widely used time series method in the study of 
hydro-climatology variability and many real world 
applications. Ching et al. [15], Ching et al. [16], and 
Liu et al. [17] suggetseted that a good and precise 
time series model and forecasts indicate better 
efficiency and effectiveness and may be helpful 
in optimal planning and decision-making process. 
Chu et al. [18] concluded that the prediction of 
time series using the Markov chain method results 
in better efficiency and effectiveness. The selection 
of models under the strong impact of the monsoon 
and complex climate conditions is a big challenge.

Buzacott et al. [19]  analyzed that the Markov 
chains are also a helpful tool in modeling numerous 
practical frameworks, for example, queuing 
theory, fabricating, and stock market frameworks. 
The Markov chain method demonstrating all out-
information arrangements can be likewise found. 
Bartholomew et al. [20] introduced the basic 
principles of Markov Chains. Feller et al. [21], 
Kemeny et al. [22] leading mathematicians who 
incorporated A. Kolmogorov theory and further 
established the theory. However, it was not until 
the 1960s that economics, social sciences, and most 
other applied sciences realized the importance of 
this theory. Ching et al. [23] suggested that Some of 
the issues with Markov chain implementations can 
be overcome by distinguishing between two chain 
shapes, Ergodic and Absorbent. 

Markov chain are valuable tools for modeling 
a range of functional processes, such as queuing 
structures, production processes and distribution 
systems. Categorical data sequence modeling 
applications of Markov chains can also be found. 
This paper employs the Markov chain method to 
analyze the seasonal daily minimum temperature 
of the Karachi region.  These results suggest that 
in spring and fall (each of the 3-month period) 
seasons the temperature values are almost unstable 
and the steady-state conditions arrived after 86 
and 87 transitions respectively. Furthermore, the 
annual dominancy of hot to very hot (24 to 31 oC) 
temperature during March to August followed by 
Cold to Normal (10 to 18 oC) weather in September 
to February months.

2.   METHODOLOGY

The five years data of daily minimum temperature 
from Jan 1, 2010, to Dec 31, 2014, of Karachi 
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temperature values are almost unstable and the 
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Table 1. The weather/climatic of Karachi categories in six different statuses.  

Season 
(Time) 

Minimum 
Temperature 

Maximum 
Temperature 

Weather/Climatic 
Status 

Winter (mid Dec. to Feb.) 10 24 Cold 
Spring (Mar. to mid Apr.) 22 35 Humid 

First Summer (mid Apr. to May) 30 40 Hottest weather 
Monsoon (Jun. to mid Sep.) 26 33 Drizzle, Rainy and Humid 

Second Summer (mid Sep. to Oct.) 23.65 34.4 Clear cloud, suddenly hot, some heat 
waves 

Autumn (Nov. to mid Dec.) 12.8 31.8 Cool nights and Hottest days 
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airport was collected from Pakistan Meteorological 
Department. This data is divided into four seasonal 
pairings of three months, winter, spring, and summer 
from December to February, March to May, June to 
August and September to November respectively. 
The Markov chain is being applied using MATLAB 
software for Karachi city air temperature.

2.1 Markov Chain 

Stochastic processes, denoted by {Xn |n ϵ I} for a 
finite or countable index set I, or {X(t)|t ϵ T} for 
an uncountable index set T, refer to sets of random 
variables. Simply put, a stochastic process is a 
mathematical model that evolves probabilistically 
over a certain period of time [24]. The concept of 
the Markov Chain, which was introduced by Andrey 
Andreyevich-Markov in 1907, is a new form of a 
stochastic process. This process explains how the 
outcome of a particular experiment may impact the 
outcome of the subsequent experiment [25].

A stochastic process  {Xn |n=0,1,2… } is said 
to be a Markov chain with a finite or countlessly 
infinite state space, if for i,j,i0…,in-1 ϵ S, and 
n=0,1,2,…

Given a collection of states,  S={i,j,i0…,in-1},  
n=0,1,2,… the process starts from one of the three 
states and moves successively from one state to 
another, and each movement is called a phase. If 
the chain is in state i at the moment, then it moves 
to another state j with a transitional probability 
denoted as pij and that probability is independent of 
the previous state [21].

The pij, is also called probabilities of transformation, 
the process can stay in the state i with probability 
pii. An initial probability distribution, defined in S, 
specifies the starting state and matrix, P,

is called the Markov chain transition matrix, or 
transition probability matrix {X_n,n=0,1,2,…}.

where each 0 ≤ Pij ≤ 1 and ∑∞
j=0pij = 1, .. i = 0,1,2…

3.   RESULTS AND DISCUSSION

Fig. 1 represents the daily minimum temperature 
for four seasonal time series plots from 2010-to-
2014 from December to February (DJF), March 
to May (MAM), June to August (JJA), and 
September to November (SON) of Karachi Airport. 
The temperature from all three seasons except 
JJA show overall stationary behavior, however, 
during 2013 and 2014 they show some rising trend 
(within 3 months not observed in previous years). 
This behavior puts some non-stationarity in the 
data series, which may be due to some local and 
most probably global impact. The JJA temperature 
shows the overall stationary behavior. Table 2 
shows the transition states temperature ranges of all 
four selected seasons of the minimum temperature 
in Karachi city.

The Markov analysis of the seasonal 
temperature from DJF is analyzed considering 
three initial transition states defined as, very cold                       
(5 ≤ t < 10), cold (10 ≤ t < 15) and normal                                                                                         
(15 ≤ t < 21). The associated DJF estimated Markov 
transition probability matrix is defined as P1:

The probabilities of the above P1 matrix show 
that if the minimum temperature is initially in 
the very cold range, then the probabilities for the 
next day will be very cold, cold, and normal with                      
77 %, 23 %, and 0 % respectively. Moreover, if 
the minimum temperature is initially cold, then the 
probabilities for the next day will be very cold, cold, 
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Table 2. Relate the steady-state probability of all four seasons’ daily minimum temperature 
Winter: DJF 

 ( Range 16C) 
  (𝑷𝑷𝟏𝟏

𝟐𝟐𝟐𝟐) 

Spring: MAM (Range 
21C) 
 (𝑷𝑷𝟐𝟐

𝟐𝟐𝟖𝟖) 

Summer: JJA ( Range 
9C) 

(𝑷𝑷𝟑𝟑
𝟐𝟐𝟐𝟐) 

Fall: SON ( Range 21C) 
(𝑷𝑷𝟒𝟒

𝟐𝟐𝟖𝟖) 

Very 
Cold 
5-10C 

Cold 
10-15C 

Normal 
15-21C 

Cold 
10-18C 

Normal 
18-24C 

Hot 
24-31C 

Warm 
22-25C 

Hot 
25-27C 

Very 
Hot 

27-31C 

Very 
Hot 

24-31C 

Hot 
18-24C 

Normal 
10-18C 

0.35 0.50 0.15 0.15 0.35 0.50 0.02 0.16 0.82 0.25 0.35 0.40 
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Given a collection of states,  𝑆𝑆 = {𝑖𝑖, 𝑗𝑗, 𝑖𝑖0 … , 𝑖𝑖𝑛𝑛−1 },  
𝑛𝑛 = 0, 1, 2, … the process starts from one of the three 
states and moves successively from one state to 
another, and each movement is called a phase. If the 
chain is in state i at the moment, then it moves to 
another state j with a transitional probability denoted 

as 𝑝𝑝𝑖𝑖𝑖𝑖 and that probability is independent of the 
previous state [21]. 

The 𝑝𝑝𝑖𝑖𝑖𝑖, is also called probabilities of 
transformation, the process can stay in the state i with 
probability 𝑝𝑝𝑖𝑖𝑖𝑖. An initial probability distribution, 
defined in 𝑆𝑆, specifies the starting state and matrix, 𝑃𝑃, 

𝑃𝑃 = (
𝑝𝑝01 𝑝𝑝02 𝑝𝑝03 …
𝑝𝑝11 𝑝𝑝12 𝑝𝑝13 …
𝑝𝑝21

⋮
𝑝𝑝22

⋮
𝑝𝑝23 …
⋮      …

) 

is called the Markov chain transition matrix, or 
transition probability matrix {𝑋𝑋𝑛𝑛, 𝑛𝑛 = 0, 1, 2, … }. 

where each 0 ≤ 𝑃𝑃𝑖𝑖𝑖𝑖 ≤ 1 and ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 = 1,∞
𝑖𝑖=0   𝑖𝑖 =

0,1,2 … 
 

3. RESULTS AND DISCUSSION 

Fig. 1 represents the daily minimum temperature for 
four seasonal time series plots from 2010-to-2014 
from December to February (DJF), March to May 
(MAM), June to August (JJA), and September to 
November (SON) of Karachi Airport. The 
temperature from all three seasons except JJA show 
overall stationary behavior, however, during 2013 
and 2014 they show some rising trend (within 3 
months not observed in previous years). This 
behavior puts some non-stationarity in the data series, 
which may be due to some local and most probably 
global impact. The JJA temperature shows the overall 
stationary behavior. Table 2 shows the transition 
states temperature ranges of all four selected seasons 
of the minimum temperature in Karachi city. 

 

Table 2. Relate the steady-state probability of all four seasons’ daily minimum temperature 
Winter: DJF 

 ( Range 16C) 
  (𝑷𝑷𝟏𝟏

𝟐𝟐𝟐𝟐) 

Spring: MAM (Range 
21C) 
 (𝑷𝑷𝟐𝟐

𝟐𝟐𝟖𝟖) 

Summer: JJA ( Range 
9C) 

(𝑷𝑷𝟑𝟑
𝟐𝟐𝟐𝟐) 

Fall: SON ( Range 21C) 
(𝑷𝑷𝟒𝟒

𝟐𝟐𝟖𝟖) 

Very 
Cold 
5-10C 

Cold 
10-15C 

Normal 
15-21C 

Cold 
10-18C 

Normal 
18-24C 

Hot 
24-31C 

Warm 
22-25C 

Hot 
25-27C 

Very 
Hot 

27-31C 

Very 
Hot 

24-31C 

Hot 
18-24C 

Normal 
10-18C 

0.35 0.50 0.15 0.15 0.35 0.50 0.02 0.16 0.82 0.25 0.35 0.40 
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and normal with 15 %, 71 %, and 14 % respectively. 
Finally, if the minimum temperature is initially 
normal, then the probabilities for the next day will 
be very cold, cold, and normal with 3 %, 43 %, and 
54 % respectively. Fig. 2 represents a transition 
diagram describing the state transition probabilities 
with nodes very cold, cold, and normal in the daily 
minimum temperature of DJF.

After two transitions or multiplying P1 by 
itself, P1 will be P1

2  matrix as shown above. It is 
shown that if the temperature is initially very cold, 
then the probability that temperature for the day 
after tomorrow will be very cold, cold and normal 
with 63 %, 34 % and 3 % respectively. Similarly, 
other state transition probabilities have been 
interpreted. After 28 transitions periods (28th-time 
multiplication of P1), this matrix indicates that the 
Markov chain has reached its steady state or limit 
probabilities, as shown in the P1

28 matrix defined 
above. This result has shown that in the future, the 

transition probabilities become stationary which 
means it will be very cold, cold and normal after 
28 days of transition and so on are 35 %, 50 % and 
15 % respectively. Therefore, there is no impact 
between current day temperatures with after 28 
days temperature. This shows that in the future the 
chances of temperature change during the month 
DJF after 87 days/transitions will be very cold, 
cold and normal are varying from 77 %, 15 % and 
0.03 to 35%, very cold; 23 %, 71 % and 43 % to                         
50 % cold; and 0 %, 14 % and 54 % to 15 % normal 
respectively.

Similarly, the temperature from MAM is 
analyzed, with initial states defined as, Cold                                     
(10 ≤ t < 18), Normal (18 ≤ t < 24), and Hot                                                                                                  
(24 ≤ t < 31). The respective MAM estimated 
transition probability matrix is defined as P2:

The probabilities of the above P2 matrix 
show that if the minimum temperature is initially 
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Fig. 1. Daily mean minimum temperature from 2010-to-2014 during December to February (DJF, Lower graph), 
March to May (MAM), June to August (JJA, Upper graph) and September to November (SoN) of Karachi Airport. 

The Markov analysis of the seasonal temperature 
from DJF is analyzed considering three initial 
transition states defined as, very cold (5 ≤ 𝑡𝑡 < 10), 
cold (10 ≤ 𝑡𝑡 < 15) and normal (15 ≤ 𝑡𝑡 < 21). The 
associated DJF estimated Markov transition 
probability matrix is defined as P1: 

 

 

  very  cold cold normal  very  
cold cold normal  very   

cold cold normal 
 very  cold 0.77 0.23 0.00  0.63 0.34 0.03  0.35 0.50 0.15 

P1 = cold 0.15 0.71 0.14 ;  𝑃𝑃12 =  0.23 0.60 0.17 ;  𝑃𝑃128=  0.35 0.50 0.15 
 normal 0.03 0.43 0.54  0.10 0.54 0.35  0.35 0.50 0.15 

The probabilities of the above P1 matrix show that 
if the minimum temperature is initially in the very 
cold range, then the probabilities for the next day will 
be very cold, cold, and normal with 77%, 23%, and 
0% respectively. Moreover, if the minimum 
temperature is initially cold, then the probabilities for 
the next day will be very cold, cold, and normal with 
15%, 71%, and 14% respectively. Finally, if the 
minimum temperature is initially normal, then the 
probabilities for the next day will be very cold, cold, 
and normal with 3%, 43%, and 54% respectively. Fig. 
2 represents a transition diagram describing the state 
transition probabilities with nodes very cold, cold, 
and normal in the daily minimum temperature of DJF. 

 
Fig. 2. Transition diagram of December to February 
(DJF) 

 

 

Fig. 3. Transition diagram of March to May (MAM) 
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will be 𝑃𝑃12  matrix as shown above. It is shown that if 
the temperature is initially very cold, then the 
probability that temperature for the day after 
tomorrow will be very cold, cold and normal with 
63%, 34% and 3% respectively. Similarly, other state 
transition probabilities have been interpreted. After 
28 transitions periods (28th-time multiplication of P1), 
this matrix indicates that the Markov chain has 
reached its steady state or limit probabilities, as 
shown in the P128 matrix defined above. This result 
has shown that in the future, the transition 
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Fig. 1. Daily mean minimum temperature from 2010-to-2014 during December to February (DJF, Lower graph), 
March to May (MAM), June to August (JJA, Upper graph) and September to November (SoN) of Karachi Airport. 

The Markov analysis of the seasonal temperature 
from DJF is analyzed considering three initial 
transition states defined as, very cold (5 ≤ 𝑡𝑡 < 10), 
cold (10 ≤ 𝑡𝑡 < 15) and normal (15 ≤ 𝑡𝑡 < 21). The 
associated DJF estimated Markov transition 
probability matrix is defined as P1: 
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 very  cold 0.77 0.23 0.00  0.63 0.34 0.03  0.35 0.50 0.15 

P1 = cold 0.15 0.71 0.14 ;  𝑃𝑃12 =  0.23 0.60 0.17 ;  𝑃𝑃128=  0.35 0.50 0.15 
 normal 0.03 0.43 0.54  0.10 0.54 0.35  0.35 0.50 0.15 

The probabilities of the above P1 matrix show that 
if the minimum temperature is initially in the very 
cold range, then the probabilities for the next day will 
be very cold, cold, and normal with 77%, 23%, and 
0% respectively. Moreover, if the minimum 
temperature is initially cold, then the probabilities for 
the next day will be very cold, cold, and normal with 
15%, 71%, and 14% respectively. Finally, if the 
minimum temperature is initially normal, then the 
probabilities for the next day will be very cold, cold, 
and normal with 3%, 43%, and 54% respectively. Fig. 
2 represents a transition diagram describing the state 
transition probabilities with nodes very cold, cold, 
and normal in the daily minimum temperature of DJF. 
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the temperature is initially very cold, then the 
probability that temperature for the day after 
tomorrow will be very cold, cold and normal with 
63%, 34% and 3% respectively. Similarly, other state 
transition probabilities have been interpreted. After 
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Fig. 1. Daily mean minimum temperature from 2010-to-2014 during December to February (DJF, Lower graph), 
March to May (MAM), June to August (JJA, Upper graph) and September to November (SoN) of Karachi Airport. 

The Markov analysis of the seasonal temperature 
from DJF is analyzed considering three initial 
transition states defined as, very cold (5 ≤ 𝑡𝑡 < 10), 
cold (10 ≤ 𝑡𝑡 < 15) and normal (15 ≤ 𝑡𝑡 < 21). The 
associated DJF estimated Markov transition 
probability matrix is defined as P1: 

 

 

  very  cold cold normal  very  
cold cold normal  very   

cold cold normal 
 very  cold 0.77 0.23 0.00  0.63 0.34 0.03  0.35 0.50 0.15 

P1 = cold 0.15 0.71 0.14 ;  𝑃𝑃12 =  0.23 0.60 0.17 ;  𝑃𝑃128=  0.35 0.50 0.15 
 normal 0.03 0.43 0.54  0.10 0.54 0.35  0.35 0.50 0.15 

The probabilities of the above P1 matrix show that 
if the minimum temperature is initially in the very 
cold range, then the probabilities for the next day will 
be very cold, cold, and normal with 77%, 23%, and 
0% respectively. Moreover, if the minimum 
temperature is initially cold, then the probabilities for 
the next day will be very cold, cold, and normal with 
15%, 71%, and 14% respectively. Finally, if the 
minimum temperature is initially normal, then the 
probabilities for the next day will be very cold, cold, 
and normal with 3%, 43%, and 54% respectively. Fig. 
2 represents a transition diagram describing the state 
transition probabilities with nodes very cold, cold, 
and normal in the daily minimum temperature of DJF. 
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Fig. 3. Transition diagram of March to May (MAM) 
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the temperature is initially very cold, then the 
probability that temperature for the day after 
tomorrow will be very cold, cold and normal with 
63%, 34% and 3% respectively. Similarly, other state 
transition probabilities have been interpreted. After 
28 transitions periods (28th-time multiplication of P1), 
this matrix indicates that the Markov chain has 
reached its steady state or limit probabilities, as 
shown in the P128 matrix defined above. This result 
has shown that in the future, the transition 
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Fig. 1. Daily mean minimum temperature from 2010-to-2014 during December to February (DJF, Lower graph), 
March to May (MAM), June to August (JJA, Upper graph) and September to November (SoN) of Karachi Airport. 

The Markov analysis of the seasonal temperature 
from DJF is analyzed considering three initial 
transition states defined as, very cold (5 ≤ 𝑡𝑡 < 10), 
cold (10 ≤ 𝑡𝑡 < 15) and normal (15 ≤ 𝑡𝑡 < 21). The 
associated DJF estimated Markov transition 
probability matrix is defined as P1: 

 

 

  very  cold cold normal  very  
cold cold normal  very   

cold cold normal 
 very  cold 0.77 0.23 0.00  0.63 0.34 0.03  0.35 0.50 0.15 

P1 = cold 0.15 0.71 0.14 ;  𝑃𝑃12 =  0.23 0.60 0.17 ;  𝑃𝑃128=  0.35 0.50 0.15 
 normal 0.03 0.43 0.54  0.10 0.54 0.35  0.35 0.50 0.15 

The probabilities of the above P1 matrix show that 
if the minimum temperature is initially in the very 
cold range, then the probabilities for the next day will 
be very cold, cold, and normal with 77%, 23%, and 
0% respectively. Moreover, if the minimum 
temperature is initially cold, then the probabilities for 
the next day will be very cold, cold, and normal with 
15%, 71%, and 14% respectively. Finally, if the 
minimum temperature is initially normal, then the 
probabilities for the next day will be very cold, cold, 
and normal with 3%, 43%, and 54% respectively. Fig. 
2 represents a transition diagram describing the state 
transition probabilities with nodes very cold, cold, 
and normal in the daily minimum temperature of DJF. 
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Fig. 3. Transition diagram of March to May (MAM) 

 

After two transitions or multiplying P1 by itself, P1 

will be 𝑃𝑃12  matrix as shown above. It is shown that if 
the temperature is initially very cold, then the 
probability that temperature for the day after 
tomorrow will be very cold, cold and normal with 
63%, 34% and 3% respectively. Similarly, other state 
transition probabilities have been interpreted. After 
28 transitions periods (28th-time multiplication of P1), 
this matrix indicates that the Markov chain has 
reached its steady state or limit probabilities, as 
shown in the P128 matrix defined above. This result 
has shown that in the future, the transition 
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Fig. 1. Daily mean minimum temperature from 2010-to-2014 during December to February (DJF, Lower graph), 
March to May (MAM), June to August (JJA, Upper graph) and September to November (SON) of Karachi Airport.
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Fig. 1. Daily mean minimum temperature from 2010-to-2014 during December to February (DJF, Lower graph), 
March to May (MAM), June to August (JJA, Upper graph) and September to November (SoN) of Karachi Airport. 

The Markov analysis of the seasonal temperature 
from DJF is analyzed considering three initial 
transition states defined as, very cold (5 ≤ 𝑡𝑡 < 10), 
cold (10 ≤ 𝑡𝑡 < 15) and normal (15 ≤ 𝑡𝑡 < 21). The 
associated DJF estimated Markov transition 
probability matrix is defined as P1: 

 

 

  very  cold cold normal  very  
cold cold normal  very   

cold cold normal 
 very  cold 0.77 0.23 0.00  0.63 0.34 0.03  0.35 0.50 0.15 

P1 = cold 0.15 0.71 0.14 ;  𝑃𝑃12 =  0.23 0.60 0.17 ;  𝑃𝑃128=  0.35 0.50 0.15 
 normal 0.03 0.43 0.54  0.10 0.54 0.35  0.35 0.50 0.15 

The probabilities of the above P1 matrix show that 
if the minimum temperature is initially in the very 
cold range, then the probabilities for the next day will 
be very cold, cold, and normal with 77%, 23%, and 
0% respectively. Moreover, if the minimum 
temperature is initially cold, then the probabilities for 
the next day will be very cold, cold, and normal with 
15%, 71%, and 14% respectively. Finally, if the 
minimum temperature is initially normal, then the 
probabilities for the next day will be very cold, cold, 
and normal with 3%, 43%, and 54% respectively. Fig. 
2 represents a transition diagram describing the state 
transition probabilities with nodes very cold, cold, 
and normal in the daily minimum temperature of DJF. 
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Fig. 3. Transition diagram of March to May (MAM) 
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the temperature is initially very cold, then the 
probability that temperature for the day after 
tomorrow will be very cold, cold and normal with 
63%, 34% and 3% respectively. Similarly, other state 
transition probabilities have been interpreted. After 
28 transitions periods (28th-time multiplication of P1), 
this matrix indicates that the Markov chain has 
reached its steady state or limit probabilities, as 
shown in the P128 matrix defined above. This result 
has shown that in the future, the transition 
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in the cold range, then the probabilities for the 
next day will be cold, normal, and hot with                                                     
79 %, 21 %, and 0 % respectively. Moreover, if the 
minimum temperature is initially normal, then the 
probabilities for the next day will be cold, normal, 
and hot with 8 %, 82 %, and 10 % respectively. 
Finally, if the minimum temperature is initially hot, 
then the probabilities for the next day will be cold, 
normal, and hot with 0 %, 6 % and 93 % respectively. 
Fig. 3 represents a transition diagram describing 
the state transition probabilities with nodes cold, 
normal, and hot in the daily minimum temperature 
of MAM. When multiplying P1 by itself or after 
two transitions, the probability matrix will now be 
equal to P2

2 as defined above. It is shown that if the 
temperature is initially cold, then the probability 
that the temperature for the day after tomorrow will 
be cold, normal, and hot with 64 %, 34 %, and 2 % 
respectively. Similarly, the other state probabilities 
have been interpreted. After 86 transitions period, 
the P2 matrix attained the steady-state or limiting 

probability matrix as shown above as P2
86. 

Results have shown that in the future, the 
transition probabilities become stationary, which 
implies that it will be cold, normal, and hot after 
86 days/transition and so on are 15 %, 35 %, and 
50 % respectively. So, there is no impact between 
the current day temperature with after 86 days’ 
temperature. In the cluster, MAM the probabilities 
that the minimum temperature after 86 days/
transitions will be cold, normal and hot vary from 
79 %, 8 % and 1 % to 15 % cold; 21 %, 82 % and 
6% to 35 % normal and 0 %, 10 % and 93 % to                       
50 % hot respectively.

Like the above seasonal behavior, the 
temperature values from JJA are analyzed, with 
initial states defined as, warm (22 ≤ t < 25), hot                         
(25 ≤ t < 27), and very hot (27 ≤ t < 31). Their 
estimated Markov transition probability matrix, is 
P3 define as:
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probabilities become stationary which means it will 
be very cold, cold and normal after 28 days of 
transition and so on are 35%, 50% and 15% 
respectively. Therefore, there is no impact between 
current day temperatures with after 28 days 
temperature. This shows that in the future the chances 
of temperature change during the month DJF after 87 
days/transitions will be very cold, cold and normal are 
varying from 77%, 15% and 0.03 to 35%, very cold; 
23%, 71% and 43% to 50% cold; and 0%, 14% and 
54% to 15% normal respectively. 

Similarly, the temperature from MAM is analyzed, 
with initial states defined as, Cold (10 ≤ 𝑡𝑡 < 18), 
Normal (18 ≤ 𝑡𝑡 < 24), and Hot (24 ≤ 𝑡𝑡 < 31). The 
respective MAM estimated transition probability 
matrix is defined as P2: 

 

 

  cold normal hot  cold normal hot  cold normal hot 
 cold 0.79 0.21 0.00   0.64 0.34 0.02  0.15 0.35 0.50 

P2 =      normal 0.08 0.82 0.10  ; 𝑃𝑃22 =  0.13 0.70 0.17 ;  𝑃𝑃286 =  0.15 0.35 0.50 

 hot 0.01 0.06 0.93  0.02 0.11 0.87  0.15 0.35 0.50 

             

 

The probabilities of the above P2 matrix show that 
if the minimum temperature is initially in the cold 
range, then the probabilities for the next day will be 
cold, normal, and hot with 79%, 21%, and 0% 
respectively. Moreover, if the minimum temperature 
is initially normal, then the probabilities for the next 
day will be cold, normal, and hot with 8%, 82%, and 
10% respectively. Finally, if the minimum 
temperature is initially hot, then the probabilities for 
the next day will be cold, normal, and hot with 0%, 
6% and 93% respectively. Fig. 3 represents a 
transition diagram describing the state transition 
probabilities with nodes cold, normal, and hot in the 
daily minimum temperature of MAM. When 
multiplying P1 by itself or after two transitions, the 
probability matrix will now be equal to 𝑃𝑃22 as defined 
above. It is shown that if the temperature is initially 
cold, then the probability that the temperature for the 
day after tomorrow will be cold, normal, and hot with 
64%, 34%, and 2% respectively. Similarly, the other 
state probabilities have been interpreted. After 86 

transitions period, the P2 matrix attained the steady-
state or limiting probability matrix as shown above as 
𝑃𝑃286.  

Results have shown that in the future, the transition 
probabilities become stationary, which implies that it 
will be cold, normal, and hot after 86 days/transition 
and so on are 15%, 35%, and 50% respectively. So, 
there is no impact between the current day 
temperature with after 86 days’ temperature. In the 
cluster, MAM the probabilities that the minimum 
temperature after 86 days/transitions will be cold, 
normal and hot vary from 79%, 8% and 1% to 15% 
cold; 21%, 82% and 6% to 35% normal and 0%, 10% 
and 93% to 50% hot respectively. 

Like the above seasonal behavior, the temperature 
values from JJA are analyzed, with initial states 
defined as, warm (22 ≤ 𝑡𝑡 < 25), hot (25 ≤ 𝑡𝑡 < 27), 
and very hot (27 ≤ 𝑡𝑡 < 31). Their estimated 
Markov transition probability matrix, is P3 define as: 

 

  warm hot very 
hot 

 warm hot very 
hot 

 warm hot very        
hot 

 warm 0.14 0.86 0.00  0.06 0.59 0.35  0.02 0.16 0.82 

P3=   =      hot 0.04 0.55 0.41 ; 𝑃𝑃32 = 0.03 0.37 0.60 ;  𝑃𝑃320 = 0.02 0.16 0.82 

 very hot 0.01 0.07 0.92  0.01 0.11 0.88  0.02 0.16 0.82 
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probabilities become stationary which means it will 
be very cold, cold and normal after 28 days of 
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The probabilities of the above P2 matrix show that 
if the minimum temperature is initially in the cold 
range, then the probabilities for the next day will be 
cold, normal, and hot with 79%, 21%, and 0% 
respectively. Moreover, if the minimum temperature 
is initially normal, then the probabilities for the next 
day will be cold, normal, and hot with 8%, 82%, and 
10% respectively. Finally, if the minimum 
temperature is initially hot, then the probabilities for 
the next day will be cold, normal, and hot with 0%, 
6% and 93% respectively. Fig. 3 represents a 
transition diagram describing the state transition 
probabilities with nodes cold, normal, and hot in the 
daily minimum temperature of MAM. When 
multiplying P1 by itself or after two transitions, the 
probability matrix will now be equal to 𝑃𝑃22 as defined 
above. It is shown that if the temperature is initially 
cold, then the probability that the temperature for the 
day after tomorrow will be cold, normal, and hot with 
64%, 34%, and 2% respectively. Similarly, the other 
state probabilities have been interpreted. After 86 

transitions period, the P2 matrix attained the steady-
state or limiting probability matrix as shown above as 
𝑃𝑃286.  

Results have shown that in the future, the transition 
probabilities become stationary, which implies that it 
will be cold, normal, and hot after 86 days/transition 
and so on are 15%, 35%, and 50% respectively. So, 
there is no impact between the current day 
temperature with after 86 days’ temperature. In the 
cluster, MAM the probabilities that the minimum 
temperature after 86 days/transitions will be cold, 
normal and hot vary from 79%, 8% and 1% to 15% 
cold; 21%, 82% and 6% to 35% normal and 0%, 10% 
and 93% to 50% hot respectively. 
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  warm hot very 
hot 

 warm hot very 
hot 

 warm hot very        
hot 
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tomorrow will be warm, hot, and very hot with 1%, 
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diagram indicating the state transition probabilities 
with nodes warm, hot, and very hot in the daily 
temperature respectively. 
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normal, then the next day probabilities will be of very 
hot, hot, and normal with 0%, 9% and 91% chance 
respectively. Fig. 5 shows the transition diagram 
indicating the state transition probabilities with nodes 
very hot, hot, and normal in the daily temperature 
respectively. 
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2 matrix define 
above. This matrix shows that if the temperature is 
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It implies that from the above matrix if the 
minimum temperature is initially in the warm 
range, then the probabilities for tomorrow will 
be warm, hot, and very hot with 14%, 86%, and 
0% respectively. Moreover, if the temperature is 

initially in the hot range, then the probabilities for 
tomorrow will be warm, hot, and very hot with 
4%, 55%, and 41% respectively. Finally, if the 
temperature is initially in the very hot range, then 
the probabilities for tomorrow will be warm, hot, 
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row) show that, if the temperature is initially in the 
very hot range, then the next day probabilities for very 
hot, hot, or normal states are 87%, 10%, and 3% 
respectively. Moreover, if the state is initially hot, 
then the next day's temperature probabilities will be 
very hot, hot, and normal with 9%, 83% and 8% 
chance respectively. Finally, if the state is initially at 

normal, then the next day probabilities will be of very 
hot, hot, and normal with 0%, 9% and 91% chance 
respectively. Fig. 5 shows the transition diagram 
indicating the state transition probabilities with nodes 
very hot, hot, and normal in the daily temperature 
respectively. 

After two transitions or multiplying P4 itself, the 
probabilities will be represented as 𝑃𝑃4

2 matrix define 
above. This matrix shows that if the temperature is 

and very hot with 1 %, 7 %, and 92 % respectively. 
Fig. 4 shows the transition diagram indicating the 
state transition probabilities with nodes warm, hot, 
and very hot in the daily temperature respectively.

After two transitions or multiplying P3 itself, 
the matrix will now be P3

2 as shown above. The first 
row of P3

2  matrix indicates that if the temperature 
is initially in the warm range, then the probabilities 
that the temperature for the day after tomorrow 
of warm, hot, or very hot will be 6 %, 59 % and                      
35 % respectively. In the same way, for other state 
probabilities are interpreted. After 20 transitions, 
the P3 according to the matrix, the Markov chain 
has either achieved its steady-state or reached the 
limit probabilities as illustrated in P3

20 matrix define 
above.

The P3
20 transition matrix has shown that in 

the future, the transition probabilities will become 
stationary which implies it will be warm, hot and 
very hot after 20 days or transition and so on are 
2 %, 16 % and 82 % respectively. So, there is no 
impact between current day temperature with after 
23 days temperature. For the JJA probabilities that 
the minimum temperature after 20 days/transitions 
will be warm, hot and very hot are varied from                             
14 %, 4 % and 1 % to 2 % warm; 86 %, 55 % and 
7 % to 16 % hot and 0 %, 41 % and 92 % to 82 % 
very hot respectively.

Now, the temperature from SON is analyzed, 
with initial states defined as, very hot (24 ≤ t < 31), 
hot (18 ≤ t < 24), and normal (10 ≤ t < 18). The 
estimated transition matrix, P4 of the temperature 
is defined as P4:

The transition probabilities of the P4 matrix (first 
row) show that, if the temperature is initially in the 
very hot range, then the next day probabilities for 
very hot, hot, or normal states are 87 %, 10 %, and 
3 % respectively. Moreover, if the state is initially 
hot, then the next day’s temperature probabilities 

will be very hot, hot, and normal with 9%, 83% 
and 8 % chance respectively. Finally, if the state is 
initially at normal, then the next day probabilities 
will be of very hot, hot, and normal with 0 %,                                              
9 % and 91 % chance respectively. Fig. 5 shows 
the transition diagram indicating the state transition 
probabilities with nodes very hot, hot, and normal 
in the daily temperature respectively.

After two transitions or multiplying P4 itself, the 
probabilities will be represented as P4

2 matrix define 
above. This matrix shows that if the temperature is 
initially at a very hot state, then the probabilities 
that the temperature for the day after tomorrow will 
be very hot, hot, and normal states with 77 %, 17 % 
and 6 % chance respectively. In the same way we 
can consider probabilities for other states. After 87 
transitions, the steady-state or limit probabilities of 
the Markov chain are indicated in the matrix P4

87, 
suggesting that the Markov chain has either reached 
its steady-state or attained the limit probabilities. 
These results have shown that the transition 
probabilities become stationary in the future. The 
transition from any state to very hot and hot ranges 
after 87 days of transition are 25 %, 35 % and 40 % 
respectively. So, there is no change in the transition 
probability after 87 days temperature from one 
initial state to another. This shows that, for SON the 
probabilities that the minimum temperature after 
87 days/transitions will be very hot, hot and normal 
are varied from 87 %, 9 % and 0 % to 25 % very 
hot, 10 %, 83 % and 9 % to 35 % hot and 3 %, 8 % 
and 91 % to 40 % normal respectively.

The temperature ranges of four seasons, 
winter (16 oC), spring (21 oC), summer (9 oC), fall                                                                                          
(21 oC) have a transitional period to steady the state 
probabilities, (P1

23, P2
86, P3

20 and P4
87) are about 

23, 86, 20, and 87 days respectively (Table-2). 
This relation shows that range of the temperature 
may be directly related to the steady state period. 
Moreover, the steady state period of 86 and 87 days/
transitions may suggest that in spring (92 days) and 
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fall season’s (91 days) the temperatures are almost 
unstable, respectively. The steady state matrices 
(P1

23, P2
86, P3

20 and P4
87) and Table 2 depicted that 

the over annual dominancy of temperature 24 to                                                                                                     
31 oC (Hot to very hot) from March to August 
followed by 10 to 18 oC (Cold to Normal) from 
September to February periods. The formation of 
P1 , P2 , P3 , and P4 and related steady state matrices 
suggested that climate change analyses (for a 
different span of time) may be utilized Markov 
transition probability method.

4.  CONCLUSION

The time series graph mentioned some climate 
change indications as an abrupt shift in the mean 
of the three seasonal data except JJA during the 
years 2013 and 2014. In order to predict the future 
temperature, parameters such as atmospheric 
temperature, humidity, and precipitation are 
required, moreover, the transition probability 
matrix will be a good choice for future temperature 
determination. This paper analyzed the daily 
minimum temperature data of Karachi Airport to 
predict their overall future behavior, according to 
the Markov chain model. The temperature long-
term behavior described that after 20 to 87 days/
transitions no impact of temperature appears 
in changing the probabilities from one state to 
another. The short steady-state interval of 23 of 
DJF and 20 days of JJA shows that both seasons 
have stationary data series. The long steady-state 
interval of 86 MAM and 87 days of SON represents 
a trend and nonstationary behavior. The steady-
state transitional periods may be directly related to 
the temperature range and their nonstationary and 
trend behavior of the season. The smaller steady-
state time represents the stationary of the data 
series, whereas, the long time shows nonstationary 
and trend behavior in respective seasonal time 
series. The annual dominancy of daily minimum 
temperature is from 24 to 31 oC (Hot to very hot) 
from March to August and particularly 24 to 31 oC 
for JJA season. Conclusively, the Markov chain 
analysis may be a good method to reconstruct the 
current environment and the unpredictability of 
the current climate conditions and represent future 
climate scenarios. This study may prove useful 
in analyzing weather condition variability. It is 
recommended that additional data be included to 
facilitate a more extensive analysis.
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