# Some Studies of Multi-Polar Fuzzy Ideals in LA-Semigroups 

Fareeha Pervaiz*, Muhammad Shabir, and Muhammad Aslam

Department of Mathematics, Quaid-i-Azam University Islamabad, Pakistan


#### Abstract

This article's main goal is to investigate the concept of multi-polar fuzzy sets (MPF-sets) in LA-semigroups, which is an extension of bi-polar fuzzy sets (BPF-sets) in LA-semigroups. The main objective of this research is to extend certain significant BPF-set results to MPF-sets results. This article introduces the concepts of multi-polar fuzzy sub LA-semigroups, multi-polar fuzzy quasi-ideals, multi-polar fuzzy bi-ideals, multi-polar fuzzy generalized bi-ideals, and multi-polar fuzzy interior ideals in LA-semigroups. This article also discusses a number of fundamental aspects of multi-polar fuzzy ideals, and we use these aspects to define regular LA-semigroups.


Keywords: Multi-Polar Fuzzy Sub LA-semigroups, Multi-Polar Fuzzy Generalized Bi-Ideals, Multi-Polar Fuzzy BiIdeals, Multi-Polar Fuzzy Quasi-Ideals, Multi-Polar Fuzzy Interior Ideals

## 1. INTRODUCTION

Over the course of the field's evolution, various types of fuzzy set expansions have been developed. The theory of fuzzy sets is well known and has a large variety of applications in many different fields, including decision-making issues, neural networks, artificial intelligence, social sciences, and many more. The use of innovative ideas related to m -polar spherical fuzzy sets for medical diagnosis is investigated by Riaz et al. [16]. In the field of multi-criteria decision-making, researchers have recently introduced hybrid structures of MPF-sets to better model uncertainties. The idea of F-set was first represented by Zadeh [13-14]. The structure of fuzzy group is defined by Rosenfeld [12]. Mordeson et al. [8] and Kuroki [4] have examined fuzzy semigroups. The application of BPF-sets in decision making is examined by Malik et al. [7]. The membership function only ranged over the closed interval $[0,1]$, it is hard to demonstrate the distinctness of irrelevant elements with the contradictory elements in a F-set. On the basis of these observations, the notion of BPF-set was introduced by Lee [5]. The BPF-set is actually an expansion of a F-set whose membership degree lies within the range $[-1,1]$. In a BPF-set, the associate degree 0 denotes that an element is unrelated to the correlative property, the associate degree from [ 0,1 ] denotes that the element partially fulfills the property to a bit extent, and the associate degree from $[-1,0]$ denotes that the element completely fulfills the contrary property to a bit extent [5-6].

A 2-polar -sets and BPF-sets are two algebraic structures. Actually, BPF-set and 2-polar F-set have a natural one-to-one relationship. The BPF-sets can be expanded to MPF-sets by utilizing the concept of a one-to-one relationship. Sometimes, different things have occasionally been observed in various ways. This prompted research into MPF-set. The idea behind this interpretation is predicated on the fact that the given collection contains multi-polar information. MPF-sets have been successful in assigning membership degrees to multiple objects in the context of multi-polar information. In this case, it is important to note that MPF-sets only provide positive degrees of membership for each element, and no negative membership degrees are assumed [1]. Numerous real-world issues involving multiple factors, multiple indices, multiple items, and multiple polarities can be solved using multipolar F-sets. Multi-polar F-sets can be used for diagnostic data, cooperative games, and decisionmaking.

A MPF-set can be written as $m$ distinct $F$-sets, just like the BPF-sets can. As a consequence, every input is expressed by an m-dimensional vector whose entries belongs to $[0,1]$, each represents a degree of confidence. Assume that the collection of context is $\mathrm{N}=\{1,2,3, \ldots, \mathrm{~m}\}$. Then, MPF-set will indicate the fulfillment degree of an element with regard to $\mathrm{n}^{\text {th }}$ context for each $\mathrm{n} \in \mathrm{N}$ [2]. For example, the F-set "brilliant" can have different interpretations among students in a particular class.

[^0]We will give an example to demonstrate it.
Let $Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right\}$ be the collection of 5 students. We shall grade them by a 4 -polar F -set based on the following four qualities given below in Table 1.

Table 1. 4 polar fuzzy set

|  | IQ | Sports | Punctual | Discipline |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Z}_{1}$ | 1 | 0 | 0.8 | 0.9 |
| $\mathrm{Z}_{2}$ | 1 | 0.8 | 0.5 | 0.5 |
| $\mathrm{Z}_{3}$ | 0.5 | 1 | 1 | 0.8 |
| $\mathrm{Z}_{4}$ | 0.8 | 0.5 | 1 | 0.8 |
| $\mathrm{Z}_{5}$ | 1 | 0.5 | 0.9 | 0.8 |

Consequently, we get a 4-polar F-subset $\hat{g}: Z \rightarrow$ $[0,1]^{4}$ of $Z$ such that

$$
\begin{aligned}
& \hat{g}\left(\mathrm{z}_{1}\right)=(1,0,0.8,0.9) \\
& \hat{g}\left(\mathrm{z}_{2}\right)=(1,0.8,0.5,0.5) \\
& \hat{g}\left(\mathrm{z}_{3}\right)=(0.5,1,1,0.8) \\
& \hat{g}\left(\mathrm{z}_{4}\right)=(0.8,0.5,1,0.8) \\
& \hat{g}\left(\mathrm{z}_{5}\right)=(1,0.5,0.9,0.8) .
\end{aligned}
$$

Here 1 stands for positive comments, 0.5 for average, and 0 for negative remarks.

In current paper, we define multi-polar fuzzy sub LA-semigroup (MPF-sub LA-semigroup) and multi-polar fuzzy ideals (MPF-ideals) of an LA-semigroup. Besides this, the characterization of regular LA-semigroups by MPF-ideals are presented.

## 2. PRELIMINARIES

We now illustrate some basic definitions and initial results centred on LA-semigroups that are significant in and of themselves. For the parts that follow, these are necessary. In the present paper, $\hat{S}$ will be denoting an LA-semigroup, unless stated otherwise. The concept of LA-semigroups, was first studied by Kazim and Naseerudin in 1972 [3]. Later on, Yusuf and Mushtaq worked on locally associative LA-semigroups in 1979 [10].

Definition 2.1 If an algebraic structure ( $\hat{S}, \bullet)$ holds the equation $(r \cdot s) \cdot t=(t \cdot s) \cdot r$ for each $r, s, t$
$\in \hat{S}$, then it is a left almost semigroup (or LAsemigroup) [3].

Some basic definitions which are widely used in LA-semigroup as described below.

If for each a $\in \hat{S}$, ea $=$ a, then e in $\hat{S}$ is a left identity. The left identity $e \in \hat{S}$ is unique [9]. Furthermore, if $e \in \hat{S}$, then $\hat{S}=\hat{S} \mathrm{e}=\mathrm{e} \hat{S}$ and $\hat{S}^{2}=$ $\hat{S}$. A left ideal (L-ideal) over $\hat{S}$ is a subset $\hat{I}$ that satisfies $\hat{S} \hat{I} \subseteq \hat{I}$ and right ideal (R-ideal) over $\hat{S}$ if $\hat{I} \hat{S} \subseteq \hat{I} . \hat{I}$ is simply termed an ideal (or two-sided) over $\hat{S}$ if $\hat{I}$ is a L-ideal and R-ideal over $\hat{S}$ [11]. A subset $\hat{I}$ over $\hat{S}$ which is non-empty is a sub LAsemigroup over $\hat{S}$ if $\hat{I}^{2} \subseteq \hat{I}$. A subset $\hat{I}$ over $\hat{S}$ which is non-empty is a generalized bi-ideal (GBideal) over $\hat{S}$ if $(\hat{I} \hat{S}) \hat{I} \subseteq \hat{I}$. A sub LA-semigroup $\hat{I}$ over $\hat{S}$ is a bi-ideal (B-ideal) over $\hat{S}$ if $(\hat{I} \hat{S}) \hat{I} \subseteq \hat{I}$. A subset $\hat{I}$ over $\hat{S}$ which is non-empty is a quasiideal (Q-ideal) over $\hat{S}$ if $\hat{I} \hat{S} \cap \hat{S} \hat{I} \subseteq \hat{I}$. A sub LAsemigroup $\hat{I}$ over $\hat{S}$ is an interior ideal (I-ideal) over $\hat{S}$ if $(\hat{S} \hat{I}) \hat{S} \subseteq \hat{I}$.

Definition 2.2 A function $\hat{g}: \hat{S} \rightarrow[0,1]$ from $\hat{S}$ into the interval $[0,1]$ is a fuzzy subset ( F -subset) of a universe $\hat{S}$.

Some important definitions in F-sets are defined below.

Let $\hat{g}$ be a $F$-subset over $\hat{S}$. Then the set $\hat{g}_{\mathrm{t}}=\{\mathrm{s} \in$ $\hat{S} \mid \hat{g}(\mathrm{~s}) \geq \mathrm{t}\}$ for all $\mathrm{t} \in(0,1]$, is named as a level subset over $\hat{S}$.

Let $\hat{g}$ and $\hat{h}$ be any two F-subsets over $\hat{S}$, then $\hat{g}$ $\leq \hat{h}$ means that $\hat{g}(\mathrm{~s}) \leq \hat{h}(\mathrm{~s})$ for each $\mathrm{s} \in \hat{S}$. The F subsets $\hat{g} \wedge \hat{h}$ and $\hat{g} \vee \hat{h}$ of $\hat{S}$ is described as
$(\hat{g} \wedge \hat{h})(\mathrm{s})=\hat{g}(\mathrm{~s}) \wedge \hat{h}(\mathrm{~s})$ and
$(\hat{g} \vee \hat{h})(\mathrm{s})=\hat{g}(\mathrm{~s}) \vee \hat{h}(\mathrm{~s})$ for all $\mathrm{s} \in \hat{S}$.
The product $\hat{g} \circ \hat{h}$ is defined as
$(\hat{g} \circ \hat{h})(\mathrm{s})=$
$\left\{\begin{array}{c}\mathrm{V}_{s=p q}\{\hat{g}(\mathrm{p}) \wedge \hat{h}(\mathrm{q})\} \text {, if } \exists \mathrm{p}, \mathrm{q} \in \hat{S} \text { such that } s=p q \\ 0 \quad \text { otherwise }\end{array}\right.$
for all $\mathrm{s} \in \hat{S}$.
A F-subset $\hat{g}$ over $\hat{S}$ is a fuzzy sub LA-semigroup (F-Sub LA-semigroup) over $\hat{S}$ if for every $\mathrm{p}, \mathrm{q} \in$ $\hat{S}, \hat{g}(\mathrm{pq}) \geq \hat{g}(\mathrm{p}) \wedge \hat{g}(\mathrm{q})[15]$.

For every $\mathrm{p}, \mathrm{q} \in \hat{S}$, a F-subset $\hat{g}$ over $\hat{S}$ is classified as a fuzzy left ideal (FL-ideal) over $\hat{S}$ if $\hat{g}(\mathrm{pq}) \geq \hat{g}(\mathrm{q})$ [15].
For every $\mathrm{p}, \mathrm{q} \in \hat{S}$, a F-subset $\hat{g}$ over $\hat{S}$ is classified as a fuzzy right ideal (FR-ideal) over $\hat{S}$ if $\hat{g}(\mathrm{pq}) \geq \hat{g}(\mathrm{p})$ [15].

If F-subset $\hat{g}$ is both a FL-ideal and a FR-ideal over $\hat{S}$, so it is a fuzzy ideal (F-ideal) over $\hat{S}$.

A F-subset $\hat{g}$ over $\hat{S}$ is a fuzzy quasi-ideal (FQideal) over $\hat{S}$ if $(\hat{g} \circ \delta) \wedge(\delta \circ \hat{g}) \leq \hat{g}$. Here, $\delta$ is the F-subset over $\hat{S}$ which maps each element of $\hat{S}$ on 1 , that is $\delta$ is the characteristic function over $\hat{S}$ [15].

A F-subset $\hat{g}$ over $\hat{S}$ is a fuzzy generalized biideal (FGB-ideal) over $\hat{S}$ if $\hat{g}((\mathrm{pq}) \mathrm{r}) \geq \hat{g}(\mathrm{p}) \wedge \hat{g}(\mathrm{r})$ for each $\mathrm{p}, \mathrm{q}, \mathrm{r} \in \hat{S}$ [15].

A F-Sub LA-semigroup $\hat{g}$ over $\hat{S}$ is known as a fuzzy bi-ideal (FB-ideal) over $\hat{S}$ if $\hat{g}((\mathrm{pq}) \mathrm{r}) \geq \hat{g}(\mathrm{p})$ $\wedge \hat{g}(\mathrm{r})$ for each $\mathrm{p}, \mathrm{q}, \mathrm{r} \in \hat{S}$ [15].

A F-Sub LA-semigroup $\hat{g}$ over $\hat{S}$ is a fuzzy interior-ideal (FI-ideal) over $\hat{S}$ if for all $\mathrm{p}, \mathrm{q}, \mathrm{r} \in$ $\hat{S}, \hat{g}((\mathrm{pq}) \mathrm{r}) \geq \hat{g}(\mathrm{q})[15]$.

## 3. RESULTS AND DISCUSSION

Now, we define some notions and present our main results regarding multi-polar fuzzy ideals in $\hat{S}$.

Definition 3.1 [1] Multi-polar fuzzy subset over $\hat{S}$ is a mapping $\hat{g}: \hat{S} \rightarrow[0,1]^{\mathrm{m}}$.

MPF-set is represented by the m-tuple $\hat{g}=$ $\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$, consists of mappings $\hat{g}_{n}: \hat{S} \rightarrow[0,1]$ for each $\mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\}$. The collection of all MPF-subsets of $\hat{S}$, is represented as $m(\hat{S})$. We define a relation $\leq$ on $\mathrm{m}(\hat{S})$ in the following manner:

For any two MPF-subsets $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{m}\right)$ and $\hat{h}$ $=\left(\hat{h}_{1}, \hat{h}_{2}, \ldots, \hat{h}_{\mathrm{m}}\right)$ of an LA-semigroup $\hat{S}, \hat{g} \leq \hat{h}$ means that $\hat{g}_{\mathrm{n}}(\mathrm{s}) \leq \hat{h}_{\mathrm{n}}(\mathrm{s})$ for each $\mathrm{s} \in \hat{S}$ and $\mathrm{n} \in$ $\{1,2,3, \ldots, \mathrm{~m}\}$.

The symbols $\hat{g} \wedge \hat{h}$ and $\hat{g} \vee \hat{h}$ denotes the following MPF-subsets over $\hat{S}$.
$(\hat{g} \wedge \hat{h})(\mathrm{s})=\hat{g}(\mathrm{~s}) \wedge \hat{h}(\mathrm{~s})$ and $(\hat{g} \vee \hat{h})(\mathrm{s})=\hat{g}(\mathrm{~s}) \vee$ $\hat{h}(\mathrm{~s})$ that is $\left(\hat{g}_{\mathrm{n}} \wedge \hat{h}_{\mathrm{n}}\right)(\mathrm{s})=\hat{g}_{\mathrm{n}}(\mathrm{s}) \wedge \hat{h}_{\mathrm{n}}(\mathrm{s})$ and $\left(\hat{g}_{\mathrm{n}} \vee\right.$
$\left.\hat{h}_{\mathrm{n}}\right)(\mathrm{s})=\hat{g}_{\mathrm{n}}(\mathrm{s}) \vee \hat{h}_{\mathrm{n}}(\mathrm{s})$ for each $\mathrm{s} \in \hat{S}$ and $\mathrm{n} \in$ $\{1,2,3, \ldots, m\}$.

Let $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ and $\hat{h}=\left(\hat{h}_{1}, \hat{h}_{2}, \ldots, \hat{h}_{\mathrm{m}}\right)$ be any two MPF-subsets over $\hat{S}$.

The product $\hat{g} \circ \hat{h}=\left(\hat{g}_{1} \circ \hat{h}_{1}, \hat{g}_{2} \circ \hat{h}_{2}, . ., \hat{g}_{\mathrm{n}} \circ \hat{h}_{\mathrm{n}}\right)$ is defined as
$\left(\hat{g}_{\mathrm{n}} \circ \hat{h}_{\mathrm{n}}\right)=$
$\left\{\begin{array}{c}\mathrm{V}_{s=p q}\left\{\hat{g}_{n}(\mathrm{p}) \wedge \hat{h}_{n}(\mathrm{q})\right\}, \text { if } \mathrm{s}=\mathrm{pq} \text { for some } \mathrm{p}, \mathrm{q} \in \hat{S} \\ 0 \\ \text { otherwise }\end{array}\right.$
for every $\mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\}$.
For $\mathrm{m}=3$, the following example illustrates the product of MPF-subsets $\hat{g}$ and $\hat{h}$ over $\hat{S}$.

Example 3.1 Let the LA-semigroup $\hat{S}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ with the binary operation $" \cdot "$ is defined as (Table 2):

Table 2. LA-semigroup

|  | U | v | W |
| :--- | :--- | :--- | :--- |
| U | U | u | U |
| V | U | u | U |
| w | V | v | U |

We define 3-polar fuzzy subsets $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \hat{g}_{3}\right)$ and $\hat{h}=\left(\hat{h}_{1}, \hat{h}_{2}, \hat{h}_{3}\right)$ of $\hat{S}$ as follows:

$$
\begin{aligned}
& \hat{g}(\mathrm{u})=(0.1,0.2,0.1), \hat{g}(\mathrm{v})=(0,0,0), \hat{g}(\mathrm{w})= \\
& (0.2,0.3,0.4)
\end{aligned}
$$

and

$$
\hat{h}(\mathrm{u})=(0,0,0), \hat{h}(\mathrm{v})=(0,0.1,0.2), \hat{h}(\mathrm{w})=
$$

(0.3,0,0.4).

By definition,

$$
\begin{aligned}
& \left(\hat{g}_{1} \circ \hat{h}_{1}\right)(\mathrm{u})=0.2,\left(\hat{g}_{1} \circ \hat{h}_{1}\right)(\mathrm{v})=0,\left(\hat{g}_{1} \circ \hat{h}_{1}\right)(\mathrm{w}) \\
& =0
\end{aligned}
$$

$$
\left(\hat{g}_{2} \circ \hat{h}_{2}\right)(\mathrm{u})=0.1,\left(\hat{g}_{2} \circ \hat{h}_{2}\right)(\mathrm{v})=0.1,\left(\hat{g}_{2} \circ \hat{h}_{2}\right)(\mathrm{w})
$$

$$
=0
$$

$$
\begin{aligned}
& \left(\hat{g}_{3} \circ \hat{h}_{3}\right)(\mathrm{u})=0.4,\left(\hat{g}_{3} \circ \hat{h}_{3}\right)(\mathrm{v})=0.2,\left(\hat{g}_{3} \circ \hat{h}_{3}\right)(\mathrm{w}) \\
& =0
\end{aligned}
$$

So, the product of $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \hat{g}_{3}\right)$ and $\hat{h}=$ $\left(\hat{h}_{1}, \hat{h}_{2}, \hat{h}_{3}\right)$ is defined by
$(\hat{g} \circ \hat{h})(u)=(0.2,0.1,0.4)$,
$(\hat{g} \circ \hat{h})(\mathrm{v})=(0,0.1,0.2)$
$(\hat{g} \circ \hat{h})(\mathrm{w})=(0,0,0)$.
Definition 3.2 Consider $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ be a MPF-subset over $\hat{S}$.
(1) Let $\hat{g}_{\mathrm{t}}=\{\mathrm{x} \in \widehat{\mathrm{S}} \mid \hat{g}(\mathrm{x}) \geq \mathrm{t}\}$ be defined for each t and $\mathrm{t}=\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{m}}\right) \in(0,1]^{\mathrm{m}}$, such that $\hat{g}_{\mathrm{n}}(\mathrm{x}) \geq \mathrm{t}_{\mathrm{n}}$ for each $\mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\}$. We name $\hat{g}_{\mathrm{t}}$ a t -cut or sometimes a level set. This means $\hat{g}_{\mathrm{t}}=$ $\bigcap_{k=1}^{m}\left(\hat{g}_{n}\right) t_{n}$.

Definition 3.3 A multi-polar fuzzy subset $\hat{g}=$ $\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{m}\right)$ over $\hat{S}$ is a multi-polar fuzzy sub LA-semigroup (MPF-sub LA-semigroup) over $\hat{S}$ if $\hat{g}(\mathrm{xy}) \geq \min \{\hat{g}(\mathrm{x}), \hat{g}(\mathrm{y})\}$ for every $\mathrm{x}, \mathrm{y} \in \hat{S}$, that is $\hat{g}_{\mathrm{n}}(\mathrm{xy}) \geq \min \left\{\hat{g}_{\mathrm{n}}(\mathrm{x}), \hat{g}_{\mathrm{n}}(\mathrm{y})\right\}$ for each $\mathrm{n} \in$ $\{1,2,3, \ldots, \mathrm{~m}\}$.

Definition 3.4 A multi-polar fuzzy subset $\hat{g}=$ ( $\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}$ ) over $\hat{S}$ is a multi-polar fuzzy left ideal (MPFL-ideal) over $\hat{S}$ if for each $\mathrm{x}, \mathrm{y} \in \hat{S}$, $\hat{g}(\mathrm{xy}) \geq \hat{g}(\mathrm{y})$, that is $\hat{g}_{\mathrm{n}}(\mathrm{xy}) \geq \hat{g}_{\mathrm{n}}(\mathrm{y})$ and multipolar fuzzy right ideal (MPFR-ideal) over $\hat{S}$ if for each $\mathrm{x}, \mathrm{y} \in \hat{S}, \hat{g}(\mathrm{xy}) \geq \hat{g}(\mathrm{x})$, that is $\hat{g}_{\mathrm{n}}(\mathrm{xy}) \geq \hat{g}_{\mathrm{n}}(\mathrm{x})$ for each $\mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\}$.

A MPF-subset $\hat{g}$ over $\hat{S}$ is considered a MPFideal over $\hat{S}$ if it satisfies the conditions of being a multi-polar fuzzy left ideal (MPFL-ideal) and a multi-polar fuzzy right ideal (MPFR-ideal) over $\hat{S}$.

The next example is of 3-polar fuzzy two-sided ideal over $\hat{S}$.

Example 3.2 Consider $\hat{S}=\{\mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}\}$ be an LAsemigroup under the binary operation"•" defined below in Table 3.

Table 3. LA-semigroup

| - | R | s | t | u | v |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $R$ | $R$ | r | r | r | r |
| S | R | s | s | s | s |
| T | R | s | u | v | t |
| U | R | s | t | u | v |
| V | $R$ | s | v | t | u |

We define a 3-polar fuzzy subset $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \hat{g}_{3}\right)$ of $\hat{S}$ as follows:
$\hat{g}(\mathrm{r})=(0.8,0.8,0.7), \hat{g}(\mathrm{~s})=(0.7,0.6,0.5)$,
$\hat{g}(\mathrm{t})=(0.6,0.4,0.2), \hat{g}(\mathrm{u})=(0.6,0.4,0.2)$ and
$\hat{g}(\mathrm{v})=(0.6,0.4,0.2)$.
Clearly, $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \hat{g}_{3}\right)$ is both a 3-polar FL-ideal and a 3 -polar FR-ideal over $\hat{S}$. Hence $\hat{g}$ is a 3 polar fuzzy two-sided ideal over $\hat{S}$.

Definition 3.5 Let $\varphi \neq \hat{A} \subseteq \hat{S}$, where $\hat{S}$ be an LAsemigroup. Subsequently, the multi-polar characteristic function
$\hat{C}_{\hat{A}}: \mathrm{X} \rightarrow[0,1]^{\mathrm{m}}$ of $\hat{A}$ is described as
$\hat{C}_{\hat{A}}(\mathrm{x})=\left\{\begin{array}{l}(1,1, \ldots, 1) \mathrm{m}-\text { tuple for } \mathrm{x} \in \hat{\mathrm{A}} \\ (0,0, \ldots, 0) \mathrm{m}-\text { tuple for } \mathrm{x} \notin \hat{\mathrm{A}}\end{array}\right.$
Lemma 3.1 For any two subsets $\hat{A} \neq \varphi$ and $\hat{B} \neq$ $\varphi$ of an LA-semigroup $\hat{S}$. The subsequent equalities are hold.
(1) $\hat{C}_{\hat{A}} \wedge \hat{C}_{\hat{B}}=\hat{C}_{\hat{A} \cap \hat{B}}$.
(2) $\hat{C}_{\widehat{A}} \vee \hat{C}_{\widehat{B}}=\hat{C}_{\hat{A} \cup \widehat{B}}$
(3) $\hat{C}_{\widehat{A}} \circ \hat{C}_{\widehat{B}}=\hat{C}_{\hat{A} \hat{B}}$

Proof. (1) Let $\hat{A} \neq \varphi$ and $\hat{B} \neq \varphi$ be two subsets over $\hat{S}$. We examine the four cases as below,

Case 1: Consider $\mathrm{x} \in \hat{\mathrm{A}} \cap \widehat{\mathrm{B}}$. Then, $\hat{C}_{\hat{\mathrm{A}} \cap \hat{B}}(\mathrm{x})=$ $(1,1, \ldots, 1)$. Also $\mathrm{x} \in \hat{\mathrm{A}} \cap \widehat{\mathrm{B}}$ implies $\mathrm{x} \in \hat{\mathrm{A}}$ and $\mathrm{x} \in$ $\hat{B}$. Hence, $\hat{C}_{\hat{A}}(\mathrm{x})=(1,1, \ldots, 1)$ and $\hat{C}_{\hat{B}}(\mathrm{x})=$ $(1,1, \ldots, 1)$. This implies that $\left(\hat{C}_{\hat{A}} \wedge \hat{C}_{\hat{B}}\right)(\mathrm{x})=$ $\hat{C}_{\hat{A}}(\mathrm{x}) \wedge \hat{C}_{\hat{B}}(\mathrm{x})=(1,1, \ldots, 1)$. Thus, $\hat{C}_{\hat{A}} \wedge \hat{C}_{\hat{B}}=\hat{C}_{\hat{A} \cap \hat{B}}$.
Case 2: Consider $\mathrm{x} \notin \hat{\mathrm{A}} \cap \widehat{\mathrm{B}}$. Then $\hat{C}_{\hat{\mathrm{A}} \cap \hat{B}}(\mathrm{x})=$ $(0,0, \ldots, 0)$. As $x \notin \hat{A} \cap \hat{B}$ thus $x \notin \hat{A}$ or $x \notin \hat{B}$. As a result, it follows that $\hat{C}_{\hat{A}}(\mathrm{x})=(0,0, \ldots, 0)$ or $\hat{C}_{\hat{B}}(\mathrm{x})$ $=(0,0, \ldots, 0)$. Thus, $\left(\hat{C}_{\hat{A}} \wedge \hat{C}_{\hat{B}}\right)(\mathrm{x})=\hat{C}_{\hat{A}}(\mathrm{x}) \wedge \hat{C}_{\hat{B}}(\mathrm{x})$ $=(0,0, \ldots, 0)$. Therefore $\hat{C}_{\hat{A}} \wedge \hat{C}_{\widehat{B}}=\hat{C}_{\hat{\mathrm{A}} \cap \widehat{\mathrm{B}}}$.
(2) Consider $\hat{A}$ and $\hat{B}$ denote non-empty subsets of $\hat{S}$.

Case 1: Let $\mathrm{x} \in \hat{\mathrm{A}} \cup \hat{B}$. Then, $\hat{C}_{\hat{A} \cup \hat{B}}(\mathrm{x})=(1,1, \ldots, 1)$. Since $\mathrm{x} \in \hat{\mathrm{A}} \cup \hat{B}$ implies $\mathrm{x} \in \hat{\mathrm{A}}$ or $\mathrm{x} \in \hat{B}$. Hence, $\hat{C}_{\hat{A}}(\mathrm{x})=(1,1, \ldots, 1)$ or $\hat{C}_{\hat{B}}(\mathrm{x})=(1,1, \ldots, 1)$. As a result, it follows that $\left(\hat{C}_{\hat{A}} \vee \hat{C}_{\hat{B}}\right)(\mathrm{x})=\hat{C}_{\hat{A}}(\mathrm{x}) \vee$ $\hat{C}_{\hat{B}}(\mathrm{x})=(1,1, \ldots, 1)$. Thus, $\hat{C}_{\hat{A}} \vee \hat{C}_{\hat{B}}=\hat{C}_{\hat{A} \cup \hat{B}}$.
Case 2: Let $x \notin \hat{A} \cup \hat{B}$. Then $\hat{C}_{\hat{A} \cup \hat{B}}(x)=(0,0, \ldots, 0)$. Since $x \notin \hat{A} \cup \hat{B}$, we get $x \notin \hat{A}$ and $x \notin B$. This implies that $\hat{C}_{\hat{A}}(\mathrm{x})=(0,0, \ldots, 0)$ and $\hat{C}_{\hat{B}}(\mathrm{x})=$ $(0,0, \ldots, 0)$. Thus, $\left(\hat{C}_{\hat{A}} \vee \hat{C}_{\hat{B}}\right)(\mathrm{x})=\hat{C}_{\hat{A}}(\mathrm{x}) \vee \hat{C}_{\hat{B}}(\mathrm{x})=$ $(0,0, \ldots, 0)$. Hence $\hat{C}_{\hat{A}} \vee \hat{C}_{\hat{B}}=\hat{C}_{\hat{A} \cup \hat{B}}$.
(3) Let $\hat{A} \neq \varphi$ and $\hat{B} \neq \varphi$ be subsets over $\hat{S}$.

Case 1: Let $\mathrm{x} \in \hat{A} \hat{B}$, which implies that $\mathrm{x}=\mathrm{ab}$ for $\mathrm{a} \in \hat{A}$ and $\mathrm{b} \in \hat{B}$. Thus $\hat{C}_{\hat{A} \hat{B}}(\mathrm{x})=(1,1, \ldots, 1)$. Since $\mathrm{a} \in \hat{A}$ and $\mathrm{b} \in \hat{B}$, we have $\hat{C}_{\hat{A}}(\mathrm{a})=(1,1, \ldots, 1)$ and $\hat{C}_{\hat{B}}(\mathrm{~b})=(1,1, \ldots, 1)$. Now,

$$
\begin{aligned}
\left(\hat{C}_{\widehat{A}} \circ \hat{C}_{\hat{B}}\right)(\mathrm{x}) & =\mathrm{V}_{x=u v}\left\{\hat{C}_{\hat{A}}(\mathrm{u}) \wedge \hat{C}_{\hat{B}}(\mathrm{v})\right\} \\
& \geq \hat{C}_{\widehat{A}}(\mathrm{a}) \wedge \hat{C}_{\hat{B}}(\mathrm{~b}) \\
& =(1,1, \ldots, 1)
\end{aligned}
$$

Thus, $\hat{C}_{\hat{A}} \circ \hat{C}_{\widehat{B}}=\hat{C}_{\hat{A} \hat{B}}$.
Case 2: Let $\mathrm{x} \notin \hat{A} \widehat{B}$. This implies that $\hat{C}_{\hat{A} \hat{B}}(\mathrm{x})=$ $(0,0, \ldots, 0)$. Because $\mathrm{x} \neq \mathrm{ab}$ for each $\mathrm{a} \in \hat{A}$ and $\mathrm{b} \in$ $\hat{B}$. So, $\left(\hat{C}_{\hat{A}}{ }^{\circ} \hat{C}_{\hat{B}}\right)(\mathrm{x})=\mathrm{V}_{x=a b}\left\{\hat{C}_{\hat{A}}(\mathrm{a}) \wedge \hat{C}_{\hat{B}}(\mathrm{~b})\right\}=$ $(0,0, \ldots, 0)$.

Hence $\hat{C}_{\hat{A}} \circ \hat{C}_{\hat{B}}=\hat{C}_{\hat{A} \hat{B}}$.
Lemma 3.2 Consider $\hat{L} \neq \varphi$ be a subset of $\hat{S}$. So the subsequent assertions hold.
(1) $\hat{L}$ is a sub LA-semigroup over $\hat{S}$ iff $\hat{C}_{\hat{L}}$ is a multi-polar fuzzy sub LA-semigroup over $\hat{S}$.
(2) $\hat{L}$ is a left (right, two-sided) ideal over $\hat{S}$ iff $\hat{C}_{\hat{L}}$ is a multi-polar fuzzy left (right, two-sided) ideal over $\hat{S}$.

Proof. (1) Consider $\hat{L}$ is a sub LA-semigroup over $\hat{S}$. We claim that
$\hat{C}_{\hat{L}}(\mathrm{xy}) \geq \hat{C}_{\hat{L}}(\mathrm{x}) \wedge \hat{C}_{\hat{L}}(\mathrm{y})$ for every $\mathrm{x}, \mathrm{y} \in \hat{S}$. We examine the four cases as below,

Case 1 : Let $\mathrm{x}, \mathrm{y} \in \hat{L}$. So, $\hat{C}_{\hat{L}}(\mathrm{x})=\hat{C}_{\hat{L}}(\mathrm{y})=$ $(1,1, \ldots, 1)$. Since $\hat{L}$ is a sub LA-semigroup over $\hat{S}$, so $\mathrm{xy} \in \hat{L}$ it follows that $\hat{C}_{\hat{L}}(\mathrm{xy})=(1,1, \ldots, 1)$. Hence $\hat{C}_{\hat{L}}(\mathrm{xy}) \geq \hat{C}_{\hat{L}}(\mathrm{x}) \wedge \hat{C}_{\hat{L}}(\mathrm{y})$.
Case 2 : Consider $\mathrm{x} \in \hat{L}, \mathrm{y} \notin \hat{L}$. Then, $\hat{C}_{\hat{L}}(\mathrm{x})=$ $(1,1, \ldots, 1)$ and $\hat{C}_{\hat{L}}(\mathrm{y})=(0,0, \ldots, 0)$. So, $\left.\hat{C}_{\hat{L}} \mathrm{x}\right) \wedge \hat{C}_{\hat{L}}(\mathrm{y})$ $=(0,0, \ldots, 0)$. But $\hat{C}_{\hat{L}}(\mathrm{xy}) \geq(0,0, \ldots, 0)$. Thus $\hat{C}_{\hat{L}}(\mathrm{xy})$ $\geq \hat{C}_{\hat{L}}(\mathrm{x}) \wedge \hat{C}_{\hat{L}}(\mathrm{y})$.
Case 3 : Consider $\mathrm{x}, \mathrm{y} \notin \hat{L}$. Then, $\hat{C}_{\hat{L}}(\mathrm{x})=\hat{C}_{\hat{L}}(\mathrm{y})=$ $(0,0, \ldots, 0)$. Clearly, $\hat{C}_{\hat{L}}(\mathrm{xy}) \geq(0,0, \ldots, 0)=\hat{C}_{\hat{L}}(\mathrm{x}) \wedge$ $\hat{C}_{\hat{L}}(\mathrm{y})$.

Case 4: Consider $\mathrm{x} \notin \hat{L}, \mathrm{y} \in \hat{L}$. Then, $\hat{C}_{\hat{L}}(\mathrm{x})=$ $(0,0, \ldots, 0)$ and $\hat{C}_{\hat{L}}(\mathrm{y})=(1,1, \ldots, 1)$. Clearly, $\hat{C}_{\hat{L}}(\mathrm{xy})$ $\geq(0,0, \ldots, 0)=\hat{C}_{\hat{L}}(\mathrm{x}) \wedge \hat{C}_{\hat{L}}(\mathrm{y})$.

Conversely, let $\hat{C}_{\hat{L}}$ is a MPF-sub LA-semigroup over $\hat{S}$ and $\mathrm{x}, \mathrm{y} \in \hat{L}$. Then, $\left.\hat{C}_{\hat{L}}(\mathrm{x})=\hat{C}_{\hat{L}} \mathrm{y}\right)=$ $(1,1, \ldots, 1)$. By definition, $\hat{C}_{\hat{L}}(\mathrm{xy}) \geq \hat{C}_{\hat{L}}(\mathrm{x}) \wedge \hat{C}_{\hat{L}}(\mathrm{y})=$
$(1,1, \ldots, 1) \wedge(1,1, \ldots, 1)=(1,1, \ldots, 1)$, we have $\hat{C}_{\hat{L}}(\mathrm{xy})$ $=(1,1, \ldots, 1)$. This implies that $\mathrm{xy} \in \hat{L}$, that is $\hat{L}$ is a sub LA-semigroup over $\hat{S}$.
(2) Suppose that $\hat{L}$ is a L-ideal over $\hat{S}$. We show that $\hat{C}_{\hat{L}}(\mathrm{xy}) \geq \hat{C}_{\hat{L}}(\mathrm{y})$ for every $\mathrm{x}, \mathrm{y} \in \hat{S}$. We examine the two cases as below,

Case 1: Consider $\mathrm{y} \in \hat{L}$ and $\mathrm{x} \in \hat{S}$. Then, $\hat{C}_{\hat{L}}(\mathrm{y})=$ $(1,1, \ldots, 1)$. As $\hat{L}$ is a L-ideal over $\hat{S}$, so $\mathrm{xy} \in \hat{L}$ implies that $\hat{C}_{\hat{L}}(\mathrm{xy})=(1,1, \ldots, 1)$. Hence $\hat{C}_{\hat{L}}(\mathrm{xy}) \geq$ $\hat{C}_{\hat{L}}(\mathrm{y})$.

Case 2: Let $\mathrm{y} \notin \hat{L}$ and $\mathrm{x} \in \hat{S}$. Then, $\hat{C}_{\hat{L}}(\mathrm{y})=$ $(0,0, \ldots, 0)$. Clearly, $\hat{C}_{\hat{L}}(\mathrm{xy}) \geq \hat{C}_{\hat{L}}(\mathrm{y})$.
Conversely, let $\hat{C}_{\hat{L}}$ is a MPFL-ideal over $\hat{S}$. Consider that $\mathrm{x} \in \hat{S}$ and $\mathrm{y} \in \hat{L}$. Thus, $\hat{C}_{\hat{L}}(\mathrm{y})=$ $(1,1, \ldots, 1)$. By definition, $\hat{C}_{\hat{L}}(\mathrm{xy}) \geq \hat{C}_{\hat{L}}(\mathrm{y})=$ $(1,1, \ldots, 1)$, we get
$\hat{C}_{\hat{L}}(\mathrm{xy})=(1,1, \ldots, 1)$. So $\mathrm{xy} \in \hat{L}$, as a result $\hat{L}$ is a $\mathrm{L}-$ ideal over $\hat{S}$.

Likewise, we can demonstrate that $\hat{L}$ is a R-ideal over $\hat{S}$ iff $\hat{C}_{\hat{L}}$ is a MPFR-ideal over $\hat{S}$. Thus $\hat{L}$ is a two-sided ideal over $\hat{S}$ iff $\hat{C}_{\hat{L}}$ is a multi-polar fuzzy two-sided ideal over $\hat{S}$.

Lemma 3.3 Consider $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{m}\right)$ be a MPF-subset over $\hat{S}$. Then the subsequent assertions hold.
(1) $\hat{g}$ is a MPF-sub LA-semigroup over $\hat{S}$ iff

$$
\hat{g} \circ \hat{g} \leq \hat{g} .
$$

(2) $\hat{g}$ is a MPFL-ideal over $\hat{S}$ iff

$$
\delta \circ \hat{g} \leq \hat{g} .
$$

(3) $\hat{g}$ is a MPFR-ideal over $\hat{S}$ iff $\hat{g} \circ \delta \leq \hat{g}$.
(4) $\hat{g}$ is a multi-polar fuzzy two sided over $\hat{S}$ iff $\delta \circ \hat{g} \leq \hat{g}$ and $\hat{g} \circ \delta \leq \hat{g}$.
Here, $\delta$ represents the MPF-subset over $\hat{S}$ that maps every element of $\hat{S}$ to $(1,1, \ldots, 1)$.

Proof. (1) Consider that $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{m}\right)$ be a MPF-sub LA-semigroup over $\hat{S}$, i.e. $\hat{g}_{\mathrm{n}}(x y) \geq$ $\hat{g}_{\mathrm{n}}(\mathrm{x}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{y})$ for all $\mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\}$. Let $\mathrm{a} \in \hat{S}$. If $\mathrm{a} \neq \mathrm{bc}$ for any $\mathrm{b}, \mathrm{c} \in \hat{S}$, so that $(\hat{g} \circ \hat{g})(\mathrm{a})=0$. Hence, $(\hat{g} \circ \hat{g})(a) \leq \hat{g}(a)$. But if $a=x y$ for $x, y \in \hat{S}$, then

$$
\begin{aligned}
\left(\hat{g}_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{a}) & =\mathrm{V}_{a=x y}\left\{\hat{g}_{\mathrm{n}}(\mathrm{x}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{y})\right\} \\
& \leq \mathrm{V}_{a=x y}\left\{\hat{g}_{\mathrm{n}}(\mathrm{xy})\right\} \\
& =\hat{g}_{\mathrm{n}}(\mathrm{a}) \text { for every } \mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\}
\end{aligned}
$$

Therefore $\hat{g} \circ \hat{g} \leq \hat{g}$.
Conversely, assume that $(\hat{g} \circ \hat{g}) \leq \hat{g}$ and $\mathrm{x}, \mathrm{y} \in \hat{S}$.
Then

$$
\begin{aligned}
\hat{g}_{\mathrm{n}}(\mathrm{xy}) & \geq\left(\hat{g}_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{xy}) \\
& =V_{x y=u v}\left\{\hat{g}_{\mathrm{n}}(\mathrm{u}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{v})\right\} \\
& \geq \hat{g}_{\mathrm{n}}(\mathrm{x}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{y}) \text { for each } \mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\} .
\end{aligned}
$$

Hence $\hat{g}(\mathrm{xy}) \geq \hat{g}(\mathrm{x}) \wedge \hat{g}(\mathrm{y})$. Thus $\hat{g}$ is a MPF-sub LA-semigroup over $\hat{S}$.
(2) Let $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{m}\right)$ be a MPFL-ideal over $\hat{S}$, i.e. $\hat{g}_{\mathrm{n}}(\mathrm{xy}) \geq \hat{g}_{\mathrm{n}}(\mathrm{y})$ for every $\mathrm{x}, \mathrm{y} \in \hat{S}$ and $\mathrm{n} \in$ $\{1,2,3, \ldots, m\}$. Consider $a \in \hat{S}$. If $a \neq b c$ for $b, c \in$ $\hat{S}$, therefore
$(\delta \circ \hat{g})(\mathrm{a})=0$. Hence, $\delta \circ \hat{g} \leq \hat{g}$. But if $\mathrm{a}=\mathrm{xy}$ for x, $\mathrm{y} \in \hat{S}$, then

$$
\begin{aligned}
\left(\delta_{n} \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{a}) & =\mathrm{V}_{a=x y}\left\{\delta_{n}(\mathrm{x}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{y})\right\} \\
& =\mathrm{V}_{a=x y}\left\{\hat{g}_{\mathrm{n}}(\mathrm{y})\right\} \\
& \leq \mathrm{V}_{a=x y} \hat{g}_{\mathrm{n}}(\mathrm{xy}) \\
& =\hat{g}_{\mathrm{n}}(\mathrm{a}) \text { for all } \mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\}
\end{aligned}
$$

Thus $\delta \circ \hat{g} \leq \hat{g}$.
Conversely, assume that $(\delta \circ \hat{g}) \leq \hat{g}$ and $\mathrm{x}, \mathrm{y} \in \hat{S}$.
Then

$$
\begin{aligned}
\hat{g}_{\mathrm{n}}(\mathrm{xy}) & \geq\left(\delta_{n} \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{xy}) \\
& =\mathrm{V}_{x y=u v}\left\{\delta_{n}(\mathrm{u}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{v})\right\} \\
& \geq\left\{\delta_{n}(\mathrm{x}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{y})\right\} \\
& =\hat{g}_{\mathrm{n}}(\mathrm{y}) \text { for all } \mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\} .
\end{aligned}
$$

Hence $\hat{g}(\mathrm{xy}) \geq \hat{g}(\mathrm{y})$. Thus $\hat{g}$ is a MPFL-ideal over $\hat{S}$.
(3) It can be proved on the same lines of (2).
(4) This can be proved by using equations (2) and (3).

Lemma 3.4 The subsequent statements hold for an LA-semigroup $\hat{S}$.
(1) Consider that $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ and $\hat{h}=$ $\left(\hat{h}_{1}, \hat{h}_{2}, \ldots, \hat{h}_{\mathrm{m}}\right)$ be two MPF-sub LA-semigroups over $\hat{S}$. Thus $\hat{g} \wedge \hat{h}$ is also a MPF-sub LAsemigroup over $\hat{S}$.
(2) Consider that $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ and $\hat{h}=$ ( $\hat{h}_{1}, \hat{h}_{2}, \ldots, \hat{h}_{\mathrm{m}}$ ) be two multi-polar fuzzy left (right, two-sided) ideals over $\hat{S}$. Then $\hat{g} \wedge \hat{h}$ is also a multi-polar fuzzy left (right, two-sided) ideal over $\hat{S}$.

Proof. Assume that $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ and $\hat{h}=$ $\left(\hat{h}_{1}, \hat{h}_{2}, \ldots, \hat{h}_{\mathrm{m}}\right)$ be two MPF-sub LA-semigroups over $\hat{S}$. Then

$$
\begin{aligned}
\left(\hat{g}_{\mathrm{n}} \wedge \hat{h}_{\mathrm{n}}\right)(\mathrm{xy}) & =\hat{g}_{\mathrm{n}}(\mathrm{xy}) \wedge \hat{h}_{\mathrm{n}}(\mathrm{xy}) \\
& \geq\left(\hat{g}_{\mathrm{n}}(\mathrm{x}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{y})\right) \wedge\left(\hat{h}_{\mathrm{n}}(\mathrm{x}) \wedge \hat{h}_{\mathrm{n}}(\mathrm{y})\right) \\
& =\left(\hat{g}_{\mathrm{n}}(\mathrm{x}) \wedge \hat{h}_{\mathrm{n}}(\mathrm{x})\right) \wedge\left(\hat{g}_{\mathrm{n}}(\mathrm{y}) \wedge \hat{h}_{\mathrm{n}}(\mathrm{y})\right) \\
& =\left(\hat{g}_{\mathrm{n}} \wedge \hat{h}_{\mathrm{n}}\right)(\mathrm{x}) \wedge\left(\hat{g}_{\mathrm{n}} \wedge \hat{h}_{\mathrm{n}}\right)(\mathrm{y})
\end{aligned}
$$

for each $n \in\{1,2,3, \ldots, m\}$.
Thus, $\hat{g} \wedge \hat{h}$ is a MPF-sub LA-semigroup over $\hat{S}$.
Similar methods can be applied to prove other cases.

Proposition 3.1 Suppose that $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ be a MPF-subset over $\hat{S}$. Then $\hat{g}$ is a MPF-sub LA-semigroup (left, right, two-sided ideal) over $\hat{S}$ iff $\hat{g}_{\mathrm{t}}=\{\mathrm{x} \in \hat{S} \mid \hat{g}(\mathrm{x}) \geq \mathrm{t}\} \neq \varphi$ is a sub LAsemigroup (left, right, two-sided ideal) over $\hat{S}$ for every $t=\left(t_{1}, t_{2}, \ldots, t_{m}\right) \in(0,1]^{m}$.

Proof. Suppose $\hat{g}$ is a MPF-sub LA-semigroup over $\hat{S}$.Consider $\mathrm{x}, \mathrm{y} \in \hat{g}_{\mathrm{t}}$. Then $\hat{g}_{\mathrm{n}}(\mathrm{x}) \geq \mathrm{t}_{\mathrm{n}}$ and $\hat{g}_{\mathrm{n}}(\mathrm{y}) \geq \mathrm{t}_{\mathrm{n}}$ for each $\mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\}$. As $\hat{g}$ is a MPF-sub LA-semigroup over $\hat{S}$, we have $\hat{g}_{\mathrm{n}}(\mathrm{xy})$ $\geq \hat{g}_{\mathrm{n}}(\mathrm{x}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{y}) \geq \mathrm{t}_{\mathrm{n}} \wedge \mathrm{t}_{\mathrm{n}}=\mathrm{t}_{\mathrm{n}}$ for every $\mathrm{n} \in$ $\{1,2,3, \ldots, \mathrm{~m}\}$. Thus $\mathrm{xy} \in \hat{g}_{\mathrm{t}}$. So $\hat{g}_{\mathrm{t}}$ is a sub LAsemigroup over $\hat{S}$.

Conversely, assume that $\hat{g}_{\mathrm{t}} \neq \varphi$ is a sub LAsemigroup over $\hat{S}$. On contrary, let $\hat{g}$ is not a MPF-sub LA-semigroup over $\hat{S}$. Consider $\mathrm{x}, \mathrm{y} \in$ $\hat{S}$ with $\hat{g}_{\mathrm{n}}(\mathrm{xy})<\hat{g}_{\mathrm{n}}(\mathrm{x}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{y})$ for $\mathrm{n} \in$ $\{1,2,3, . ., m\}$. Take $\mathrm{t}_{\mathrm{n}}=\hat{g}_{\mathrm{n}}(\mathrm{x}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{y})$ for every n $\in\{1,2,3, \ldots, \mathrm{~m}\}$. Then $\mathrm{x}, \mathrm{y} \in \hat{g}_{\mathrm{t}}$ but $\mathrm{xy} \notin \hat{g}_{\mathrm{t}}$, this contradicts the hypothesis. Hence $\hat{g}(x y) \geq \hat{g}(x) \wedge$ $\hat{g}(\mathrm{y})$. Thus $\hat{g}$ is a MPF-sub LA-semigroup over $\hat{S}$.

Similar methods can be applied to prove other cases.

Next, we define the multi-polar fuzzy generalized bi-ideal (MPFGB-ideal) over $\hat{S}$.

Definition 3.6 A MPF-subset $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ over $\hat{S}$ is considered a MPFGB-ideal over $\hat{S}$ if for each $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \hat{S}, \hat{g}((\mathrm{xy}) \mathrm{z}) \geq \hat{g}(\mathrm{x}) \wedge \hat{g}(\mathrm{z})$, that is $\hat{g}_{\mathrm{n}}((\mathrm{xy}) \mathrm{z}) \geq \hat{g}_{\mathrm{n}}(\mathrm{x}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{z})$ for each $\mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\}$.

Lemma 3.5 A subset $\hat{G}$ over $\hat{S}$ which is nonempty is a GB-ideal over $\hat{S}$ iff $\hat{C}_{\hat{G}}$ the multi-polar characteristic function of $\widehat{G}$ is a MPFGB-ideal over $\hat{S}$.

Proof. It can be showed on the same lines of Lemma 3.2.

Lemma 3.6 A MPF-subset $\hat{g}$ over $\hat{S}$ is a MPFGBideal over $\hat{S}$ iff $(\hat{g} \circ \delta) \circ \hat{g} \leq \hat{g}$.

Proof. Suppose $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ be a MPFGBideal over $\hat{S}$, i.e. $\hat{g}_{\mathrm{n}}((\mathrm{xy}) \mathrm{z}) \geq \hat{g}_{\mathrm{n}}(\mathrm{x}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{z})$ for each $\mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\}$ and $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \hat{S}$. Consider a $\in \hat{S}$. If $\mathrm{a} \neq \mathrm{bc}$ for some $\mathrm{b}, \mathrm{c} \in \hat{S}$ thus $((\hat{g} \circ \delta) \circ$ $\hat{g})(\mathrm{a})=0$. Therefore, $(\hat{g} \circ \delta) \circ \hat{g} \leq \hat{g}$. But if $\mathrm{a}=\mathrm{xy}$ for some $\mathrm{x}, \mathrm{y} \in \hat{S}$. Thus for every $\mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\}$.

$$
\begin{aligned}
& \left.\left(\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right) \circ \hat{g}_{\mathrm{n}}\right)\right)(\mathrm{a})=\mathrm{V}_{a=x y}\left\{\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right)(\mathrm{x}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{y})\right\} \\
& \\
& = \\
& \begin{aligned}
& \mathrm{V}_{a=x y}\left\{\mathrm{~V}_{x=u v}\left\{\hat{g}_{\mathrm{n}}(\mathrm{u}) \wedge \delta_{\mathrm{n}}(\mathrm{v})\right\} \wedge \hat{g}_{\mathrm{n}}(\mathrm{y})\right\} \\
&=\mathrm{V}_{a=x y}\left\{\mathrm{~V}_{x=u v}\left\{\hat{g}_{\mathrm{n}}(\mathrm{u}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{y})\right\}\right\} \\
& \leq \mathrm{V}_{a=x y}\left\{\mathrm{~V}_{x=u v} \hat{g}_{\mathrm{n}}((\mathrm{uv}) \mathrm{y})\right\} \\
&=\mathrm{V}_{a=x y}\left\{\hat{g}_{\mathrm{n}}(\mathrm{xy})\right\} \\
&=\hat{g}_{\mathrm{n}}(\mathrm{a}) \text { for all } \mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\} .
\end{aligned}
\end{aligned}
$$

So $(\hat{g} \circ \delta) \circ \hat{g} \leq \hat{g}$.
Conversely, let $(\hat{g} \circ \delta) \circ \hat{g} \leq \hat{g}$ and $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \hat{S}$. Then

$$
\begin{aligned}
\hat{g}_{\mathrm{n}}((\mathrm{xy}) \mathrm{z}) & \geq\left(\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right) \circ \hat{g}_{\mathrm{n}}\right)((\mathrm{xy}) \mathrm{z}) \\
& =\mathrm{V}_{(\mathrm{xy}) \mathrm{z}=u v}\left\{\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right)(\mathrm{u}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{v})\right\} \\
& \geq\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right)(\mathrm{xy}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{z}) \\
& =\mathrm{V}_{x y=a b}\left\{\hat{g}_{\mathrm{n}}(\mathrm{a}) \wedge \delta_{\mathrm{n}}(\mathrm{~b})\right\} \wedge \hat{g}_{\mathrm{n}}(\mathrm{z}) \\
& \geq\left\{\hat{g}_{\mathrm{n}}(\mathrm{x}) \wedge \delta_{\mathrm{n}}(\mathrm{y})\right\} \wedge \hat{g}_{\mathrm{n}}(\mathrm{z}) \\
& =\hat{g}_{\mathrm{n}}(\mathrm{x}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{z}) \text { for every } \mathrm{n} \in \\
\{1,2,3, \ldots, \mathrm{~m}\} &
\end{aligned}
$$

Hence, $\hat{g}((\mathrm{xy}) \mathrm{z}) \geq \hat{g}(\mathrm{x}) \wedge \hat{g}(\mathrm{z})$. Thus $\hat{g}$ is a

MPFGB-ideal over $\hat{S}$.
Proposition 3.2 Consider $\hat{g}=\left(\widehat{g}_{1}, \widehat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ is a multi-polar fuzzy subset over $\hat{S}$. Thus $\hat{g}$ is a MPFGB-ideal over $\hat{S}$ iff $\hat{g}_{\mathrm{t}}=\{\mathrm{x} \in \hat{S} \mid \hat{g}(\mathrm{x}) \geq \mathrm{t}\} \neq$ $\varphi$ is a GB-ideal over $\hat{S}$ for every $\mathrm{t}=\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \ldots, \mathrm{t}_{\mathrm{m}}\right)$ $\in(0,1]^{\mathrm{m}}$.

Proof. Suppose that $\hat{g}$ be a MPFGB-ideal over $\hat{S}$. Let $\mathrm{x}, \mathrm{z} \in \hat{g}_{\mathrm{t}}$ and $\mathrm{y} \in \hat{S}$. So $\hat{g}_{\mathrm{n}}(\mathrm{x}) \geq \mathrm{t}_{\mathrm{n}}$ and $\hat{g}_{\mathrm{n}}(\mathrm{z}) \geq$ $\mathrm{t}_{\mathrm{n}}$ for every $\mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\}$. Due to the fact that $\hat{g}$ is a MPFGB-ideal, we obtain $\hat{g}_{\mathrm{n}}((\mathrm{xy}) \mathrm{z}) \geq \hat{g}_{\mathrm{n}}(\mathrm{x}) \wedge$ $\widehat{g}_{\mathrm{n}}(\mathrm{z}) \geq \mathrm{t}_{\mathrm{n}} \wedge \mathrm{t}_{\mathrm{n}}=\mathrm{t}_{\mathrm{n}}$ for every $\mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\}$. Thus (xy) $\mathrm{z} \in \hat{g}_{\mathrm{t}}$, that is $\hat{g}_{\mathrm{t}}$ is a GB-ideal over $\hat{S}$.

Conversely, let $\hat{g}_{\mathrm{t}} \neq \varphi$ is a GB-ideal over $\hat{S}$. On contrary considered that $\hat{g}$ is not a MPFGB-ideal over $\hat{S}$. Suppose $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \hat{S}$ with $\hat{g}_{\mathrm{n}}((\mathrm{xy}) \mathrm{z})<\hat{g}_{\mathrm{n}}(\mathrm{x})$ $\wedge \widehat{g}_{\mathrm{n}}(\mathrm{z})$ for any $\mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\}$. Suppose $\mathrm{t}_{\mathrm{n}}=\hat{g}_{\mathrm{n}}(\mathrm{x})$ $\wedge \hat{g}_{\mathrm{n}}(\mathrm{z})$ for every $\mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\}$. Then $\mathrm{x}, \mathrm{z} \in \hat{g}_{\mathrm{t}}$ but $(\mathrm{xy}) \mathrm{z} \notin \hat{g}_{\mathrm{t}}$, this contradicts the hypothesis. Hence $\hat{g}((\mathrm{xy}) \mathrm{z}) \geq \hat{g}(\mathrm{x}) \wedge \hat{g}(\mathrm{z})$, that is $\hat{g}$ is a MPFGB-ideal over $\hat{S}$. Now, we define the multipolar fuzzy bi-ideal (MPFB-ideal) over $\hat{S}$.

Definition 3.7 A multi-polar fuzzy sub LAsemigroup $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \widehat{g}_{\mathrm{m}}\right)$ over $\hat{S}$ is a MPFBideal over $\hat{S}$ if for each $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \hat{S}, \hat{g}((\mathrm{xy}) \mathrm{z}) \geq \hat{g}(\mathrm{x})$ $\wedge \hat{g}(\mathrm{z})$ that is, $\hat{g}_{\mathrm{n}}((\mathrm{xy}) \mathrm{z}) \geq \hat{g}_{\mathrm{n}}(\mathrm{x}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{z})$ for each $\mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\}$.

Lemma 3.7 A subset $\widehat{H}$ over $\hat{S}$ which is nonempty is a bi-ideal over $\hat{S}$ iff $\hat{C}_{\widehat{H}}$ is a MPFB-ideal over $\hat{S}$.

Proof. It is followed by Lemmas 3.2 and 3.5.
Lemma 3.8 A multi-polar fuzzy sub LAsemigroup $\hat{g}$ of $\hat{S}$ is a MPFB-ideal over $\hat{S}$ iff ( $\hat{g} \circ$ $\delta) \circ \hat{g} \leq \hat{g}$.

Proof. Follows from Lemma 3.6.
Proposition 3.3 Let $\hat{g}=\left(\widehat{g}_{1}, \widehat{g}_{2}, \ldots, \widehat{g}_{\mathrm{m}}\right)$ is a MPFsub LA-semigroup over $\hat{S}$. So $\hat{g}$ is a MPFB-ideal over $\hat{S}$ iff $\hat{g}_{\mathrm{t}}=\{\mathrm{x} \in \hat{S} \mid \mathrm{g}(\mathrm{x}) \geq \mathrm{t}\} \neq \varphi$ is a bi-ideal over $\hat{S}$ for every $\mathrm{t}=\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \ldots, \mathrm{t}_{\mathrm{m}}\right) \in(0,1]^{\mathrm{m}}$.

Proof. It is followed by Proposition 3.2.
Remark 3.1 Every MPFB-ideal of $\hat{S}$ is a MPFGB-ideal over $\hat{S}$.

The example below illustrate that the converse may not hold.

Example 3.3 Let $\hat{S}=\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}\}$ be an LAsemigroup under binary operation "." described below in Table 4.

Table 4. LA-semigroup

|  | p | q | r | s |
| :--- | :--- | :--- | :--- | :--- |
| p | s | s | q | q |
| Q | s | s | s | s |
| R | s | s | q | s |
| S | s | s | s | s |

Consider $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \widehat{g}_{3}, \hat{g}_{4}\right)$ be a 4 -polar fuzzy subset over $\hat{S}$ with $\hat{g}(\mathrm{p})=(0.2,0.4,0.4,0.5), \hat{g}(\mathrm{q})$ $=(0,0,0,0), \quad \hat{g}(\mathrm{r})=(0,0,0,0), \quad \hat{g}(\mathrm{~s})=$ $(0.6,0.7,0.8,0.9)$. Thus it is simple to reveal that $\hat{g}$ is a 4-polar fuzzy generalized bi-ideal over $\hat{S}$. Now, $\hat{g}(\mathrm{q})=\hat{g}(\mathrm{p} \cdot \mathrm{s})=(0,0,0,0) \nsupseteq(0.2,0.4,0.4,0.5)$ $=\hat{g}(\mathrm{p}) \wedge \hat{g}(\mathrm{~s})$. So $\hat{g}$ is not a bi-ideal over $\hat{S}$.

Now we express the multi-polar fuzzy quasi-ideal (MPFQ-ideal) over $\hat{S}$.

Definition 3.8 A MPF-subset $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ over $\hat{S}$ is a MPFQ-ideal over $\hat{S}$ if $(\hat{g} \circ \delta) \wedge(\delta \circ \hat{g})$ $\leq \hat{g}$, means that $\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right) \wedge\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right) \leq \hat{g}_{\mathrm{n}}$ for every $\mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\}$.

Lemma 3.9 A subset $\hat{J}$ over $\hat{S}$ which is non-empty is a quasi-ideal over $\hat{S}$ iff the multi-polar characteristic function $\hat{C}_{\hat{\jmath}}$ of $\hat{J}$ is a MPFQ-ideal over $\hat{S}$.

Proof. Consider that $\hat{J}$ be a quasi-ideal over $\hat{S}$, i.e $\hat{J} \hat{S} \cap \hat{S} \hat{J} \subseteq \hat{J}$. We show that $\left(\hat{C}_{\hat{\jmath}} \circ \delta\right) \wedge\left(\delta \circ \hat{C}_{\hat{\jmath}}\right) \leq \hat{C}_{\hat{\jmath}}$, means that
$\left(\left(\hat{C}_{\hat{\jmath}} \circ \delta\right) \wedge\left(\delta \circ \hat{C}_{\hat{\jmath}}\right)\right)(\mathrm{x}) \leq \hat{C}_{\hat{\jmath}}(\mathrm{x})$ for all $\mathrm{x} \in \hat{S}$.
Let we have two cases,
Case 1: If $\mathrm{x} \in \hat{\jmath}$, then $\hat{C}_{\hat{j}}(\mathrm{x})=(1,1, \ldots, 1) \geq\left(\left(\hat{C}_{\hat{\jmath}} \circ \delta\right)\right.$ $\left.\wedge\left(\delta \circ \hat{C}_{\hat{j}}\right)\right)(\mathrm{x})$.

Therefore $\left(\hat{C}_{\hat{\jmath}} \circ \delta\right) \wedge\left(\delta \circ \hat{C}_{\hat{\jmath}}\right) \leq \hat{C}_{\hat{\jmath}}$.
Case 2 : If $\mathrm{x} \notin \hat{J}$, so $\mathrm{x} \notin \hat{J} \hat{S} \cap \hat{S} \hat{J}$. This implies that $\mathrm{x} \neq \mathrm{ab}$ or $\mathrm{x} \neq \mathrm{cd}$ for any $\mathrm{a} \in \hat{J}, \mathrm{~b} \in \hat{S}, \mathrm{c} \in \hat{S}, \mathrm{~d} \in \hat{J}$. Thus either $\left(\hat{C}_{\hat{\jmath}} \circ \delta\right)(\mathrm{x})=(0,0, \ldots, 0)$ or $\left(\delta \circ \hat{C}_{\hat{j}}\right)(\mathrm{x})=$ $(0,0, \ldots, 0)$, means that $\left(\left(\hat{C}_{\hat{\jmath}} \circ \delta\right) \wedge\left(\delta \circ \hat{C}_{\hat{\jmath}}\right)\right)(x)=$ $(0,0, \ldots, 0) \leq \hat{C}_{\hat{j}}(\mathrm{x})$. So that $\left(\hat{C}_{\hat{j}} \circ \delta\right) \wedge\left(\delta \circ \hat{C}_{\hat{j}}\right) \leq \hat{C}_{\hat{j}}$.

Conversely, let $\mathrm{z} \in \hat{J} \hat{S} \cap \hat{S} \hat{J}$. Thus $\mathrm{z}=\mathrm{ax}$ and $\mathrm{z}=$ yb , where $\mathrm{x}, \mathrm{y} \in \hat{S}$ and $\mathrm{a}, \mathrm{b} \in \hat{J}$. Since $\hat{C}_{\hat{\jmath}}$ is a MPFQ-ideal over $\hat{S}$, we get

$$
\begin{align*}
\begin{aligned}
\hat{C}_{\hat{\jmath}}(\mathrm{z}) & \geq\left(\left(\hat{C}_{\hat{\jmath}} \circ \delta\right) \wedge\left(\delta \circ \hat{C}_{\hat{j}}\right)\right)(\mathrm{z}) \\
& =\left(\hat{C}_{\hat{\jmath}} \circ \delta\right)(\mathrm{z}) \wedge\left(\delta \circ \hat{C}_{\hat{\jmath}}\right)(\mathrm{z}) \\
& =\quad\left\{\mathrm{V}_{\mathrm{z}=u v}\left\{\hat{C}_{\hat{\jmath}}(\mathrm{u}) \wedge \delta(\mathrm{v})\right\}\right\} \\
\left\{\begin{array}{l}
\mathrm{z}
\end{array}\right. & \left.=p q\left\{(\mathrm{p}) \wedge \hat{C}_{\hat{\jmath}}(\mathrm{q})\right\}\right\} \\
& \geq\left\{\hat{C}_{\hat{\jmath}}(\mathrm{a}) \wedge \delta(\mathrm{x})\right\} \wedge\left\{\delta(\mathrm{y}) \wedge \hat{C}_{\hat{\jmath}}(\mathrm{b})\right\} \\
& =(1,1, \ldots, 1) \text { since } \mathrm{z}=\mathrm{ax} \text { and } \mathrm{z}=\mathrm{yb} .
\end{aligned} \\
\text { Thus } \hat{C}_{\hat{\jmath}}(\mathrm{z})=(1,1, \ldots, 1) . \text { Hence } \mathrm{z} \in \hat{\jmath} .
\end{align*}
$$

Proposition 3.4 Consider $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ be a MPF-subset over $\hat{S}$. Thus $\hat{g}$ is a MPFQ-ideal over $\hat{\mathrm{S}}$ iff $\hat{g}_{\mathrm{t}}=\{\mathrm{s} \in \hat{S} \mid \hat{g}(\mathrm{~s}) \geq \mathrm{t}\} \neq \varphi$ is a quasi-ideal over $\hat{S}$ for every $\mathrm{t}=\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \ldots, \mathrm{t}_{\mathrm{m}}\right) \in(0,1]^{\mathrm{m}}$.

Proof. Consider $\hat{g}$ be a MPFQ-ideal over $\hat{S}$. To show that $\hat{g}_{t} \hat{S} \cap \hat{S} \hat{g}_{t} \subseteq \hat{g}_{\mathrm{t}}$. Let $\mathrm{z} \in \hat{g}_{t} \hat{S} \cap \hat{S} \hat{g}_{\mathrm{t}}$. Then $\mathrm{z} \in \hat{g}_{t} \hat{S}$ and $\mathrm{z} \in \hat{S} \hat{g}_{\text {. }}$. So $\mathrm{z}=\mathrm{ax}$ and $\mathrm{z}=\mathrm{yb}$ for some $\mathrm{x}, \mathrm{y} \in \hat{S}$ and $\mathrm{a}, \mathrm{b} \in \hat{g}_{\mathrm{t}}$. Thus $\hat{g}_{\mathrm{n}}(\mathrm{a}) \geq \mathrm{t}_{\mathrm{n}}$ and $\hat{g}_{\mathrm{n}}(\mathrm{b}) \geq \mathrm{t}_{\mathrm{n}}$ for every $\mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\}$. Now,

$$
\begin{aligned}
\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right)(\mathrm{z}) & =\mathrm{V}_{\mathrm{z}=u v}\left\{\hat{g}_{\mathrm{n}}(\mathrm{u}) \wedge \delta_{\mathrm{n}}(\mathrm{v})\right\} \\
& \geq \hat{g}_{\mathrm{n}}(\mathrm{a}) \wedge \delta_{\mathrm{n}}(\mathrm{x}) \text { because } \mathrm{z}=\mathrm{ax} \\
& =\hat{g}_{\mathrm{n}}(\mathrm{a}) \wedge 1 \\
& =\hat{g}_{\mathrm{n}}(\mathrm{a}) \\
& \geq \mathrm{t}_{\mathrm{n}}
\end{aligned}
$$

So, $\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right)(\mathrm{z}) \geq \mathrm{t}_{\mathrm{n}}$ for each $\mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\}$. Now, $\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{z})=\mathrm{V}_{\mathrm{z}=u v}\left\{\delta_{\mathrm{n}}(\mathrm{u}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{v})\right\}$
$\geq \delta_{\mathrm{n}}(\mathrm{y}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{b})$ because $\mathrm{z}=\mathrm{yb}$
$=1 \wedge \hat{g}_{\mathrm{n}}(\mathrm{b})$
$=\hat{g}_{\mathrm{n}}(\mathrm{b})$
$\geq t_{n}$
So, $\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{z}) \geq \mathrm{t}_{\mathrm{n}}$ for every $\mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\}$.
Thus, $\left(\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right) \wedge\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)\right)(\mathrm{z})$

$$
=\left(\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right)(\mathrm{z}) \wedge\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{z}) \geq \mathrm{t}_{\mathrm{n}} \wedge \mathrm{t}_{\mathrm{n}}=\mathrm{t}_{\mathrm{n}}\right.
$$

for every $\mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\}$. So, $((\hat{g} \circ \delta) \wedge(\delta \circ$ $\hat{g}))(\mathrm{z}) \geq \mathrm{t}$. As $\hat{g}(\mathrm{z}) \geq((\hat{g} \circ \delta) \wedge(\delta \circ \hat{g}))(\mathrm{z}) \geq \mathrm{t}$, thus $\mathrm{z} \in \hat{g}_{\mathrm{t}}$. Therefore it is proved that $\hat{g}_{\mathrm{t}}$ is a quasiideal over $\hat{S}$.

Conversely, on contrary, let $\hat{g}$ is not a MPFQideal over $\hat{S}$. Let $\mathrm{z} \in \hat{S}$ be such that $\hat{g}_{\mathrm{n}}(\mathrm{z})<\left(\hat{g}_{\mathrm{n}} \circ\right.$ $\left.\delta_{\mathrm{n}}\right)(\mathrm{z}) \wedge\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{z})$ for any $\mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\}$. Take $\mathrm{t}_{\mathrm{n}}$ $\in(0,1]$ with $t_{n}=\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right)(\mathrm{z}) \wedge\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{z})$ for every $n \in\{1,2,3, \ldots, m\}$. It follows that $z \in\left(\hat{g}_{\mathrm{n}} \circ\right.$ $\left.\delta_{\mathrm{n}}\right) \mathrm{t}_{\mathrm{n}}$ and $\mathrm{z} \in\left(\delta_{\mathrm{n}} \circ \widehat{g}_{\mathrm{n}}\right) \mathrm{t}_{\mathrm{n}}$ but $\mathrm{z} \notin\left(\hat{g}_{\mathrm{n}}\right) \mathrm{t}_{\mathrm{n}}$ for some n . Therefore, $\mathrm{z} \in(\hat{g} \circ \hat{S}) \mathrm{t}$ and $\mathrm{z} \in(\hat{S} \circ \hat{g})_{\mathrm{t}}$ but $\mathrm{z} \notin \hat{g}_{\mathrm{t}}$. Which leads to contradiction.

This proves that $(\hat{g} \circ \delta) \wedge(\delta \circ \hat{g}) \leq \hat{g}$.
Lemma 3.10 Every multi-polar fuzzy one-sided ideal over $\hat{S}$ is a MPFQ-ideal over $\hat{S}$.

Proof. It is followed by Lemma 3.3.
The subsequent example demonstrates that the converse may not hold.

Example 3.4 Let $\hat{S}=\{\mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{u}\}$ be an LAsemigroup under binary operation "." described below in Table 5.

Table 5. LA-semigroup

| $\bullet$ | $r$ | $s$ | $t$ | $U$ |
| :---: | :---: | :---: | :---: | :---: |
| $R$ | $r$ | $s$ | $t$ | $U$ |
| $S$ | $u$ | $t$ | $t$ | $T$ |
| $T$ | $t$ | $t$ | $t$ | $T$ |
| $U$ | $s$ | $t$ | $t$ | $T$ |

Define a 5-polar fuzzy subset $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \widehat{g}_{3}, \hat{g}_{4}, \hat{g}_{5}\right)$ of $\hat{S}$ as follows:
$\hat{g}(\mathrm{~s})=\hat{g}(\mathrm{t})=(0.4,0.4,0.5,0.5,0.6), \hat{g}(\mathrm{r})=\hat{g}(\mathrm{u})=$ $(0,0,0,0,0)$. Thus it is simple to reveal that $\hat{g}_{\mathrm{t}}$ is a quasi-ideal over $\hat{S}$. Therefore by using Proposition 4, $\hat{g}$ is a 5 -polar FQ-ideal over $\hat{\mathrm{S}}$. Now,

$$
\begin{aligned}
\hat{g}(u)=\hat{g}(\mathrm{~s} . \mathrm{r}) & =(0,0,0,0,0) \\
& \neq(0.4,0.4,0.5,0.5,0.6)=\hat{g}(\mathrm{~s}) .
\end{aligned}
$$

So $\hat{g}$ is not a 5-polar FR-ideal over $\hat{S}$.
Lemma 3.11 Suppose that $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ and $\hat{h}=\left(\hat{h}_{1}, \hat{h}_{2}, \ldots, \hat{h}_{\mathrm{m}}\right)$ be MPFR-ideal and MPFL-ideal over $\hat{S}$. Then $\hat{g} \wedge \hat{h}$ is a multi-polar FQ-ideal over $\hat{S}$.

Proof. Consider $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ and $\hat{h}=$ $\left(\hat{h}_{1}, \hat{h}_{2}, \ldots, \hat{h}_{\mathrm{m}}\right)$ be MPFR-ideal and MPFL-ideal over $\hat{S}$. Let $\mathrm{s} \in \hat{S}$. If $\mathrm{s} \neq \mathrm{ab}$ for $\mathrm{a}, \mathrm{b} \in \hat{S}$. We have
$((\hat{g} \wedge \hat{h}) \circ \delta) \wedge(\delta \circ(\hat{g} \wedge \hat{h})) \leq(\hat{g} \wedge \hat{h})$.
If $\mathrm{s}=\mathrm{pq}$ for $\mathrm{p}, \mathrm{q} \in \hat{S}$, then

$$
\begin{aligned}
& \left(\left(\left(\hat{g}_{\mathrm{n}} \wedge \hat{h}_{\mathrm{n}}\right) \circ \delta_{\mathrm{n}}\right) \wedge\left(\delta_{\mathrm{n}} \circ\left(\hat{g}_{\mathrm{n}} \wedge \hat{h}_{\mathrm{n}}\right)\right)\right)(\mathrm{s}) \\
& =\left(\left(\hat{g}_{\mathrm{n}} \wedge \hat{h}_{\mathrm{n}}\right) \circ \delta_{\mathrm{n}}\right)(\mathrm{s}) \wedge\left(\delta_{\mathrm{n}} \circ\left(\hat{g}_{\mathrm{n}} \wedge \hat{h}_{\mathrm{n}}\right)\right)(\mathrm{s}) \\
& =\left\{\begin{array}{l}
\mathrm{V}_{\mathrm{s}=p q}\left\{\left(\hat{g}_{n} \wedge \hat{h}_{n}\right)(\mathrm{p}) \wedge \delta_{n}(\mathrm{q})\right\} \wedge \\
\mathrm{V}_{\mathrm{s}=p q}\left\{\delta_{n}(\mathrm{p}) \wedge\left(\hat{g}_{n} \wedge \hat{h}_{n}\right)(\mathrm{q})\right\}
\end{array}\right\} \\
& =\mathrm{V}_{s=p q}\left\{\left(\hat{g}_{\mathrm{n}} \wedge \hat{h}_{n}\right)(p)\right\} \wedge \mathrm{V}_{\mathrm{s}=p q}\left\{\left(\hat{g}_{\mathrm{n}} \wedge \hat{h}_{\mathrm{n}}\right)(\mathrm{q})\right\} \\
& =\mathrm{V}_{\mathrm{s}=p q}\left\{\left(\hat{g}_{n} \wedge \hat{h}_{n}\right)(p) \wedge\left(\hat{g}_{n} \wedge \hat{h}_{n}\right)(q)\right\} \\
& =\mathrm{V}_{\mathrm{s}=p q}\left\{\left(\hat{g}_{\mathrm{n}}(\mathrm{p}) \wedge \hat{h}_{\mathrm{n}}(\mathrm{p})\right) \wedge\left(\hat{g}_{\mathrm{n}}(\mathrm{q}) \wedge \hat{h}_{\mathrm{n}}(\mathrm{q})\right)\right. \\
& \leq \mathrm{V}_{\mathrm{s}=p q}\left\{\hat{g}_{\mathrm{n}}(\mathrm{p}) \wedge \hat{h}_{\mathrm{n}}(\mathrm{q})\right\} \\
& \leq \mathrm{V}_{\mathrm{s}=p q}\left\{\left(\hat{g}_{\mathrm{n}}(\mathrm{pq}) \wedge \hat{h}_{\mathrm{n}}(\mathrm{pq})\right\}\right. \\
& =\mathrm{V}_{\mathrm{s}=p q}\left\{\left(\hat{g}_{\mathrm{n}} \wedge \hat{h}_{\mathrm{n}}\right)(\mathrm{pq})\right\} \\
& =\left(\hat{g}_{\mathrm{n}} \wedge \hat{h}_{\mathrm{n}}\right)(\mathrm{s}) \text { for every } \mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\} .
\end{aligned}
$$

Thus $((\hat{g} \wedge \hat{h}) \circ \delta) \wedge(\delta \circ(\hat{g} \wedge \hat{h})) \leq(\hat{g} \wedge \hat{h})$, that is $\hat{g} \wedge$ $\hat{h}$ be a MPFQ-ideal over $\hat{S}$.

Now, we define the multi-polar fuzzy interiorideal (MPFI-ideal) over $\hat{S}$.

Definition 3.9 A multi-polar fuzzy sub LAsemigroup $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ of $\hat{S}$ is a MPFI-ideal over $\hat{S}$ if for each $\mathrm{x}, \mathrm{a}, \mathrm{y} \in \hat{S}, \hat{g}((\mathrm{xa}) \mathrm{y}) \geq \hat{g}(\mathrm{a})$, that is $\hat{g}_{\mathrm{n}}((\mathrm{xa}) \mathrm{y}) \geq \hat{g}_{\mathrm{n}}$ (a) for every $\mathrm{n} \in\{1,2,3, \ldots, \mathrm{~m}\}$.

Lemma 3.12 A subset $\hat{I}$ over $\hat{S}$ which is nonempty is an interior ideal over $\hat{S}$ iff the multipolar characteristic function $\hat{C}_{\hat{I}}$ over $\hat{I}$ is a MPFIideal over $\hat{S}$.

Proof: Consider that $\hat{I}$ is an interior ideal over $\hat{S}$. From Lemma 2, $\hat{C}_{\hat{l}}$ is a multi-polar fuzzy sub LAsemigroup over $\hat{S}$. Now, we show that $\hat{C}_{\hat{I}}((\mathrm{pq}) \mathrm{r})$ $\geq \hat{C}_{\hat{I}}(\mathrm{q})$ for every $\mathrm{p}, \mathrm{q}, \mathrm{r} \in \hat{S}$. Let we have the four cases,

Case 1: Consider that $\mathrm{q} \in \hat{I}$ and $\mathrm{p}, \mathrm{r} \in \hat{S}$. Then $\hat{C}_{\hat{S}}(\mathrm{q})=(1,1, \ldots, 1)$. Since $\hat{I}$ is an interior ideal over $\hat{S}$, so $(\mathrm{pq}) \mathrm{r} \in \hat{I}$. Then $\hat{C}_{\hat{I}}((\mathrm{pq}) \mathrm{r})=(1,1, \ldots, 1)$. Hence $\hat{C}_{\hat{I}}((\mathrm{pq}) \mathrm{r}) \geq \hat{C}_{\hat{I}}(\mathrm{q})$.

Case 2: Let $\mathrm{q} \notin \hat{I}$ and $\mathrm{p}, \mathrm{r} \in \hat{S}$. Then $\hat{C}_{\hat{I}}(\mathrm{q})=$ $(0,0, \ldots, 0)$. Clearly, $\hat{C}_{\hat{I}}((\mathrm{pq}) \mathrm{r}) \geq \hat{C}_{\hat{I}}(\mathrm{q})$. Hence the multi-polar characteristic function $\hat{C}_{\hat{I}}$ over $\hat{I}$ is an multi-polar FI-ideal over $\hat{S}$.

Conversely, consider that $\hat{C}_{\hat{I}}$ is a MPFI-ideal over $\hat{S}$. Then by Lemma 2, $\hat{I}$ is a sub LA-semigroup over $\hat{S}$. Let $\mathrm{p}, \mathrm{r} \in \hat{S}$ and $\mathrm{q} \in \hat{I}$. Then, $\hat{C}_{\hat{I}}(\mathrm{q})=$ $(1,1, \ldots, 1)$. By the hypothesis, $\hat{C}_{\hat{I}}((\mathrm{pq}) \mathrm{r}) \geq \hat{C}_{\hat{I}}(\mathrm{q})=$ $(1,1, \ldots, 1)$. Hence $\hat{C}_{\hat{I}}((\mathrm{pq}) \mathrm{r})=(1,1, \ldots, 1)$. This proves that (pq) $\mathrm{r} \in \hat{I}$, that is $\hat{I}$ is an interior ideal over $\hat{S}$.

Lemma 3.13 Let $\hat{g}$ be a MPF-sub LA-semigroup over $\hat{S}$. Then $\hat{g}$ is a MPFI-ideal over $\hat{S}$ iff $(\delta \circ \hat{g})$ $\circ \delta \leq \hat{g}$.

Proof. Let $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ be a multi-polar FIideal over $\hat{S}$. We demonstrate that $(\delta \circ \hat{g}) \circ \delta \leq \hat{g}$. Let $\mathrm{z} \in \hat{S}$. Then for every $\mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\}$.

$$
\begin{aligned}
&\left(\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right) \circ \delta_{\mathrm{n}}\right)(\mathrm{z})=\mathrm{V}_{\mathrm{z}=u v}\left\{\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{u}) \wedge \delta_{\mathrm{n}}(\mathrm{v})\right\} \\
&=\mathrm{V}_{\mathrm{z}=u v}\left\{\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{u})\right\} \\
&=\mathrm{V}_{\mathrm{z}=u v}\left\{\mathrm{~V}_{\mathrm{u}=a b}\left\{\delta_{\mathrm{n}}(\mathrm{a}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{~b})\right\}\right. \\
&=\mathrm{V}_{\mathrm{z}=u v}\left\{\mathrm{~V}_{\mathrm{u}=a b}\left\{\hat{g}_{\mathrm{n}}(\mathrm{~b})\right\}\right. \\
&=\mathrm{V}_{\mathrm{z}=(a b) v}\left\{\hat{g}_{\mathrm{n}}(\mathrm{~b})\right\} \\
& \leq \mathrm{V}_{\mathrm{z}=(a b) v}\left\{\hat{g}_{\mathrm{n}}((\mathrm{ab}) \mathrm{v})\right\} \\
&=\hat{g}_{\mathrm{n}}(\mathrm{z}) \text { for every } \mathrm{n} \in \in \\
&\{1,2, \ldots, \mathrm{~m}\} .
\end{aligned}
$$

Thus $(\delta \circ \hat{g}) \circ \delta \leq \hat{g}$.
In the reverse, assume that $(\delta \circ \hat{g}) \circ \delta \leq \hat{g}$. We only prove that $\hat{g}_{\mathrm{n}}((\mathrm{xa}) \mathrm{y}) \geq \hat{g}_{\mathrm{n}}(\mathrm{a})$ for each $\mathrm{x}, \mathrm{a}, \mathrm{y} \in$ $\hat{S}$ and for every $\mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\}$. Let $\mathrm{z}=(\mathrm{xa}) \mathrm{y}$. Now for every $\mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\}$.

$$
\begin{aligned}
\hat{g}_{\mathrm{n}}((\mathrm{xa}) \mathrm{y}) & \geq\left(\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right) \circ \delta_{\mathrm{n}}\right)((\mathrm{xa}) \mathrm{y}) \\
= & \mathrm{V}_{(\mathrm{xa}) \mathrm{y}=u v}\left\{\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{u}) \wedge \delta_{\mathrm{n}}(\mathrm{v})\right\} \\
& \geq\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{xa}) \wedge \delta_{\mathrm{n}}(\mathrm{y}) \\
= & \left(\delta_{\mathrm{n}} \circ \widehat{g}_{\mathrm{n}}\right)(\mathrm{xa}) \\
= & \mathrm{V}_{\mathrm{xa}=p q}\left\{\left(\delta_{\mathrm{n}}(\mathrm{p}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{q})\right\}\right. \\
& \geq \delta_{\mathrm{n}}(\mathrm{x}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{a}) \\
& =\hat{g}_{\mathrm{n}}(\mathrm{a}) \text { for all } \mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\} .
\end{aligned}
$$

So, $\hat{g}_{\mathrm{n}}((\mathrm{xa}) \mathrm{y}) \geq \hat{g}_{\mathrm{n}}(\mathrm{a})$ for each $\mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\}$. Thus $\hat{g}$ is a MPFI-ideal over $\hat{\mathrm{S}}$.

Proposition 3.5 Consider $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ be a MPF-subset over $\hat{\mathrm{S}}$. Then $\hat{g}$ is a multi-polar FIideal over $\hat{S}$ iff $\hat{g}_{\mathrm{t}}=\{\mathrm{x} \in \hat{\mathrm{S}} \mid \hat{g}(\mathrm{x}) \geq \mathrm{t}\} \neq \varphi$ is an interior ideal over $\hat{S}$ for each $t=\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \ldots, \mathrm{t}_{\mathrm{m}}\right) \in$ $(0,1]^{\mathrm{m}}$.

Proof. It can be proved on the same lines of Propositions 3.1 and 3.2.

## 4. REGULAR LA-SEMIGROUPS CHARACTERIZED BY MULTI-POLAR FUZZY IDEALS

Definition 4.1 If for every element s in the LAsemigroup $\hat{S}$, there exists $\mathrm{r} \in \hat{S}$ such that s can be expressed as $\mathrm{s}=(\mathrm{sr}) \mathrm{s}$ then $\hat{S}$ is a regular LAsemigroup.

Theorem 4.1 [15] Let $\hat{S}$ possesses e with (ae) $\hat{S}=$ $\mathrm{a} \hat{S}$ for each a $\in \hat{S}$. So the subsequent assertions are equivalent.
(1) $\hat{S}$ is regular
(2) For all R-ideal $\hat{R}$ and L-ideal
$\hat{L}$ over $\hat{S}$ we have $\hat{R} \cap \hat{L}=\hat{R} \hat{L}$.
(3) $\hat{J}=(\hat{J} \hat{S}) \hat{J}$ for all Q-ideal $\hat{J}$ over $\hat{S}$.

Theorem 4.2 If $\hat{S}$ possesses e with (re) $\hat{S}=\mathrm{r} \hat{S}$ for each $\mathrm{r} \in \hat{S}$. Then any MPFQ-ideal over $\hat{S}$ is a MPFB-ideal over $\hat{S}$.

Proof. Consider $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ be any MPFQideal over $\hat{S}$. Take $\mathrm{p}, \mathrm{q} \in \hat{S}$. Then,

$$
\begin{aligned}
\hat{g}_{\mathrm{n}}(\mathrm{pq}) & \geq\left(\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right) \wedge\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{pq})\right. \\
& =\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right)(\mathrm{pq}) \wedge\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{pq}) \\
& =\left\{\begin{array}{l}
\mathrm{V}_{\mathrm{pq}=a b}\left\{\hat{g}_{n}(\mathrm{a}) \wedge \delta_{n}(\mathrm{~b})\right\} \wedge \\
\mathrm{V}_{\mathrm{pq}=u v}\left\{\delta_{n}(\mathrm{u}) \wedge \hat{g}_{n}(\mathrm{v})\right\}
\end{array}\right\} \\
& \geq\left\{\hat{g}_{\mathrm{n}}(\mathrm{p}) \wedge \delta_{\mathrm{n}}(\mathrm{q})\right\} \wedge\left\{\delta_{\mathrm{n}}(\mathrm{p}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{q})\right\} \\
& =\left\{\hat{g}_{\mathrm{n}}(\mathrm{p}) \wedge 1\right\} \wedge\left\{1 \wedge \hat{g}_{\mathrm{n}}(\mathrm{q})\right\} \\
& =\hat{g}_{n}(\mathrm{p}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{q}) \text { for all } \mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\} .
\end{aligned}
$$

So, $\hat{g}(\mathrm{pq}) \geq \hat{g}(\mathrm{p}) \wedge \hat{g}(\mathrm{q})$.
Now, let $\mathrm{p}, \mathrm{q}, \mathrm{r} \in \hat{S}$. Then,

$$
\begin{aligned}
\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)((\mathrm{pq}) \mathrm{r}) & =\mathrm{V}_{(\mathrm{pq}) \mathrm{r}=u v}\left\{\delta_{\mathrm{n}}(\mathrm{u}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{v})\right\} \\
& \geq \delta_{\mathrm{n}}(\mathrm{pq}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{r}) \\
& =1 \wedge \hat{g}_{\mathrm{n}}(\mathrm{r}) \\
& =\hat{g}_{\mathrm{n}}(\mathrm{r})
\end{aligned}
$$

So, $\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)((\mathrm{pq}) \mathrm{r}) \geq \hat{g}_{\mathrm{n}}(\mathrm{r})$ for all $\mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\}$.
Since $(\mathrm{pq}) \mathrm{r}=(\mathrm{pq})(\mathrm{er})=(\mathrm{pe})(\mathrm{qr}) \in(\mathrm{pe}) \hat{S}=\mathrm{p} \hat{S}$, so $(\mathrm{pq}) \mathrm{r}=\mathrm{ps}$ for some $\mathrm{s} \in \hat{S}$. Thus,

$$
\begin{aligned}
\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right)((\mathrm{pq}) \mathrm{r}) & =\mathrm{V}_{(\mathrm{pq}) \mathrm{r}=a b}\left\{\hat{g}_{\mathrm{n}}(\mathrm{a}) \wedge \delta_{\mathrm{n}}(\mathrm{~b})\right\} \\
& \geq \widehat{g}_{\mathrm{n}}(\mathrm{p}) \wedge \delta_{\mathrm{n}}(\mathrm{~s}) \text { since }(\mathrm{pq}) \mathrm{r}=\mathrm{ps} \\
& =\widehat{g}_{\mathrm{n}}(\mathrm{p}) \wedge 1 \\
& =\hat{g}_{\mathrm{n}}(\mathrm{p})
\end{aligned}
$$

So, $\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right)((\mathrm{pq}) \mathrm{r}) \geq \hat{g}_{\mathrm{n}}(\mathrm{p})$ for every $\mathrm{n} \in$ $\{1,2, \ldots, \mathrm{~m}\}$.
Now, by our assumption

$$
\begin{aligned}
\hat{g}_{\mathrm{n}}((\mathrm{pq}) \mathrm{r}) & \geq\left(\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right) \wedge\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)\right)((\mathrm{pq}) \mathrm{r}) \\
& =\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right)((\mathrm{pq}) \mathrm{r}) \wedge\left(\delta_{\mathrm{n}} \circ \hat{g}_{\mathrm{n}}\right)((\mathrm{pq}) \mathrm{r}) \\
& \geq \hat{g}_{\mathrm{n}}(\mathrm{p}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{r}) \text { for every } \mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\} .
\end{aligned}
$$

Thus, $\hat{g}((\mathrm{pq}) \mathrm{r}) \geq \hat{g}(\mathrm{p}) \wedge \hat{g}(\mathrm{r})$. This proves that $\hat{g}$ is an MPFB-ideal over $\hat{S}$.

Theorem 4.3 The subsequent statements are equivalent for an LA-semigroup $\hat{S}$.
(1) $\hat{S}$ is regular
(2) $\hat{g} \wedge \hat{h}=\hat{g} \circ \hat{h}$ for any MPFR-ideal $\hat{g}$ and MPFL-ideal $\hat{h}$ over $\hat{S}$.

Proof. (1) $\Rightarrow$ (2): Consider $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ and $\hat{h}=\left(\hat{h}_{1}, \hat{h}_{2}, \ldots, \hat{h}_{\mathrm{m}}\right)$ be any MPFR-ideal and MPFLideal of $\hat{S}$. Let a $\in \hat{S}$, we get

$$
\begin{aligned}
\left(\hat{g}_{\mathrm{n}} \circ \hat{h}_{\mathrm{n}}\right)(\mathrm{a}) & =\mathrm{V}_{\mathrm{a}=y z}\left\{\hat{g}_{\mathrm{n}}(\mathrm{y}) \wedge \hat{h}_{\mathrm{n}}(\mathrm{z})\right\} \\
& \leq \mathrm{V}_{\mathrm{a}=y z}\left\{\hat{g}_{\mathrm{n}}(\mathrm{yz}) \wedge \hat{h}_{\mathrm{n}}(\mathrm{yz})\right\} \\
& =\hat{g}_{\mathrm{n}}(\mathrm{a}) \wedge \hat{h}_{\mathrm{n}}(\mathrm{a}) \\
& =\left(\hat{g}_{\mathrm{n}} \wedge \hat{h}_{\mathrm{n}}\right)(\mathrm{a}) \text { for all } \mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\} .
\end{aligned}
$$

So, $(\hat{g} \circ \hat{h}) \leq(\hat{g} \wedge \hat{h})$.
By assertion (1), for each $\mathrm{a} \in \hat{S}$, we have $\mathrm{a}=(\mathrm{ax}) \mathrm{a}$ for some $\mathrm{x} \in \hat{S}$. So we get

$$
\begin{aligned}
\left(\hat{g}_{\mathrm{n}} \wedge \hat{h}_{\mathrm{n}}\right)(\mathrm{a}) & =\hat{g}_{\mathrm{n}}(\mathrm{a}) \wedge \hat{h}_{\mathrm{n}}(\mathrm{a}) \\
& \leq \hat{g}_{\mathrm{n}}(\mathrm{ax}) \wedge \hat{h}_{\mathrm{n}}(\mathrm{a}) \\
& \leq \mathrm{V}_{\mathrm{a}=y z}\left\{\hat{g}_{\mathrm{n}}(\mathrm{y}) \wedge \hat{h}_{\mathrm{n}}(\mathrm{z})\right\} \\
& =\left(\hat{g}_{\mathrm{n}} \circ \hat{h}_{\mathrm{n}}\right)(\mathrm{a}) \text { for all } \mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\} .
\end{aligned}
$$

Thus, $(\hat{g} \circ \hat{h}) \geq(\hat{g} \wedge \hat{h})$. Hence proved that $(\hat{g} \wedge$ $\hat{h})=(\hat{g} \circ \hat{h})$.
$(2) \Rightarrow$ (1): Suppose that $\mathrm{a} \in \hat{S}$. Thus a $\hat{S}$ is a L-ideal over $\hat{S}$ and $a \hat{S} \cup \hat{S}$ a is a R-ideal over $\hat{S}$ generated by a say a $\hat{S}=\hat{L}$ and a $\hat{S} \cup \hat{S} a=\hat{R}$. Now $\hat{C}_{\hat{L}}$ and $\hat{C}_{\hat{R}}$ the multi-polar characteristic functions of $\hat{L}$ and $\hat{R}$ are MPFL-ideal and MPFR-ideal over $\hat{S}$ by using Lemma 3.2. Hence, from Lemma 3.1 and assertion (2) we get

$$
\begin{aligned}
\hat{C}_{\hat{R} \hat{L}} & =\left(\hat{C}_{\widehat{R}} \circ \hat{C}_{\hat{L}}\right) \text { from Lemma } 3.1 \\
& =\left(\hat{C}_{\widehat{R}} \wedge \hat{C}_{\hat{L}}\right) \text { from } 2 \\
& =\hat{C}_{\hat{R} \cap \hat{L}} \text { by Lemma 3.1 } .
\end{aligned}
$$

This proves that $\hat{R} \cap \hat{L}=\hat{R} \hat{L}$. Thus $\hat{S}$ is regular from Theorem 4.1.
Theorem 4.4 Consider $\mathrm{e} \in \hat{S}$ with (ae) $\hat{S}=\mathrm{a} \hat{S}$ for each a $\in \hat{S}$. Thus the subsequent assertions are equivalent.
(1) $\hat{S}$ is regular
(2) $\hat{g}=(\hat{g} \circ \delta) \circ \hat{g}$ for any MPFGB-ideal $\hat{g}$ over $\hat{S}$.
(3) $\hat{g}=(\hat{g} \circ \delta) \circ \hat{g}$ for each MPFB-ideal $\hat{g}$ over $\hat{S}$.

Proof. (1) $\Rightarrow$ (2): Consider $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ be a MPFGB-ideal over $\hat{S}$. Let a $\in \hat{S}$, so by assertion (1), $\mathrm{a}=(\mathrm{ax}) \mathrm{a}$ for some $\mathrm{x} \in \hat{S}$. So, we get

$$
\begin{aligned}
& \left(\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right) \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{a}) \\
& =\mathrm{V}_{\mathrm{a}=y z}\left\{\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right)(\mathrm{y}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{z})\right\} \text { for some } \mathrm{y}, \mathrm{z} \in \hat{S} \\
& \geq\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right)(\mathrm{ax}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{a}) \text { since } \mathrm{a}=(\mathrm{ax}) \mathrm{a} \\
& =\mathrm{V}_{\mathrm{ax}=p q}\left\{\hat{g}_{\mathrm{n}}(\mathrm{p}) \wedge \delta_{\mathrm{n}}(\mathrm{q})\right\} \wedge \hat{g}_{\mathrm{n}}(\mathrm{a}) \\
& \geq\left\{\hat{g}_{\mathrm{n}}(\mathrm{a}) \wedge \delta_{\mathrm{n}}(\mathrm{x})\right\} \wedge \hat{g}_{\mathrm{n}}(\mathrm{a}) \\
& =\hat{g}_{\mathrm{n}}(\mathrm{a}) \text { for all } \mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\} .
\end{aligned}
$$

Hence proved that $(c \circ \delta) \circ \hat{g} \geq \hat{g}$.
Because $\hat{g}$ is a MPFGB-ideal over $\hat{S}$. Thus, we get
$\left(\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right) \circ \hat{g}_{\mathrm{n}}\right)(\mathrm{a})$
$=\mathrm{V}_{\mathrm{a}=y \mathrm{z}}\left\{\left(\hat{g}_{\mathrm{n}} \circ \delta_{\mathrm{n}}\right)(\mathrm{y}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{z})\right\}$ for some $\mathrm{y}, \mathrm{z} \in \hat{S}$
$=\mathrm{V}_{\mathrm{a}=y_{\mathrm{z}}}\left\{\mathrm{V}_{\mathrm{y}=p q}\left\{\hat{\mathrm{~g}}_{\mathrm{n}}(\mathrm{p}) \wedge \delta_{\mathrm{n}}(\mathrm{q})\right\} \wedge \hat{g}_{\mathrm{n}}(\mathrm{z})\right\}$ for $\mathrm{p}, \mathrm{q} \in$ $\hat{S}$
$=\mathrm{V}_{\mathrm{a}=y \mathrm{z}}\left\{\mathrm{V}_{\mathrm{y}=p q}\left\{\hat{\mathrm{~g}}_{\mathrm{n}}(\mathrm{p}) \wedge \hat{g}_{\mathrm{n}}(\mathrm{z})\right\}\right\}$
$\leq \mathrm{V}_{\mathrm{a}=y \mathrm{z}}\left\{\mathrm{V}_{\mathrm{y}=p q}\left\{\hat{g}_{\mathrm{n}}((\mathrm{pq}) \mathrm{z})\right\}\right\}$
$=\mathrm{V}_{\mathrm{a}=\mathrm{yz}}\left\{\hat{g}_{\mathrm{n}}(\mathrm{yz})\right\}$
$=\hat{g}_{\mathrm{n}}(\mathrm{a})$ for all $\mathrm{n} \in\{1,2, \ldots, \mathrm{~m}\}$.
So, $(\hat{g} \circ \delta) \circ \hat{g} \leq \hat{g}$. Thus $\hat{g}=(\hat{g} \circ \delta) \circ \hat{g}$.
$(2) \Rightarrow(3)$ It is straightforward.
(3) $\Rightarrow$ (1): Consider $\hat{J}$ be any quasi-ideal over $\hat{S}$.

Since $(\hat{J} \hat{S}) \hat{J} \subseteq(\hat{J} \hat{S}) \hat{S}=(\hat{J} \hat{S})(\mathrm{e} \hat{S})=(\hat{J} \mathrm{e})(\hat{S} \hat{S})=(\hat{J} \mathrm{e}) \hat{S}$
$=\hat{J} \hat{S}$ and $(\hat{J} \hat{S}) \hat{J} \subseteq(\hat{S} \hat{S}) \hat{J}=\hat{S} \hat{J}$. Therefore $(\hat{J} \hat{S}) \hat{J} \subseteq \hat{J} \hat{S}$
$\cap \hat{S} \hat{J} \subseteq \hat{J}$.
Now, let $\mathrm{a} \in \hat{J}$ such that $\mathrm{a}=\mathrm{yz}$ for some $\mathrm{y}, \mathrm{z} \in \hat{S}$. Since by Lemma 3.9, $\hat{C}_{\hat{\jmath}}$ is a MPFQ-ideal over $\hat{S}$. Therefore $\hat{C}_{\hat{\jmath}}$ is an MPFB-ideal over $\hat{S}$ by Theorem 4.2. Thus, we get
$\left(\left(\hat{C}_{\hat{\jmath}} \circ \delta\right) \circ \hat{C}_{\hat{\jmath}}\right)(\mathrm{a})=\hat{C}_{\hat{\jmath}}($ a) by using condition (3)

$$
=(1,1, \ldots, 1)
$$

Hence $\left(\left(\hat{C}_{\hat{\jmath}} \circ \delta\right) \circ \hat{C}_{\hat{\jmath}}\right)(a)=(1,1, \ldots, 1)$. So, there are elements $\mathrm{u}, \mathrm{v} \in \hat{S}$ so that $\left(\hat{C}_{\hat{\jmath}} \circ \delta\right)(\mathrm{u})=(1,1, \ldots, 1)$ and $\hat{C}_{\hat{\jmath}}(\mathrm{v})=(1,1, \ldots, 1)$ with $\mathrm{a}=\mathrm{uv}$. Since $\left(\hat{C}_{\hat{\jmath}} \circ \delta\right)(\mathrm{u})$ $=(1,1, \ldots, 1)$. So there are elements $\mathrm{w}, \mathrm{e} \in \hat{S}$ such that $\hat{C}_{\hat{j}}(\mathrm{w})=(1,1, \ldots, 1)$ and $\delta(\mathrm{e})=(1,1, \ldots, 1)$ with $u$ $=$ we. Thus $\mathrm{w}, \mathrm{v} \in \hat{J}$ and $\mathrm{e} \in \hat{S}$ and so $\mathrm{a}=\mathrm{uv}=$ $(\mathrm{we}) \mathrm{v} \in(\hat{J} \hat{S}) \hat{J}$. Hence $\hat{J} \subseteq(\hat{J} \hat{S}) \hat{J}$. So, $\hat{J}=(\hat{J} \hat{S}) \hat{J}$. Thus $\hat{S}$ is regular from Theorem 4.1.

Theorem 4.5 Consider e $\in \hat{S}$ with (ae) $\hat{S}=\mathrm{a} \hat{S}$ for each a $\in \hat{S}$. Thus the subsequent statements are equivalent.
(1) $\hat{S}$ is regular
(2) Consider any MPFR-ideal $\hat{g}$, any MPFGBideal $\hat{h}$, and any MPFL-ideal $\hat{I}$ over $\hat{S}$, this
$(\hat{g} \circ \hat{h}) \circ \hat{I} \geq(\hat{g} \wedge \hat{h}) \wedge \hat{I}$ holds.
(3) Consider any MPFR-ideal $\hat{g}$, any MPFB-ideal $\hat{h}$, and any MPFL-ideal $\hat{I}$ over $\hat{S}$, this
$(\hat{g} \circ \hat{h}) \circ \hat{I} \geq(\hat{g} \wedge \hat{h}) \wedge \hat{I}$ holds.
(4) Consider any MPFR-ideal $\hat{g}$, any MPFQideal $\hat{h}$, and any MPFL-ideal $\hat{I}$ of $\hat{S}$, this
$(\hat{g} \circ \hat{h}) \circ \hat{I} \geq(\hat{g} \wedge \hat{h}) \wedge \hat{I}$ holds.
Proof. (1) $\Rightarrow$ (2): Consider $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{m}\right), \hat{h}=$ $\left(\hat{h}_{1}, \hat{h}_{2}, \ldots, \hat{h}_{\mathrm{m}}\right)$, and $\hat{I}=\left(\hat{I}_{1}, \hat{I}_{2}, \ldots, \hat{I}_{\mathrm{m}}\right)$ be any MPFR-
ideal, MPFGB-ideal and MPFL-ideal $\hat{I}$ over $\hat{S}$, respectively. Suppose that a $\in \hat{S}$, so by assertion (1) $\mathrm{a}=(\mathrm{ar}) \mathrm{a}$ for some $\mathrm{r} \in \hat{S}$. It follows that, $\mathrm{a}=$ $(a r) a=(a r)(e a)=(a e)(r a)=a(r a)$ since $(a e) \hat{S}=a \hat{S}$ for each $\mathrm{a} \in \hat{S}$. Hence we get

$$
\begin{aligned}
((\hat{g} \circ \hat{h}) \circ \hat{I})(\mathrm{a}) & =\mathrm{V}_{\mathrm{a}=u v}\{(\hat{g} \circ \hat{h})(\mathrm{u}) \wedge \hat{I}(\mathrm{v})\} \\
& \geq(\hat{g} \circ \mathrm{~h})(\mathrm{a}) \wedge \hat{I}(\mathrm{ra}) \text { as } \mathrm{a}=\mathrm{a}(\mathrm{ra}) \\
& \geq \mathrm{V}_{\mathrm{a}=p q}\{\hat{g}(\mathrm{p}) \wedge \hat{h}(\mathrm{q})\} \wedge \hat{I}(\mathrm{a}) \\
& \geq(\hat{g}(\mathrm{ar}) \wedge \hat{h}(\mathrm{a})) \wedge \hat{I}(\mathrm{a}) \text { as } \mathrm{a}=(\mathrm{ar}) \mathrm{a} \\
& \geq(\hat{g}(\mathrm{a}) \wedge \hat{h}(\mathrm{a})) \wedge \hat{I}(\mathrm{a}) \\
& =((\hat{g} \wedge \hat{h})(\mathrm{a})) \wedge \hat{I}(\mathrm{a}) \\
& =((\hat{g} \wedge \hat{h}) \wedge \hat{I})(\mathrm{a})
\end{aligned}
$$

Hence proved that $(\hat{g} \circ \hat{h}) \circ \hat{I} \geq(\hat{g} \wedge \hat{h}) \wedge \hat{I}$.
(2) $\Rightarrow(3) \Rightarrow(4)$ : These are straight forward.
(4) $\Rightarrow$ (1): Consider $\hat{g}=\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{\mathrm{m}}\right)$ and $\hat{I}=$ $\left(\hat{I}_{1}, \hat{I}_{2}, \ldots, \hat{I}_{\mathrm{m}}\right)$ be any MPFR-ideal and MPFL-ideal over $\hat{S}$. As $\delta$ be a MPFQ-ideal over $\hat{S}$, by the supposition, we get

$$
\begin{aligned}
(\hat{g} \wedge \hat{I})(\mathrm{a}) & =((\hat{g} \wedge \delta) \wedge \hat{I})(\mathrm{a}) \\
& \leq((\hat{g} \circ \delta) \circ \hat{I})(\mathrm{a}) \\
& =\mathrm{V}_{\mathrm{a}=p q}\{(\hat{g} \circ \delta)(\mathrm{p}) \wedge \hat{I}(\mathrm{q})\} \\
& =\mathrm{V}_{\mathrm{a}=p q}\left\{\left(\mathrm{~V}_{\mathrm{p}=u v}\{\hat{g}(\mathrm{u}) \wedge \delta(\mathrm{v})\}\right) \wedge \hat{I}(\mathrm{q})\right\} \\
& =\mathrm{V}_{\mathrm{a}=p q}\left\{\left(\mathrm{~V}_{\mathrm{p}=u v}\{\hat{g}(\mathrm{u}) \wedge 1\}\right) \wedge \hat{I}(\mathrm{q})\right\} \\
& =\mathrm{V}_{\mathrm{a}=p q}\left\{\left(\mathrm{~V}_{\mathrm{p}=u v} \hat{g}(\mathrm{u})\right) \wedge \hat{I}(\mathrm{q})\right\} \\
& \leq \mathrm{V}_{\mathrm{a}=p q}\left\{\left(\mathrm{~V}_{\mathrm{p}=u v}\{\hat{g}(\mathrm{uv})\}\right) \wedge \hat{I}(\mathrm{q})\right\} \\
& =\mathrm{V}_{\mathrm{a}=p q}\{\hat{g}(\mathrm{p}) \wedge \hat{I}(\mathrm{q})\} \\
& =(\hat{g} \circ \hat{I})(\mathrm{a})
\end{aligned}
$$

Thus $(\hat{g} \circ \hat{I}) \geq(\hat{g} \wedge \hat{l})$ for any MPFR-ideal $\hat{g}$ and any MPFL-ideal $\hat{I}$ over $\hat{S}$. $\operatorname{But}(\hat{g} \circ \hat{I}) \leq(\hat{g} \wedge \hat{I})$. This gives $(\hat{g} \circ \hat{I})=(\hat{g} \wedge \hat{I})$. Thus $\hat{S}$ is regular by Theorem 4.3.

## 5. CONCLUSION

In this research paper, we have put forward the idea of MPF-sets which is an expansion of BPFsets. Infact, the BPF-sets are useful mathematical model to demonstrate the positivity and negativity of goods. In this study we have
examined the multi-information about the given data by defining the multi-polar fuzzy sets in LAsemigroups. Mainly, we have confined our attention to investigate how we can generalize the results of BPF-sets in terms of multi-polar fuzzy sets. Also detailed exposition of multi-polar fuzzy ideals in $\hat{S}$ have been studied. Moreover, this study can be used as a design for aggregation or classification and to define multi-valued relations. One such structure is the Pythagorean MPF-set which is hybrid model of both PFS and MPF-sets is presented by Naeem et al. [17]. Another related model is the Pythagorean MPFsets, which was proposed by Riaz et al. [18]. The interval $[0,1]$ is the range of a membership function, which illustrates a fuzzy set ( F -set). A membership degree serves as an illustration of how individuals of a set are related.

## 6. CONFLICT OF INTEREST

The authors declare no conflict of interest.

## 7. REFERENCES

1. J. Chen, S. Li, S. Ma, and X. Wang. m-Polar Fuzzy Sets: An Extension of Bipolar Fuzzy Sets. The Scientific World Journal 2014: 416530 (2014).
2. D.T. Ho, and J.M. Garibaldi. Context modelling in fuzzy systems. Proceedings of the WCCI 2012 IEEE World Congress on Computational Intelligence, Brisbane, Australia 1-7 (2012).
3. M.A. Nazim, and M. Naseerudin. On almostsemigroup. The Aligarh Bulletin of Mathematics 2: 1-7 (1972).
4. N. Kuroki. Fuzzy bi-ideals in semigroups. Commentarii mathematici Universitatis Sancti Pauli 27: 17-21 (1979).
5. K.M. Lee. Bipolar-valued fuzzy sets and their operations. Proceedings of the International conference on Intelligent Technologies, Bangkok, Thailand 307-312 (2000).
6. K.M. Lee. Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolar-valued
fuzzy sets. Journal of Fuzzy Logic and Intelligent Systems 14: 125-129 (2004).
7. N. Malik, and M. Shabir. A consensus model based on rough bipolar fuzzy approximations. Journal of Intelligent \& Fuzzy Systems 36: 34613470 (2019).
8. J.N. Mordeson, D. S. Malik, and N. Kuroki. Fuzzy semigroups. Springer-Verlag, Berlin, Germany (2003).
9. Q. Mushtaq, and S.M. Yusuf. On LA-semigroups. The Aligarh Bulletin of Mathematics 8: 65-70 (1978).
10. Q. Mushtaq, and S.M. Yusuf. On locally associative LA-semigroups. Journal of natural sciences and mathematics 19: 57-62 (1979).
11. P.V. Protic, and N. Stevanovic. The structural theorem for AG groupoids. Series Mathematics and Informatics 10: 25-33 (1995).
12. A. Rosenfeld. Fuzzy groups. The Journal of Mathematical Analysis and Applications 35: 512517 (1971).
13. L.A. Zadeh. The concept of a linguistic variable and its applications to approximate reasoning. Information Sciences 8: 199-249 (1975).
14. L.A. Zadeh. Fuzzy Sets. Information and Control 8: 338-353 (1965).
15. R. Zenab. Some Studies in Fuzzy AG Groupoids. M. Phil Dissertation, Quaid-i-Azam University, Islamabad (2009).
16. M. Riaz, M. Saba, M. Abdullah, and M. Aslam. The novel concepts of m-polar spherical fuzzy sets and new correlation measures with application to pattern recognition and medical diagnosis. AIMS Mathematics 10: 11346-11379 (2021).
17. K. Naeem, M. Riaz, and D. Afzal. Pythagorean mpolar fuzzy sets and TOPSIS method for the selection of advertisement mode. Journal of Intelligent \& Fuzzy Systems 37: 8441-8458 (2019).
18. M. Riaz, K. Naeem, and D. Afzal. Pythagorean mpolar fuzzy soft sets with TOPSIS method for MCGDM. Punjab University Journal of Mathematics 52: 21-46 (2020).

[^0]:    Received: March 2022; Accepted: September 2022
    *Corresponding author: Fareeha Pervaiz [fareeha5531@yahoo.com](mailto:fareeha5531@yahoo.com)

