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Abstract: This paper presents an analytical analysis of a sphere placed in fractional dimensional space. The Laplacian 
Equation in fractional space describes physics as a complex phenomenon. The general solution of the Laplacian 
equation in fractional space is obtained by the separable variable technique. We have investigated a close form solution 
for conducting sphere and dielectric sphere. Further, the electric potential and charge density, induced due to a point 
charge is calculated in fractional space, and also the energy radiated by the sphere is determined. The results are 
compared with the classical results by setting the fractional parameter α = 3 which normally lies in the limit 2 < α ≤ 3.

1. INTRODUCTION

The idea of fractional dimensional space (FD Space) 
is very useful in the various branches of physics and 
it has been discussed by many researchers . Various 
scientists have applied it accordingly as Wilson [3] 
has discussed quantum field theory in fractional 
space. Further, the fractional space can be used as a 
parameter in the Ising limit of quantum field theory 
[6]. Stillinger [4] has given a brief introduction to 
this theme for the formulation of Schrodinger and 
Gibbsian statistical mechanics in the fractional 
space. Svozil and Zeilinger [10] have investigated 
operationalistic meanings of the dimension of 
space time that provides the possibility of predicted 
space time dimension. It is already stated that the 
fractional space time is less than 4. In the new era, 
Gauss law [11] has been formulated in the FD space. 
The solutions of electrostatic problems , have also 
been investigated in the fractional space for.

In this paper, we have focused on the problem of 
a sphere in an electrostatic field [16] and worked it 
out for fractional space. Some researchers [17] have 
also discussed this problem in fraction dimensional 
space. But we have calculated the electric field and 

energy in fractional dimensional space. We have 
also calculated its energy, charge density, dipole 
moment and electric field in fractional space for 
the outside sphere as well as inside the sphere. 
We have considered here both cases of the sphere 
“conducting and dielectric” in the electrostatic field. 
We have solved this problem analytically. First, 
we consider a conducting sphere, then we solve it 
for a dielectric sphere and finally, we solve for an 
electric field and energy radiated by the sphere. For 
the integer order , the original classical solution can 
be recovered.
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1. INTRODUCTION 

The idea of fractional dimensional space (FD Space) is 
very useful in the various branches of physics and it has 
been discussed by many researchers [1 − 19]. Various 
scientists have applied it accordingly as Wilson [3] has 
discussed quantum field theory in fractional space. 
Further, the fractional space can be used as a parameter 
in the Ising limit of quantum field theory [6]. Stillinger 
[4] has given a brief introduction to this theme for the 
formulation of Schrodinger and Gibbsian statistical 
mechanics in the fractional space. Svozil and Zeilinger 
[10] have investigated operationalistic meanings of the 
dimension of space time that provides the possibility of 
predicted space time dimension. It is already stated that 
the fractional space time is less than 4. In the new era, 
Gauss law [11] has been formulated in the FD space. The 
solutions of electrostatic problems [13 − 18], have also 
been investigated in the fractional space for (2 < α ≤ 3). 

In this paper, we have focused on the problem of a 
sphere in an electrostatic field [16] and worked it out for 
fractional space. Some researchers [17] have also 
discussed this problem in fraction dimensional space. 
But we have calculated the electric field and energy in 
fractiona 

2. MATHEMATICAL MODEL 

Let us consider a conducting sphere (as shown in Figure 
1) having radius 𝒓𝒓𝟏𝟏 embedded in the host medium of 
permittivity 𝝐𝝐𝟐𝟐 [16]. The point charge q is situated on 
𝒛𝒛 − 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 at 𝒛𝒛 = 𝜻𝜻 > 𝒓𝒓𝟏𝟏. In FD space, we will find the 
potential on the sphere as well as the charge distribution. 
At any point outside the sphere, the entire potential is 
given as 𝝓𝝓 = 𝝓𝝓𝟎𝟎 + 𝝓𝝓𝟏𝟏,  where 𝝓𝝓𝟎𝟎 is known as the 
potential of the outer source q and 𝝓𝝓𝟏𝟏 indicates the 
potential of the induced charge distribution on the 
sphere. This potential is single valued, as in Stratton 
[16], and can be expressed as: 
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𝝓𝝓𝟏𝟏 = ∑∞
𝒎𝒎=𝟎𝟎 ∑∞

𝒏𝒏=𝟎𝟎 (𝑨𝑨𝒏𝒏𝒎𝒎𝒓𝒓𝒏𝒏 + 𝑩𝑩𝒏𝒏𝒎𝒎
𝒓𝒓𝒏𝒏+𝟏𝟏) 𝑷𝑷𝒏𝒏𝒎𝒎(𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆

 (1) 

where the unknown arbitrary constants are 𝑨𝑨𝒏𝒏𝒎𝒎 and 
𝑩𝑩𝒏𝒏𝒎𝒎. But 𝝓𝝓𝟏𝟏 must be analytic at infinity, as we set 
𝑨𝑨𝒏𝒏𝒎𝒎 = 𝟎𝟎. Further, the potential 𝝓𝝓𝟎𝟎 is primary and 
symmetric about 𝒛𝒛 − 𝒂𝒂𝒆𝒆𝒂𝒂𝒄𝒄, here 𝒎𝒎 = 𝟎𝟎, in this case. 
Therefore, the potential of the induced charge 
distribution on the sphere can be expressed as: 

𝝓𝝓𝟏𝟏 = ∑∞
𝒏𝒏=𝟎𝟎

𝑩𝑩𝒏𝒏
𝒓𝒓𝒏𝒏+𝟏𝟏 𝑷𝑷𝒏𝒏(𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)        (2) 

 
Fig. 1. A sphere placed in fractional dimensional space 

In fractional space we can express as: 

𝜙𝜙1 = ∑∞
𝑙𝑙=0

𝐵𝐵𝑙𝑙
𝑟𝑟𝑙𝑙+𝛼𝛼−2 𝐶𝐶𝑙𝑙

𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), (2 < 𝛼𝛼 ≤ 3) (3) 

 When 𝑟𝑟 < 𝜁𝜁, the expansion of the primary potential 𝜙𝜙0 
can be expressed as: 

𝜙𝜙0 = 1
4𝜋𝜋𝜖𝜖2

𝑞𝑞
𝑟𝑟2

= 1
4𝜋𝜋𝜖𝜖

𝑞𝑞
𝜁𝜁 ∑∞

𝑙𝑙=0 (𝑟𝑟
𝜁𝜁)

𝑙𝑙
𝐶𝐶𝑙𝑙

𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), (𝛼𝛼 ≤ 3)  (4) 

The resultant potential at the surface of sphere 𝑟𝑟 = 𝑟𝑟1 
is: 

𝜙𝜙(𝑟𝑟1, 𝑐𝑐) = 𝜙𝜙𝑠𝑠 = ∑∞
𝑙𝑙=0 [ 1

4𝜋𝜋𝜖𝜖2

𝑞𝑞
𝜁𝜁 (𝑟𝑟1

𝜁𝜁 )
𝑙𝑙

+
𝐵𝐵𝑙𝑙

𝑟𝑟1
𝑙𝑙+𝛼𝛼−2] 𝐶𝐶𝑙𝑙

𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), (2 < 𝛼𝛼 ≤ 3)  (5) 

 As 𝜙𝜙𝑠𝑠 is constant and since the above equation must be 
valid for all values of 𝑐𝑐, it means that the coefficients of 
𝐶𝐶𝑙𝑙

𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) must goes to zero for all values of l > 0. 
Here, the unknown coefficient 𝑏𝑏𝑛𝑛 can be determined 
from the following set of relations:  

𝑏𝑏0 = 𝑟𝑟1𝜙𝜙𝑠𝑠 − 𝑞𝑞
4𝜋𝜋𝜖𝜖2

𝑟𝑟1
𝜁𝜁  (6) 

𝐵𝐵𝑙𝑙 = −𝑞𝑞
4𝜋𝜋𝜖𝜖2

𝑞𝑞𝑟𝑟1
2𝑙𝑙+𝛼𝛼−2

𝜁𝜁𝑙𝑙+1 , (𝑙𝑙 > 0) (7) 

 At any point, the potential outside the sphere is:  

𝜙𝜙 = 𝑟𝑟1𝜙𝜙𝑠𝑠
𝑟𝑟 + 1

4𝜋𝜋𝜖𝜖2

𝑞𝑞
𝑟𝑟2

−
𝑞𝑞

4𝜋𝜋𝜖𝜖2
∑ 𝑟𝑟1

2𝑙𝑙+𝛼𝛼−2

𝜁𝜁𝑙𝑙+1
𝐶𝐶𝑙𝑙

𝛼𝛼/2−1(cos𝜃𝜃)
𝑟𝑟𝑙𝑙+𝛼𝛼−2 ,∞

𝑙𝑙=0  (2 < 𝛼𝛼 ≤ 3) (8) 

To find the charge density [16], we can calculate the 
normal derivatives on the surface of the sphere as: 

(𝜕𝜕𝜙𝜙
𝜕𝜕𝑟𝑟 )

𝑟𝑟=𝑟𝑟1
= −𝜙𝜙𝑠𝑠

𝑟𝑟1
+ 𝑞𝑞

4𝜋𝜋𝜖𝜖2
∑∞

𝑙𝑙=0 (𝑙𝑙 + 𝛼𝛼 −

2) 𝑟𝑟1
𝑙𝑙−1

𝜁𝜁𝑙𝑙+1 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), (2 < 𝛼𝛼 ≤ 3) (9) 

and the induced charge density can be calculated as: 

𝜔𝜔 = −𝜖𝜖2 (𝜕𝜕𝜙𝜙
𝜕𝜕𝑟𝑟 )

𝑟𝑟=𝑟𝑟1
= 𝜖𝜖2

𝜙𝜙𝑠𝑠
𝑟𝑟1

− 𝑞𝑞
4𝜋𝜋 ∑∞

𝑙𝑙=0 (𝑙𝑙 + 𝛼𝛼 −

2) 𝑟𝑟1
𝑙𝑙−1

𝜁𝜁𝑙𝑙+1 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), (2 < 𝛼𝛼 ≤ 3) (10) 

The entire charge on the sphere is thus given as: 

𝑞𝑞1 = ∫𝜋𝜋
0 ∫2𝜋𝜋

0 𝜔𝜔𝑟𝑟1
2𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠 (11) 

Now using the orthogonality property of Legendre 
functions, we find: 

∫
𝜋𝜋

0
𝐶𝐶𝑙𝑙

𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝐶𝐶𝑙𝑙′
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐 = 0, 

𝑤𝑤ℎ𝑒𝑒𝑠𝑠 𝑙𝑙 ≠ 𝑙𝑙′  (12) 

where, 

𝐶𝐶0
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 1 𝑎𝑎𝑠𝑠𝑠𝑠 𝐶𝐶1

𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = (𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

We take 𝑙𝑙′ = 0, 𝐶𝐶0
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 1 and then 

𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) vanishes when integrated for the limit 0 

to 𝜋𝜋 for all 𝑙𝑙 > 0, thus we have: 

𝑞𝑞1 = 4𝜋𝜋𝜖𝜖2𝑟𝑟1𝜙𝜙𝑠𝑠 − 𝑞𝑞(𝛼𝛼 − 2) 𝑟𝑟1
𝜁𝜁  (13) 

Therefore, the potential of the sphere is given as: 

𝜙𝜙𝑠𝑠 = 1
4𝜋𝜋𝜖𝜖2

𝑞𝑞1
𝑟𝑟1

+ (𝛼𝛼−2)
4𝜋𝜋𝜖𝜖2

𝑞𝑞
𝜁𝜁 (14) 

Thus the potential for the integer order 𝛼𝛼 = 3 can be 
found as follows: 

62 Shahzad et al 
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𝜙𝜙𝑠𝑠 = 1
4𝜋𝜋𝜖𝜖2

𝑞𝑞1
𝑟𝑟1

+ 1
4𝜋𝜋𝜖𝜖2

𝑞𝑞
𝜁𝜁 (15) 

where 𝑞𝑞1 is showing the excess of the charge so it has 
been placed on the isolated sphere. Here, for a simple 
interpretation we choose the point 𝑧𝑧 = 𝜁𝜁′ such that 𝜁𝜁𝜁𝜁′ =
𝑟𝑟1

2 is said to be the inverse of 𝑧𝑧 = 𝜁𝜁. In this way we can 
write, 

1
𝑟𝑟2

′ = ∑∞
𝑙𝑙=0 (𝑟𝑟2𝑙𝑙

𝜁𝜁𝑙𝑙 ) 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐)

𝑟𝑟𝑙𝑙+𝛼𝛼−2 , (2 < 𝛼𝛼 ≤ 3) (16) 

Thus, the resultant potential is given as follows: 

4𝜋𝜋𝜖𝜖2𝜙𝜙 = 𝑞𝑞
𝑟𝑟2

+ 𝑞𝑞1
𝑟𝑟 + 𝑞𝑞𝑟𝑟1

𝜁𝜁
1
𝑟𝑟 − (𝛼𝛼 − 2) 𝑞𝑞𝑟𝑟1

𝜁𝜁
1
𝑟𝑟2′

, (2 < 𝛼𝛼 ≤ 3) (17) 

Next, we will determine electric potential due to point 
charge [16] outside and inside the sphere. At any point 
outside the sphere, the conductivity is zero and the 
inductive capacity is 𝜖𝜖1, thus the potential is given by: 

𝜙𝜙+ = 𝜙𝜙0 + 𝜙𝜙1
+ = 1

4𝜋𝜋𝜖𝜖2

𝑞𝑞
𝑟𝑟2

+ ∑∞
𝑙𝑙=0

𝐵𝐵𝑙𝑙
𝑟𝑟𝑙𝑙+𝛼𝛼−2 𝐶𝐶𝑙𝑙

𝛼𝛼/2−1(cos𝜃𝜃),
(2 < 𝛼𝛼 ≤ 3) (18) 

The symbol 𝜙𝜙+ shows the potential or field outside the 
sphere. 

𝜙𝜙− = ∑∞
𝑙𝑙=0 𝐴𝐴𝑙𝑙𝑟𝑟𝑙𝑙𝐶𝐶𝑙𝑙

𝛼𝛼/2−1(cos𝜃𝜃), (𝑟𝑟 < 𝑟𝑟1) (19) 

The Notation 𝜙𝜙− represents the potential inside the 
sphere and the induced polarization. 

𝜙𝜙+ = ∑∞
𝑙𝑙=0 [ 1

4𝜋𝜋𝜖𝜖2

𝑞𝑞
𝜁𝜁 (𝑟𝑟

𝜁𝜁)
𝑙𝑙

+ 𝐵𝐵𝑙𝑙
𝑟𝑟1

𝑙𝑙+𝛼𝛼−2] 𝐶𝐶𝑙𝑙

𝛼𝛼
2−1(cos𝜃𝜃),    

 (2 < 𝛼𝛼 ≤ 3)           (20) 
Where, 

1
𝑟𝑟2

= 1
4𝜋𝜋𝜖𝜖2

𝑞𝑞
𝜁𝜁 ∑∞

𝑙𝑙=0 (𝑟𝑟
𝜁𝜁)

𝑙𝑙
𝐶𝐶𝑙𝑙

𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃)  

Across the boundary, we find that: 
𝜙𝜙+ = 𝜙𝜙−   (21) 

𝜖𝜖2 [𝜕𝜕𝜙𝜙+

𝜕𝜕𝑟𝑟 ]
𝑟𝑟=𝑟𝑟1

= 𝜖𝜖1 [𝜕𝜕𝜙𝜙−

𝜕𝜕𝑟𝑟 ]
𝑟𝑟=𝑟𝑟1

  (22) 

from the first boundary condition, we can calculate: 

𝐴𝐴𝑙𝑙𝑟𝑟1
𝑙𝑙 = 1

4𝜋𝜋𝜖𝜖2

𝑞𝑞
𝜁𝜁𝑙𝑙+1 𝑟𝑟1

𝑙𝑙 + 𝐵𝐵𝑙𝑙
𝑟𝑟1

𝑙𝑙+𝛼𝛼−2 (23) 

2nd boundary condition leads us to the following: 

𝜖𝜖1𝐴𝐴𝑙𝑙𝑙𝑙𝑟𝑟1
𝑙𝑙−1 = 1

4𝜋𝜋
𝑞𝑞

𝜁𝜁𝑙𝑙+1 𝑙𝑙𝑟𝑟1
𝑙𝑙−1 − 𝜖𝜖2(𝑙𝑙 + 𝛼𝛼 − 2) 𝐵𝐵𝑙𝑙

𝑟𝑟1
𝑙𝑙+𝛼𝛼−1 (24) 

By simplification, we obtain the unknowns as follows: 

𝐵𝐵𝑙𝑙 = 𝑞𝑞𝑟𝑟1
2𝑙𝑙+𝛼𝛼−2

4𝜋𝜋𝜁𝜁𝑙𝑙+1
(𝜖𝜖2−𝜖𝜖1)

𝜖𝜖2

𝑙𝑙
𝜖𝜖1𝑙𝑙+𝜖𝜖2(𝑙𝑙+𝛼𝛼−2) (25) 

and 

𝐴𝐴𝑙𝑙 = 𝑞𝑞
4𝜋𝜋𝜁𝜁𝑙𝑙+1

2𝑙𝑙+𝛼𝛼−2
𝜖𝜖1𝑙𝑙+𝜖𝜖2(𝑙𝑙+𝛼𝛼−2) (26) 

At any point, the potential outside the sphere is given as: 
𝜙𝜙+ = 1

4𝜋𝜋𝜖𝜖2

𝑞𝑞
𝑟𝑟2

+
𝑞𝑞

4𝜋𝜋
(𝜖𝜖2−𝜖𝜖1)

𝜖𝜖2
∑∞

𝑙𝑙=0
𝑙𝑙

𝜖𝜖1𝑙𝑙+𝜖𝜖2(𝑙𝑙+𝛼𝛼−2))
𝑟𝑟1

2𝑙𝑙+𝛼𝛼−2

𝜁𝜁𝑙𝑙+1
𝐶𝐶𝑙𝑙

𝛼𝛼/2−1(cos𝑐𝑐)
𝑟𝑟𝑙𝑙+𝛼𝛼−2 , (2 <

𝛼𝛼 ≤ 3)           (27) 
and also the potential inside the sphere is given as: 

𝜙𝜙− = 𝑞𝑞
4𝜋𝜋𝜁𝜁𝑙𝑙+1 ∑

∞

𝑙𝑙=0

2𝑙𝑙 + 𝛼𝛼 − 2
𝜖𝜖1𝑙𝑙 + 𝜖𝜖2(𝑙𝑙 + 𝛼𝛼 − 2)) 𝑟𝑟𝑙𝑙𝐶𝐶𝑙𝑙

𝛼𝛼
2−1(cos𝜃𝜃), 

  (𝑟𝑟 < 𝑟𝑟1)          (28) 
For 𝑙𝑙 = 1, at any point, the potential outside the sphere 
can be calculated as:  

  𝜙𝜙+ = 1
4𝜋𝜋𝜖𝜖2

𝑞𝑞
𝑟𝑟2

+ 𝑞𝑞
4𝜋𝜋

(𝜖𝜖2−𝜖𝜖1)
𝜖𝜖2

1
𝜖𝜖1+𝜖𝜖2(𝛼𝛼−1))

𝑟𝑟1
𝛼𝛼

𝜁𝜁2
(𝛼𝛼−2)cos𝑐𝑐

𝑟𝑟𝛼𝛼−1 ,
(2 < 𝛼𝛼 ≤ 3)  (29) 

 and the potential inside the sphere is given as: 

 𝜙𝜙− = 𝑞𝑞
4𝜋𝜋𝜁𝜁2

𝛼𝛼
𝜖𝜖1+𝜖𝜖2(𝛼𝛼−1)) 𝑟𝑟(𝛼𝛼 − 2)cos𝜃𝜃, (2 < 𝛼𝛼 ≤ 3) 

 (30) 

 For 𝛼𝛼 = 3, we can find that the potential at any point 
outside the sphere is given as: 

 𝜙𝜙+ = 1
4𝜋𝜋𝜖𝜖2

𝑞𝑞
𝑟𝑟2

+ 𝑞𝑞𝑟𝑟1
3

4𝜋𝜋𝜁𝜁2
(𝜖𝜖2−𝜖𝜖1)

𝜖𝜖2(𝜖𝜖1+2𝜖𝜖2)
cos𝑐𝑐

𝑟𝑟2   (31) 

 and the potential inside the sphere is calculated as: 

𝜙𝜙− = 𝑞𝑞
4𝜋𝜋𝜁𝜁2

3
𝜖𝜖1+2𝜖𝜖2

𝑟𝑟cos𝜃𝜃  (32) 

In this section [16], we find the electric potential and 
field for a dielectric sphere placed in FD Space. When 
the point source q deviates from the origin, the field in 
the vicinity of the sphere becomes parallel and 
homogeneous. Here, we consider a sphere placed in a 
host medium of electric constant 𝜖𝜖2 under the influence 
of a uniform parallel, and external field 𝐸𝐸0, which is 
directed along the positive 𝑧𝑧 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐. Consequently, the 
primary potential can be written as follows: 

𝜙𝜙0 = −𝐸𝐸0𝑧𝑧 = −𝐸𝐸0𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 = −𝐸𝐸0𝑟𝑟𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃) (33) 

In FD space, the primary field is given: 
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𝜙𝜙0 = −𝐸𝐸0𝑧𝑧 = −𝐸𝐸0𝑟𝑟𝐶𝐶1

𝛼𝛼
2−1(cos𝜃𝜃) 

= −𝐸𝐸0𝑟𝑟(𝛼𝛼 − 2)cos𝜃𝜃 (34) 

When 𝜙𝜙0 is not continuous at infinity, and for the source, 
it is itself infinitely remote. The potential at any point 
outside the sphere is because of either the induced 
surface charge or the polarization and is given as: 

𝜙𝜙1
+ = ∑∞

𝑙𝑙=0
𝐵𝐵𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2 𝐶𝐶𝑙𝑙
𝛼𝛼/2−1(cos𝜃𝜃), (2 < 𝛼𝛼 ≤ 3)    (35) 

for conducting sphere, then the total potential on the 
surface of sphere as well as inside the sphere is a 
constant 𝜙𝜙𝑠𝑠 which is given as: 

𝜙𝜙𝑠𝑠 = −𝐸𝐸0𝑟𝑟1𝐶𝐶1
𝛼𝛼/2−1(cos𝜃𝜃) +

∑∞
𝑙𝑙=0

𝐵𝐵𝑙𝑙
𝑟𝑟1

𝑙𝑙+𝛼𝛼−2 𝐶𝐶𝑙𝑙
𝛼𝛼/2−1(cos𝜃𝜃), (2 < 𝛼𝛼 ≤ 3)  (36) 

Since 𝜙𝜙𝑠𝑠 is independent of 𝜃𝜃, so we can write:  

 𝐵𝐵0 = 𝑟𝑟1𝜙𝜙𝑠𝑠, 𝐵𝐵1 = 𝑟𝑟1
𝛼𝛼𝐸𝐸0,   𝐵𝐵𝑛𝑛 = 0, 𝑓𝑓𝑓𝑓𝑟𝑟  𝑙𝑙 > 1  (37) 

 𝜙𝜙+ = −𝐸𝐸0𝑟𝑟(𝛼𝛼 − 2)cos𝜃𝜃 + 𝑟𝑟1
𝛼𝛼𝐸𝐸0

(𝛼𝛼−2)cos𝜃𝜃
𝑟𝑟𝛼𝛼−1 + 𝑟𝑟1𝜙𝜙𝑠𝑠

𝑟𝑟  (38) 

Now we will compute the charge density and the total 
charge density is given as: 

𝜔𝜔 = −𝜖𝜖2 (𝜕𝜕𝜙𝜙+

𝜕𝜕𝑟𝑟 )
𝑟𝑟=𝑟𝑟1

     (39) 

Thus we can find the charge density as: 

𝜔𝜔 = 𝛼𝛼(𝛼𝛼 − 2)𝜖𝜖2𝐸𝐸0𝑐𝑐𝑓𝑓𝑐𝑐𝜃𝜃 + 𝜙𝜙𝑠𝑠𝑟𝑟1
𝑟𝑟 , 𝑞𝑞1 = 4𝜋𝜋𝜖𝜖2𝑟𝑟1𝜙𝜙𝑠𝑠 (40) 

When 𝛼𝛼 = 3, 

𝜔𝜔 = 3𝜖𝜖2𝐸𝐸0cos𝜃𝜃 + 𝜙𝜙𝑠𝑠𝑟𝑟1
𝑟𝑟 , 𝑞𝑞1 = 4𝜋𝜋𝜖𝜖2𝑟𝑟1𝜙𝜙𝑠𝑠 (41) 

The induced charge surface is due to a dipole moment 
𝑝𝑝 = 4𝜋𝜋𝜖𝜖2𝑟𝑟1

𝛼𝛼𝐸𝐸0. 

In case. if the sphere is charged, then 𝑞𝑞1 is added to the 
charge of the sphere. If the sphere is of a dielectric 
inductive capacity 𝜖𝜖1, then across the boundary 
conditions we can find the constants 𝐴𝐴1 and 𝐵𝐵1. As 

𝜙𝜙+ = 𝜙𝜙−, 𝑟𝑟 = 𝑟𝑟1 (42) 

  𝜖𝜖2 (𝜕𝜕𝜙𝜙+

𝜕𝜕𝑟𝑟 )
𝑟𝑟=𝑟𝑟1

= 𝜖𝜖1 (𝜕𝜕𝜙𝜙−

𝜕𝜕𝑟𝑟 )
𝑟𝑟=𝑟𝑟1

  (43) 

  
Where 𝐴𝐴0 = 0, 𝐵𝐵0 = 0 and 𝐵𝐵𝑛𝑛 = 0, 𝐴𝐴𝑛𝑛 = 0, when 𝑙𝑙 >
1. Then the boundary conditions yield: 

 𝐴𝐴1 = −𝛼𝛼𝜖𝜖2𝐸𝐸0
𝜖𝜖1+(𝛼𝛼−1)𝜖𝜖2

 and 𝐵𝐵1 = 𝜖𝜖1−𝜖𝜖2
𝜖𝜖1+(𝛼𝛼−1)𝜖𝜖2

𝐸𝐸0𝑟𝑟1
𝛼𝛼  

The resultant potentials are therefore given as:  

 𝜙𝜙+ = −𝐸𝐸0𝑟𝑟(𝛼𝛼 − 2)cos𝜃𝜃 + 𝜖𝜖1−𝜖𝜖2
𝜖𝜖1+(𝛼𝛼−1)𝜖𝜖2

𝐸𝐸0𝑟𝑟1
𝛼𝛼 (𝛼𝛼−2)cos𝜃𝜃

𝑟𝑟𝛼𝛼−1  

(44) 

 and 

 𝜙𝜙− = −𝛼𝛼𝜖𝜖2
𝜖𝜖1+(𝛼𝛼−1)𝜖𝜖2

𝐸𝐸0(𝛼𝛼 − 2)𝑟𝑟cos𝜃𝜃 (45) 

   where 𝑧𝑧 = 𝑟𝑟cos𝜃𝜃, inside  the sphere, the field 𝐸𝐸− =
− 𝜕𝜕𝜙𝜙

𝜕𝜕𝜕𝜕  is paprallel and same. Thus, 

𝐸𝐸− = 𝛼𝛼𝜖𝜖2
𝜖𝜖1+(𝛼𝛼−1)𝜖𝜖2

𝐸𝐸0(𝛼𝛼 − 2) (46) 

The dielectric constant 𝜅𝜅1 of the sphere is either greater 
or smaller than 𝜅𝜅2. Thus, the field within the spherical 
cavity is excited from a homogeneous dielectric constant 
𝜅𝜅2 and it is given as: 

𝐸𝐸− = 𝛼𝛼𝜅𝜅2
1+(𝛼𝛼−1)𝜅𝜅2

𝐸𝐸0(𝛼𝛼 − 2) > 𝐸𝐸0 (47) 

Next,  we see that the induced field outside the sphere is 
because of the dipole oriented along the direction of  𝑧𝑧 −
𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐 whose dipole  moment is given as: 

𝑝𝑝 = 4𝜋𝜋𝜖𝜖2
𝜖𝜖1−𝜖𝜖2

𝜖𝜖1+(𝛼𝛼−1)𝜖𝜖2
𝐸𝐸0𝑟𝑟1

𝛼𝛼 (48) 

Apparently, the characteristics of a spherical cavity look 
like a dipole. This effect is readily accounted for 
revealing that the walls of the cavity bear a bound charge 
of density 𝜔𝜔′ = −𝑛𝑛1. 𝑃𝑃2, where 𝑃𝑃2 is the polarization of 
the external medium. In the case of a dielectric sphere in 
the air, we have 𝜖𝜖2 = 𝜖𝜖0. The polarization of the sphere 
is then given as: 

𝑃𝑃1 = 𝜖𝜖0(𝜅𝜅1 − 1)𝐸𝐸− = 𝛼𝛼 𝜅𝜅1−1
𝜅𝜅1+(𝛼𝛼−1) 𝜖𝜖0𝐸𝐸0 (49) 

 and its dipole moment is then calculated as: 

𝑝𝑝 = 4
3 𝜋𝜋𝑟𝑟1

3. 𝑃𝑃1 (50) 

The energy of the polarized sphere for the external field 
is thus given as:  
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𝑈𝑈1 = − 1
2∫𝑣𝑣 𝑃𝑃1. 𝐸𝐸0𝑑𝑑𝑑𝑑 = − 1

2 𝑝𝑝. 𝐸𝐸0 (51) 

3. CONCLUSION 
In this article, the Laplace equation has been solved 
analytically for the fraction dimensional space. The non-
integer dynamics plays a key role in describing the 
complex phenomenon. We have calculated an 
electrostatic potential of a conducting sphere as well as 
a dielectric sphere in fractional space.  Moreover, we 
calculated an electric field and power radiated by the 
sphere. This is a general and close form solution that can 
be applied for various materials as host medium as well 
as core medium. We have checked that by setting alpha 
parameter equal to 3, the classical results can be 
recovered. 
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