Catalogues of Some Useful Classes of Circular Designs in Blocks of Three Different Sizes to Control Neighbor Effects

Akbar Fardos, Abdul Salam, Jamshaid Ul Hassan, Hurria Ali, Khadija Noreen, and Rashid Ahmed*
Department of Statistics, The Islamia University of Bahawalpur, Pakistan

Abstract

Minimal neighbor designs minimize the bias raised due to the neighbor effects using the minimum number of experimental units. Minimal circular balanced and strongly balanced neighbour designs can be constructed only for odd v (number of treatments to be compared). For v even, minimal Quasi Rees and nearly strongly balanced neighbor designs are constructed. In this article, the construction procedures of these four classes are described. Catalogues of these designs in blocks of three different sizes are also presented which provide the readymade solution to the experimenters and researchers.

Keywords: Neighbor Effects, CBNDs, CSBNDs, CQRNDs, CNSBNDs

1. INTRODUCTION

Minimal balanced neighbor designs (BNDs) and minimal strongly BNDs (SBNDs) are considered to be economical designs to control the neighbor effects. The bias raised due to neighbor effects can be minimized with the use of BNDs [1-4]. Following are some important definitions.

- If each treatment appears once as neighbor with all other treatments exactly once but does not appear as neighbor with itself, then the design is called minimal BND.
- If each treatment appears once as neighbor with all other treatments including itself exactly once, then the design is called minimal SBND. Method of cyclic shifts (Rule I) produces minimal circular BNDs (MCBNDs) and minimal circular SBNDs (MCSBNDs) for v odd.
- Design is called Quasi Rees neighbor design (QRND) if each treatment appears once as neighbor with other ($v-2$) treatments exactly once and (i) appear twice with only one treatment, (ii) does not appear as neighbor with itself.
- Design is called minimal nearly SBND if each
treatment appears once as neighbor with other ($v-2$) treatments exactly once and (i) appear twice with only one treatment, (ii) appear once as neighbor with itself except the treatment labeled as $(v-1)$ which does not appear as its own neighbor. Method of cyclic shifts (Rule II) produces circular QRNDs (CQRNDs) and minimal circular nearly SBNDs (MCNSBNDs) for v even.

Rees [5] introduced MCBNDs in serology for v odd. Misra et al. [6] introduced generalized neighbor designs (GNDs). Azais et al. [2] constructed some circular BNDs (CBNDs) using border plots. Preece [7] constructed CQRNDs for some cases. Chaure and Misra [8] constructed some classes of GNDs. Jaggi et al. [9] constructed some partially BNDs. Nutan [10] constructed some families of GNDs. Kedia and Misra [11] constructed some series of circular GNDs (CGNDs). Ahmed et al. [12] constructed economical CGNDs. Iqbal et al. [13] constructed some classes of CBNDs using cyclic shifts. Akhtar et al. [14] constructed CBNDs for block of size five. Meitei [15] constructed new series of (i) CNBDs and (ii) one-sided CBNDs. Ahmed and Akhtar [16] constructed CBNDs for block of size six. Shehzad et al. [17] constructed CBNDs for some cases.

[^0]Iqbal et al. [18] generated CGNDs for blocks of sizes three. Hamad and Hanif [19] developed two new procedures to construct non-directional twodimensional BNDs and partially BNDs. Jaggi et al. [20] described some methods to construct CBNDs and circular partially BNDs to estimate direct and neighbor effects of the treatments in blocks of equal and unequal block sizes. Singh [21] developed new series of universally optimal one-sided CBNDs. Meitei [22] presented a new series of universally optimal one-sided CBND with block size 5. Salam et al. [23] introduced MCNSBNDs in equal and two different block sizes.

MCNSBNDs are important classes of neighbor designs to estimate the treatment effects and neighbor effects independently. Construction of these four important classes of neighbor designs will be an innovational work. In the present study, the construction procedures of these useful classes of neighbor designs are described. Catalogues of these designs in blocks of three different sizes are also presented for $v \leq 100$.

2. METHOD OF CYCLIC SHIFTS

Iqbal [24] introduced a method of cyclic shifts which is simplified here for the construction of minimal CBNDs, minimal CSBNDs, minimal CQRNDs and minimal CNSBNDs.

2.1. Construction of MCBNDs and MCSBNDs

In this section, method of cyclic shifts (Rule I) is explained for the construction of MCBNDs and MCSBNDs.

In this section, method of cyclic shifts (Rule I) is explained for the construction of MCBNDs and MCSBNDs.

Rule I: Let $\mathrm{S}_{j}=[,, \ldots$,$] be i$ sets of shifts, $j=1$, $2, \ldots, i, w=1,2, \ldots, \mathrm{k}_{u}-1$.

- If $1 \leq \leq v$ - 1 and S^{*} contains each of $1,2, \ldots, v-1$ exactly once, designs is MCBND.
- If $0 \leq \leq v$ - 1 and S^{*} contains each of $0,1,2, \ldots$, $v-1$ exactly once, designs is MCSBND.

Where S^{*} contains:
i. Each element of sets S_{j}.

Sum $(\bmod v)$ of all elements in each set S_{j}.
Complements of all elements in (i) \& (ii), here complement of ' a ' is ' $v-a$ '.

Example 2.1.1. $\mathrm{S}_{1}=[5,6,13,23], \mathrm{S}_{2}=[7,8,9], \mathrm{S}_{3}=$ $[10,11]$ produce MCBND for $v=25, \mathrm{k}_{1}=5, \mathrm{k}_{2}=4$, $\mathrm{k}_{3}=3$.

Use $v(=25)$ blocks for S_{1}. Write $0,1, \ldots, v-1$ in first row. Complete $2^{\text {nd }}$ row by adding 5 (mod 25) to the $1^{\text {st }}$ row elements respectively. Similarly add $6,13,23(\bmod 25)$. Use 25 more blocks for S_{2}

Table 1. MCBND generated from $\mathrm{S}_{1}=[5,6,13,23], \mathrm{S}_{2}=[7,8,9], \mathrm{S}_{3}=[10,11]$ for $v=25$

Blocks																								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	0	1	2	3	4
11	12	13	14	15	16	17	18	19	20	21	22	23	24	0	1	2	3	4	5	6	7	8	9	10
24	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
22	23	24	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	0	1	2	3	4	5	6
15	16	17	18	19	20	21	22	23	24	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
24	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	0	1	2	3	4	5	6	7	8	9
21	22	23	24	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

and 25 blocks for S_{3}. Required MCBND is obtained through 75 blocks, see Table 1.

Example 2.1.2. $\mathrm{S}_{1}=[2,3,7,11], \mathrm{S}_{2}=[4,5,6], \mathrm{S}_{3}=$ [1,9] produce MCSBND for $v=23, \mathrm{k}_{1}=5, \mathrm{k}_{2}=4$ $\& \mathrm{k}_{3}=3$.

2.2. Construction of CQRNDs and MCNSBNDs

In this section, method of cyclic shifts (Rule II) is explained for the construction of CQRNDs and MCNSBNDs. In Rule II, there will be at least one special set of shifts denoted by $S=\left[q_{1}, q_{2}, \ldots, q_{(k-2)}\right]$ t and contains ($k-2$) elements.

Rule II: Let $\mathrm{S}_{j}=[,, \ldots$,$] and \mathrm{S}_{i+1}=\left[\mathrm{q}_{(i+1) 1}, \mathrm{q}_{(i+12)}, \ldots\right.$, $\mathrm{q}_{(i+1)(k h-2]}$ t be $(i+1)$ sets of shifts, $j=1,2, \ldots, i, w=$ $1,2, \ldots, \mathrm{k}_{u}-1$.

- If $1 \leq \leq v-2$ and S^{*} contains each of $1,2, \ldots, v-2$ exactly once, designs is CQRND.
- If $0 \leq \leq v-2$ and S^{*} contains each of $0,1,2, \ldots$, $v-2$ exactly once, designs is MCNSBND.

Where S^{*} contains:
i. Each element of sets S_{i} and S_{i+1}.
ii. Sum $\bmod (v-1)$ of all elements in each set S_{i}.
iii. Complements of all elements in (a) and (b), here complement of ' a ' is ' $v-1-a$ '.

Example 2.2.2. $\mathrm{S}_{1}=[8,9,10,11,12], \mathrm{S}_{2}=[4,5,6,7]$, $\mathrm{S}_{3}=[1,2] \mathrm{t}$ produce MCNSBND for $v=26, \mathrm{k}_{1}=6$, $\mathrm{k}_{2}=5 \& \mathrm{k}_{3}=4$.

Use $v-1(=25)$ blocks for S_{1}. Write $0,1, \ldots, v-2$ in first row. Complete $2^{\text {nd }}$ row by adding $8(\bmod 25)$ to the $1^{\text {st }}$ row elements respectively. Similarly add $9,10,11,12(\bmod 25)$. Use 25 more blocks for S_{2} and 25 blocks for S_{3}. Required MCBND is obtained through 75 blocks, see Table 2.

Example 2.2.2. $\mathrm{S}_{1}=[3,4,5,6,7], \mathrm{S}_{2}=[8,10,11,13]$, $\mathrm{S}_{3}=[1,9] \mathrm{t}$ produce CQRND for $v=28, \mathrm{k}_{1}=6, \mathrm{k}_{2}=$ $5 \& \mathrm{k}_{3}=4$.

3. CATALOGUE OF MCBNDS

MCBNDs canbe constructed for $v=2 i \mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}+1$; i integer, through method of cyclic shifts (Rule I) using i sets of shifts for k_{1}, one each for k_{2} and k_{3}. These ($i+2$) sets of shifts will be generated as:

- Consider $S=[1,2, \ldots, m-1, m]$, where $m=\frac{v-1}{2}$.
- Replace one or two values by their complements to make the sum of resultant S divisible by v, here complement of ' a ' is ' $v-a$ '.

Divide the resultant S in i groups of k_{1} values and one group each of size k_{2} and k_{3} such that the sum

Table 2. MCNSBND generated from $\mathrm{S}_{1}=[8,9,10,11,12], \mathrm{S}_{2}=[4,5,6,7], \mathrm{S}_{3}=[1,2] \mathrm{t}$ for $v=26$

Blocks																								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	0	1	2	3	4	5	6	7
17	18	19	20	21	22	23	24	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	0	1
13	14	15	16	17	18	19	20	21	22	23	24	0	1	2	3	4	5	6	7	8	9	10	11	12
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	0	1	2	3
9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	0	1	2	3	4	5	6	7	8
15	16	17	18	19	20	21	22	23	24	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
22	23	24	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	0
3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	0	1	2
25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25

of every group is divisible by v. Then delete one (any) element from every group, the resultant will be $(i+2)$ sets to generate required designs.

v	k_{1}	k_{2}	k_{3}	Sets of Shifts
25	5	4	3	[5,6,13,23]+[7,8,9]+[10,11]
35	5	4	3	$\begin{aligned} & {[2,6,8,18]+[12,13,14,28]+[9,10,11]} \\ & +[15,16] \end{aligned}$
45	5	4	3	$\begin{aligned} & {[5,9,10,18]+[6,7,8,22]+[13,15,19,3} \\ & 1]+ \\ & {[11,16,17]+[20,21]} \end{aligned}$
55	5	4	3	$\begin{aligned} & {[3,14,16,20]+[7,9,10,23]+[8,12,13,} \\ & 17]+ \\ & {[18,19,27,31]+[11,21,22]+[25,26]} \end{aligned}$
27	6	4	3	[3,6,8,13,22]+[7,9,10]+[11,12]
39	6	4	3	$\begin{aligned} & {[4,5,7,8,12]+[9,10,15,16,22]+[11,1} \\ & 3,14]+[18,19] \end{aligned}$
51	6	4	3	$\begin{aligned} & {[3,5,7,12,22]+[8,9,17,21,41]+[14,1} \\ & 5,16,18,26]+ \\ & {[11,19,20]+[23,24]} \end{aligned}$
29	7	4	3	[3,5,6,8,14,20]+[7,10,11]+[12,13]
43	7	4	3	$\begin{aligned} & {[6,7,14,17,18,21]+[5,9,10,12,13,35} \\ &]+ \\ & {[11,15,16]+[19,20]} \end{aligned}$
57	7	4	3	$\begin{aligned} & {[5,6,7,13,27,53]+[10,12,14,20,24,2} \\ & 5]+ \\ & {[15,16,17,18,19,21]+[11,22,23]+} \\ & {[26,29]} \end{aligned}$
31	8	4	3	[4,5,6,7,9,12,16]+[8,10,11]+[13,17]
47	8	4	3	$\begin{aligned} & {[5,6,8,9,16,20,26]+[7,11,12,13,14,1} \\ & 5,19]+ \\ & {[10,17,18]+[22,24]} \end{aligned}$
33	9	4	3	$\begin{aligned} & {[5,6,7,8,10,13,16,31]+[9,11,12]+[1} \\ & 4,15] \end{aligned}$
51	9	4	3	$\begin{aligned} & {[5,6,7,8,9,16,22,26]+[12,13,14,15,1} \\ & 7,18,21,41]+ \\ & {[11,19,20]+[23,24]} \end{aligned}$
35	10	4	3	$\begin{aligned} & {[3,5,6,8,9,12,14,18,28]+[10,11,13]} \\ & +[15,16] \end{aligned}$
55	10	4	3	$\begin{aligned} & {[3,5,6,7,8,9,12,27,31]+} \\ & {[13,14,15,16,17,18,19,20,23]+} \\ & {[11,21,22]+[25,26]} \end{aligned}$
29	6	5	3	[$5,6,11,14,20]+[3,7,8,10]+[12,13]$
41	6	5	3	$\begin{aligned} & {[11,12,16,17,21]+[7,8,10,13,38]+[2} \\ & , 9,14,15]+ \\ & {[18,19]} \end{aligned}$

53	6	5	3	$\begin{aligned} & {[5,6,7,9,23]+[12,16,21,22,27]+} \\ & {[13,14,15,18,36]+[2,11,19,20]+[24} \\ & , 25] \end{aligned}$
31	7	5	3	$[5,6,7,11,12,17]+[3,8,9,10]+[13,16]$
45	7	5	3	$\begin{aligned} & {[6,7,13,18,19,22]+[8,9,10,12,17,31} \\ &]+ \\ & {[2,11,15,16]+[20,21]} \end{aligned}$
59	7	5	3	$\begin{aligned} & {[2,3,5,6,13,29]+[8,9,10,14,22,48]+} \\ & {[15,16,17,18,19,21]+[23,24,25,26]} \\ & + \\ & {[27,28]} \end{aligned}$
33	8	5	3	$\begin{aligned} & {[6,7,9,12,13,16,31]+[3,8,10,11]+[1} \\ & 4,15] \end{aligned}$
49	8	5	3	$\begin{aligned} & {[2,5,6,7,10,21,46]+[9,11,12,13,14,1} \\ & 5,16]+ \\ & {[18,19,20,24]+[22,23]} \end{aligned}$
35	9	5	3	$\begin{aligned} & {[5,6,8,10,13,14,18,28]+[2,9,11,12]} \\ & +[15,16] \end{aligned}$
53	9	5	3	$\begin{aligned} & {[5,6,7,8,9,18,23,27]+[12,13,14,15,} \\ & 16,21,22,36]+[2,11,19,20]+[24,25] \end{aligned}$
37	10	5	3	$\begin{aligned} & {[2,3,5,6,7,8,9,14,19]+[11,13,15,25]} \\ & +[16,17] \end{aligned}$
57	10	5	3	$\begin{aligned} & {[3,5,6,7,8,9,10,12,53]+[13,14,15,1} \\ & 6,17,18,19,21,27]+[22,23,24,25]+ \\ & {[26,29]} \end{aligned}$
33	7	6	3	$\begin{aligned} & {[3,5,6,7,13,31]+[9,10,11,12,16]+[1} \\ & 4,15] \end{aligned}$
47	7	6	3	$\begin{aligned} & {[3,4,5,6,7,20]+[10,11,12,13,14,26]} \\ & +[15,16,17,18,19]+[22,24] \end{aligned}$
35	8	6	3	$\begin{aligned} & {[6,9,12,13,14,18,28]+[2,3,8,10,11]} \\ & +[15,16] \end{aligned}$
51	8	6	3	$\begin{gathered} {[3,5,6,8,15,22,41]+[9,11,12,13,14,1} \\ 6,26]+[17,18,19,20,21]+[23,24] \end{gathered}$
37	9	6	3	$\begin{aligned} & {[3,5,6,7,8,9,15,19]+[10,11,13,14,25} \\ &]+[16,17] \end{aligned}$
55	9	6	3	$\begin{aligned} & {[3,6,7,8,9,17,27,31]+[10,11,12,13} \\ & 14,15,16,18]+[19,20,21,22,23]+[2 \\ & 5,26] \end{aligned}$
39	10	6	3	$\begin{aligned} & {[3,4,5,6,7,8,9,13,22]+[11,12,14,15} \\ & 16]+[18,19] \end{aligned}$
59	10	6	3	$\begin{aligned} & {[5,6,7,8,9,10,16,26,29]+[12,13,14} \\ & 15,17,18,19,20,48]+[21,22,23,24,2 \\ & 5]+ \\ & {[27,28]} \end{aligned}$
37	8	7	3	$\begin{aligned} & {[3,5,6,7,8,19,25]+[9,10,11,13,14,15} \\ &]+[16,17] \end{aligned}$
53	8	7	3	$\begin{aligned} & {[2,3,5,6,7,8,21]+[10,11,12,13,14,15} \\ & , 22]+[18,19,20,23,27,36]+[24,25] \end{aligned}$
39	9	7	3	$\begin{aligned} & {[4,5,6,7,8,9,14,22]+[10,11,12,13,15} \\ & , 16]+[18,19] \end{aligned}$

57	9	7	3	$\begin{aligned} & {[6,7,9,10,11,15,24,27]+\quad[12,13,14,} \\ & 16,17,18,25,53]+[8,19,20,21,22,23 \\ &]+ \\ & {[26,29]} \end{aligned}$
41	10	7	3	$\begin{aligned} & {[5,6,7,8,9,10,17,21,38]+[11,12,13,1} \\ & 4,15,16]+[18,19] \end{aligned}$
31	6	5	4	[$6,9,11,16,17]+[4,7,8,10]+[5,12,13]$
43	6	5	4	$\begin{aligned} & {[9,14,16,20,21]+[7,11,12,17,35]+[3} \\ & , 10,13,15]+[5,18,19] \end{aligned}$
55	6	5	4	$\begin{aligned} & {[5,8,9,12,17]+[13,14,22,23,27]+[1} \\ & 5,16,18,20,31]+[6,7,19,21]+[3,25, \\ & 26] \end{aligned}$
33	7	5	4	$\begin{aligned} & {[4,6,10,12,15,16]+[8,9,11,31]+[5,1} \\ & 3,14] \end{aligned}$
47	7	5	4	$\begin{aligned} & {[3,5,6,7,10,14]+[9,11,12,13,17,24]} \\ & +[16,18,19,26]+[4,20,22] \end{aligned}$
35	8	5	4	$\begin{aligned} & {[3,4,6,8,13,16,18]+[10,11,12,28]+[} \\ & 5,14,15] \end{aligned}$
51	8	5	4	$\begin{aligned} & {[6,7,11,15,16,17,26]+[3,8,9,12,13,1} \\ & 4,41]+[19,20,21,24]+[5,22,23] \end{aligned}$
37	9	5	4	$\begin{aligned} & {[3,4,6,7,8,9,10,25]+[13,14,17,19]+} \\ & {[5,15,16]} \end{aligned}$
55	9	5	4	$\begin{aligned} & {[5,6,7,8,9,18,22,31]+[10,11,12,13,} \\ & 14,15,16,17]+[20,21,23,27]+[3,25, \\ & 26] \end{aligned}$
39	10	5	4	$\begin{aligned} & {[3,5,6,7,8,9,10,13,15]+[12,14,19,22} \\ &]+[4,16,18] \end{aligned}$
59	10	5	4	$\begin{aligned} & {[4,6,7,8,9,10,17,25,29]+[12,13,14,} \\ & 15,16,18,19,20,48]+[22,23,24,28]+ \\ & {[5,26,27]} \end{aligned}$
35	7	6	4	$\begin{aligned} & {[3,4,6,9,18,28]+[10,11,12,13,16]+[} \\ & 5,14,15] \end{aligned}$
49	7	6	4	$\begin{aligned} & {[4,6,7,10,23,46]+[9,11,12,14,20,24} \\ &]+[15,16,17,18,19]+[5,21,22] \end{aligned}$
37	8	6	4	$\begin{aligned} & {[3,4,7,8,14,17,19]+[9,10,11,13,25]} \\ & +[5,15,16] \end{aligned}$
53	8	6	4	$\begin{aligned} & {[4,6,7,12,22,25,27]+[9,10,13,14,15,} \\ & 16,21]+[11,18,19,20,36]+[5,23,24] \end{aligned}$
39	9	6	4	$\begin{aligned} & {[3,5,6,7,8,10,15,22]+[11,12,13,14,1} \\ & 9]+[4,16,18] \end{aligned}$
57	9	6	4	$\begin{aligned} & {[6,7,8,14,24,27,29,53]+\quad[10,11,12,} \\ & 13,15,16,17,18]+[19,20,21,22,23]+ \\ & {[5,25,26]} \end{aligned}$
41	10	6	4	$\begin{aligned} & {[4,6,7,8,9,12,16,21,38]+[11,13,14,1} \\ & 5,19]+[5,17,18] \end{aligned}$
39	8	7	4	$\begin{aligned} & {[3,5,6,7,14,19,22]+[9,10,11,12,13,1} \\ & 5]+[4,16,18] \end{aligned}$
55	8	7	4	$[4,5,7,12,22,27,31]+[1$ $0,11,13,14,15,16,23]+$ [9,17,18,19,20,21]+[3,25,26]

$\left.\begin{array}{rlllll}41 & 9 & 7 & 4 & {[6,7,8,9,11,19,21,38]+[10,12,13,14,} \\ 59 & 9 & 7 & 4 & & {[5,16]+[5,17,18]} \\ 50,7,8,9,24,28,29]+[13,14,15,16, \\ & & & & 17,19,25,48]+[12,18,20,21,22,23]+ \\ & & & & {[5,26,27]}\end{array}\right\}$

4. CATALOGUE OF CQRNDS

CQRNDs can be constructed for $v=2 i \mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}-2$; i integer, through method of cyclic shifts (Rule II) using i sets of shifts for k_{1}, one each for k_{2} and k_{3}. These $(i+2)$ sets of shifts will be generated as:

- Consider $\mathrm{S}=[1,2, \ldots, m-1, m]$, where $m=\frac{v-2}{2}$.
- Divide S into i groups of k_{1} values and one
group of k_{2} values such that the sum of every group is divisible by $v-1$. Then delete one (any) element from every group, the resultant will be $(i+1)$ sets.
Catalogue of CQRNDs in blocks of sizes three for $\boldsymbol{v}=2 i \mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}-2, \boldsymbol{v} \leq 60,6 \leq \mathrm{k}_{1} \leq 10,5 \leq \mathrm{k}_{2} \leq 7$, $4 \leq \mathrm{k}_{3} \leq 6$, where $\mathrm{k}_{3}<\mathrm{k}_{2}<\mathrm{k}_{1}$.

v	k_{1}	k_{2}	k_{3}	Sets of Shifts
28	6	5	4	[3,4,5,6,7]+[8,10,11,13]+[1,9]t
40	6	5	4	$\begin{aligned} & {[4,5,6,9,12]+[2,7,8,10,11]+[14,16,} \\ & 17,18]+[15,19] \mathrm{t} \end{aligned}$
52	6	5	4	$\begin{aligned} & {[4,5,6,9,24]+[7,8,10,11,13]+[14,1} \\ & 5,17,19,25]+[20,21,22,23]+[1,18] \\ & \mathrm{t} \end{aligned}$
30	7	5	4	$\begin{aligned} & {[5,6,8,11,12,13]+[2,7,9,10]+[4,1} \\ & 4] \mathrm{t} \end{aligned}$
44	7	5	4	$\begin{aligned} & {[3,4,5,6,10,13]+[8,9,11,12,19,20]+} \\ & {[16,17,18,21]+[1,15] \mathrm{t}} \end{aligned}$
58	7	5	4	$\begin{aligned} & {[3,4,5,7,9,27]+[11,12,13,19,21,28} \\ &]+[14,15,16,17,18,26]+[22,23,24 \\ & , 25]+ \\ & {[1,6] \mathrm{t}} \end{aligned}$
32	8	5	4	$\begin{aligned} & {[4,5,6,7,10,13,14]+[2,8,9,11]+[12} \\ & , 15] \mathrm{t} \end{aligned}$
48	8	5	4	$\begin{aligned} & {[2,3,5,6,7,8,15]+[9,10,11,12,13,14} \\ & , 21]+[17,19,20,22]+[18,23] \mathrm{t} \end{aligned}$
34	9	5	4	$\begin{aligned} & {[4,5,6,7,8,9,10,15]+[12,13,14,16]} \\ & +[1,3] \mathrm{t} \end{aligned}$
52	9	5	4	$\begin{aligned} & {[5,6,7,8,9,14,24,25]+[3,10,11,12,1} \\ & 3,15,17,19]+[20,21,22,23]+[1,18] \\ & \mathrm{t} \end{aligned}$
36	10	5	4	$\begin{aligned} & {[3,4,5,6,7,8,9,10,16]+[13,14,15,17} \\ &]+[1,12] \mathrm{t} \end{aligned}$
56	10	5	4	$\begin{aligned} & {[2,3,4,5,6,7,8,9,10]+} \\ & {[12,13,14,15,17,18,19,20,26]+} \\ & {[22,23,24,25]+[21,27] \mathrm{t}} \end{aligned}$
32	7	6	4	$\begin{aligned} & {[1,2,3,5,6,10]+[7,9,11,13,14]+[12} \\ & , 15] \mathrm{t} \end{aligned}$
46	7	6	4	$\begin{aligned} & {[1,2,4,7,8,20]+[9,11,12,13,14,21]+} \\ & {[5,16,17,18,19]+[6,22] \mathrm{t}} \end{aligned}$
60	7	6	4	$\begin{aligned} & {[4,5,6,8,10,14]+[3,11,13,27,28,29} \\ &]+[9,16,17,19,20,22]+[2,23,24,25 \\ & , 26]+ \\ & {[1,21] \mathrm{t}} \end{aligned}$
34	8	6	4	$\begin{aligned} & {[2,5,6,7,11,15,16]+[8,10,12,13,14} \\ &]+[1,3] \mathrm{t} \end{aligned}$
50	8	6	4	$\begin{aligned} & {[2,4,6,10,22,23,24]+[9,11,12,13,1} \\ & 4,15,16]+[3,18,19,20,21]+[1,5] \mathrm{t} \end{aligned}$
36	9	6	4	$\begin{aligned} & {[2,4,5,7,8,9,13,16]+[3,11,14,15,17} \\ &]+[1,12] \mathrm{t} \end{aligned}$

54	9	6	4	$\begin{aligned} & {[3,4,6,8,13,18,24,25]+[2,10,11,12} \\ & , 14,15,16,17]+[1,20,21,22,23]+[7 \\ & , 26] \mathrm{t} \end{aligned}$
38	10	6	4	$\begin{aligned} & {[1,2,4,6,7,8,10,16,17]+[9,12,13,14} \\ & , 15]+[5,18] \mathrm{t} \end{aligned}$
58	10	6	4	$\begin{aligned} & {[3,4,5,7,8,9,13,27,28]+[11,14,15,} \\ & 16,17,18,19,23,26]+[2,21,22,24,2 \\ & 5]+ \\ & {[1,6] \mathrm{t}} \end{aligned}$
36	8	7	4	$\begin{aligned} & {[3,4,5,8,11,16,17]+[2,7,10,13,14,1} \\ & 5]+[1,12] \mathrm{t} \end{aligned}$
52	8	7	4	$\begin{aligned} & {[4,5,6,7,22,23,24]+[8,9,13,14,15,} \\ & 16,17]+[2,3,19,20,21,25]+[1,18] t \end{aligned}$
38	9	7	4	$\begin{aligned} & {[2,3,4,7,8,11,16,17]+[1,10,12,13,1} \\ & 4,15]+[5,18] \mathrm{t} \end{aligned}$
56	9	7	4	$\begin{aligned} & {[4,5,6,7,10,19,25,26]+[3,11,12,13} \\ & , 14,15,16,17]+[1,2,20,22,23,24]+ \\ & {[21,27] \mathrm{t}} \end{aligned}$
40	10	7	4	$\begin{aligned} & {[2,3,4,6,7,8,9,16,18]+[1,10,12,13,} \\ & 14,17]+[15,19] \mathrm{t} \end{aligned}$
60	10	7	4	$\begin{aligned} & {[4,5,6,7,8,9,12,28,29]+} \\ & {[11,13,15,16,17,18,20,26,27]+} \\ & {[2,3,22,23,24,25]+} \\ & {[1,21] \mathrm{t}} \end{aligned}$
48	7	6	5	$\begin{aligned} & {[2,3,5,6,10,14]+[8,9,11,13,20,21]+} \\ & {[4,15,18,19,22]+[1,17,23] \mathrm{t}} \end{aligned}$
36	8	6	5	$\begin{aligned} & {[4,5,6,8,9,15,16]+[3,11,13,14,17]+} \\ & {[1,2,10] \mathrm{t}} \end{aligned}$
52	8	6	5	$\begin{aligned} & {[3,4,5,6,15,22,24]+[8,10,11,12,13,} \\ & 14,25]+[7,17,19,20,21]+[1,2,16] t \end{aligned}$
38	9	6	5	$\begin{aligned} & {[2,3,5,6,7,8,16,17]+[9,11,13,14,15} \\ &]+[1,4,18] \mathrm{t} \end{aligned}$
56	9	6	5	$\begin{aligned} & {[4,5,6,7,8,10,25,26]+[3} \\ & , 9,12,13,14,15,16,17]+ \\ & {[2,21,22,23,24]+[1,20,27] \mathrm{t}} \end{aligned}$
40	10	6	5	$\begin{aligned} & {[2,3,4,5,6,7,8,16,17]+[9,11,13,15} \\ & 18]+[1,14,19] \mathrm{t} \end{aligned}$
60	10	6	5	```[4,5,6,7,8,9,10,27,28]+ [11,12,13, 16,17,18,20,26,29]+[3,21,23,24,2 5]+ [1,2,19]t```
38	8	7	5	$\begin{aligned} & {[3,5,6,7,8,16,17]+[2,9,10,13,14,15} \\ &]+[1,4,18] \mathrm{t} \end{aligned}$
54	8	7	5	$\begin{aligned} & {[4,5,7,8,10,24,25]+[3,11,12,14,15} \\ & 16,22]+[2,9,17,19,20,21]+[1,6,26] \\ & \mathrm{t} \end{aligned}$
40	9	7	5	$\begin{aligned} & {[3,4,5,6,7,8,17,18]+[2,11,12,13,15} \\ & , 16]+[1,14,19] \mathrm{t} \end{aligned}$

58	9	7	5	$[7,8,9,17,24,25,27,28]+[5,10,12,1$ $3,14,15,16,18]+[3,6,19,21,22,23]+$ $[1,2,4] \mathrm{t}$
40	8	7	6	$\begin{aligned} & {[4,5,6,7,8,16,17]+[3,9,10,13,14,18} \\ &]+[1,2,12,19] \mathrm{t} \end{aligned}$
56	8	7	6	$\begin{aligned} & {[5,6,7,8,12,24,25]+[9} \\ & , 10,11,13,15,16,22]+ \\ & {[3,4,17,19,21,26]+[1,2,18,27] \mathrm{t}} \end{aligned}$
60	9	7	6	$\begin{aligned} & {[5,6,8,9,10,18,25,26]+[12,13,14,1} \\ & 5,17,22,28,29]+[4,7,19,21,23,24]+ \\ & {[1,2,3,16] \mathrm{t}} \end{aligned}$
44	10	7	6	$\begin{aligned} & {[5,6,7,8,9,18,19,20,21]+[4,11,12,1} \\ & 4,15,17]+[1,2,3,10] \mathrm{t} \end{aligned}$

5. CATALOGUE OF MCSBNDS

MCSBNDs can be constructed for $v=$ $2 i \mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}-1 ; i$ integer, through method of cyclic shifts (Rule I) using i sets of shifts for k_{1}, one each for k_{2} and k_{3}. These $(i+2)$ sets of shifts are generated as:

- Consider $S=[0,1,2, \ldots, m-1, m]$, where $m=\frac{v-1}{2}$.
- Replace one or two values with their complements to make the sum of resultant S divisible by v, here complement of ' a ' is ' v-a'.
- Divide resultant S in i groups of k_{1} values and one group each of size k_{2} and k_{3} such that the sum of every group is divisible of v. Then delete one (any) value from each group, the resultant will be $(i+2)$ sets to generate MCSBNDs in blocks of three different sizes.

Catalogue of MCSBNDs in blocks of sizes three for $v=2 i \mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}-1, v \leq \mathbf{6 0}, 5 \leq \mathrm{k}_{1} \leq 10,4 \leq \mathrm{k}_{2}$ $\leq 7,3 \leq k_{3} \leq 6$, where $k_{3}<k_{2}<k_{1}$.

\boldsymbol{v}	$\mathbf{k}_{\mathbf{1}}$	$\mathbf{k}_{\mathbf{2}}$	$\mathbf{k}_{\mathbf{3}}$	Sets of Shifts
23	5	4	3	$[2,3,7,11]+[5,6,8]+[1,9]$
33	5	4	3	$[6,13,16,31]+[5,7,8,10]+[9,11,12$
43	5	4	3	$[4,14]$ $[2,3,17,21]+[7,12,14,18]+[5,6,9,1$ $0]+$
				$[11,15,16]+,[4,19]$
53	5	4	3	$[2,9,15,27]+[3,6,8,13]+[5,7,10,12$
				$[+14,16,18,22]+[1,11,20]+[4,24]$
25	6	4	3	$[3,5,6,13,23]+[7,8,9]+[4,10]$
37	6	4	3	$[2,3,5,8,19]+[6,9,10,11,13]+[7,14$,
				$15]+[4,16]$
49	6	4	3	$[2,8,10,11,18]+[5,6,9,13,19]+[12$,
				$14,15,16,17]+[7,20,21]+[4,22]$

27	7	4	3	[1
41	7	4	3	$\begin{aligned} & {[2,5,6,10,21,38]+[8,9,12,13,16,17} \\ &]+[11,14,15,]+[18,19] \end{aligned}$
55	7	4	3	$\begin{aligned} & {[2,3,5,6,8,31]+[7,9,12,13,19,23]+} \\ & {[10,14,15,16,17,18]+[11,21,22]+[} \\ & 4,25] \end{aligned}$
29	8	4	3	[2,3,5,6,8,14,20]+[1,7,10]+[4,12]
45	8	4	3	$\begin{aligned} & {[3,5,12,15,16,17,22]+[2,6,8,9,10,1} \\ & 1,13]+[1,7,18]+[4,20] \end{aligned}$
31	9	4	3	$\begin{aligned} & {[3,4,5,6,7,812,17]+[9,10,11]+[13,} \\ & 16] \end{aligned}$
49	9	4	3	$\begin{gathered} {[5,6,7,8,13,17,21,24]+[2,9,10,12} \\ , 14,15,16,20]+[11,18,19]+[22,23] \end{gathered}$
33	10	4	3	$\begin{aligned} & {[3,5,6,8,9,10,11,16,31]+[7,12,13]} \\ & +[14,15] \end{aligned}$
53	10	4	3	$\begin{aligned} & {[2,3,5,6,8,14,20,21,27]+\quad[9,10,1} \\ & 1,12,13,15,16,18,19]+[7,22,23]+ \\ & {[4,24]} \end{aligned}$
27	6	5	3	[1,2,3,8,13]+[6,7,9,10]+[11,12]
39	6	5	3	$\begin{aligned} & {[1,4,5,7,22]+[11,12,14,15,16]+[3,} \\ & 6,8,9]+[18,19] \end{aligned}$
51	6	5	3	$\begin{aligned} & {[1,2,14,15,19]+[7,8,11,13,22]+\quad[1} \\ & 2,17,18,20,26]+[3,5,6,16]+[23,24] \end{aligned}$
29	7	5	3	[1,2,3,5,7,11]+[6,8,10,14]+[4,12]
43	7	5	3	$\begin{aligned} & {[1,2,5,9,11,15]+[3,6,7,10,12,13]+} \\ & {[14,16,17,18]+[4,19]} \end{aligned}$
57	7	5	3	$\begin{aligned} & {[1,3,6,7,13,27]+[5,9,10,11,12,14]} \\ & +[8,15,16,17,18,19]+[22,23,24,2 \\ & 5]+[2,26] \end{aligned}$
31	8	5	3	$\begin{aligned} & {[4,5,6,7,11,12,17]+[3,8,9,10]+[2,} \\ & 13] \end{aligned}$
47	8	5	3	$\begin{aligned} & {[2,3,4,5,6,7,20]+[8,9,10,11,12,13,} \\ & 14]+[15,16,18,19]+[1,22] \end{aligned}$
33	9	5	3	$\begin{aligned} & {[1,5,6,7,8,10,13,16]+[3,9,11,12]+} \\ & {[4,14]} \end{aligned}$
51	9	5	3	$\begin{aligned} & {[2,5,6,7,8,11,22,41]+[1,3,9,12,13} \\ & , 14,15,16]+[17,18,20,21]+[4,23] \end{aligned}$
35	10	5	3	$\begin{aligned} & {[1,2,3,5,6,8,13,14,18]+[9,10,11,12} \\ &]+[4,15] \end{aligned}$
55	10	5	3	$\begin{aligned} & {[1,2,3,5,6,7,8,9,14]+} \\ & {[10,11,12,13,15,17,18,19,23]+} \\ & {[16,20,21,22]+[4,25]} \end{aligned}$
31	7	6	3	$\begin{aligned} & {[2,3,4,5,6,16]+[7,8,9,10,12]+[1,1} \\ & 3] \end{aligned}$
45	7	6	3	$\begin{aligned} & {[1,2,3,6,11,22]+[7,8,9,10,12,13]+} \\ & {[15,16,17,18,19]+[4,20]} \end{aligned}$
59	7	6	3	$\begin{aligned} & {[1,2,5,6,19,26]+[7,8,10,12,13,20]} \\ & +\quad[9,14,15,16,17,18]+[21,22,23,2 \\ & 4,25]+ \\ & {[27,28]} \end{aligned}$

$\left.\begin{array}{rlllll}35 & 9 & 6 & 3 & {[1,3,5,6,8,9,10,28]+[11,12,13,14,1} \\ & & & & 8]+[4,15]\end{array}\right)$

59	10	6	4	$[2,3,4,6,9,12,25,28,29]$ $[7,10,13,14,15,16,17,18,19]$ $[20,21,22,23,24]+[5,26,27]$
35	7	6	5	$\begin{aligned} & {[2,3,4,5,9,12]+[6,8,11,16,28]+[10,} \\ & 13,14,15] \end{aligned}$
49	7	6	5	$\begin{aligned} & {[1,4,5,6,9,24]+[2,7,8,10,11,14]+} \\ & {[13,15,16,17,18]+[20,21,22,23]} \end{aligned}$
37	8	6	5	$\begin{aligned} & {[1,2,3,5,6,7,13]+[4,8,9,11,17]+[10} \\ & , 14,15,16] \end{aligned}$
53	8	6	5	$\begin{aligned} & {[1,3,4,5,6,16,18]+[7,9,10,11,13,14} \\ & , 15]+[2,8,19,20,21]+[12,22,23,24] \end{aligned}$
39	9	6	5	$\begin{aligned} & {[4,5,6,7,8,10,16,22]+[9,11,12,13,1} \\ & 4]+[1,2,3,15] \end{aligned}$
57	9	6	5	$\begin{aligned} & {[1,2,3,5,6,7,8,29,53]+} \\ & {[[0,9,10,11,13,15,16,17,23]+} \\ & {[14,18,19,20,21,22]+[12,24,25,26} \\ & , 27] \end{aligned}$
41	10	6	5	$\begin{aligned} & {[1,2,4,5,6,7,8,11,38]+[9,10,13,14,} \\ & 15]+[12,16,17,18] \end{aligned}$
41	8	7	6	$\begin{aligned} & {[1,2,4,5,6,7,16]+[8,9,11,12,13,14]} \\ & +[10,17,18,19,21] \end{aligned}$
57	8	7	6	$\begin{aligned} & {[2,5,6,7,12,29,53]+[8,9,10,13,14,1} \\ & 5,22]+[16,17,18,19,20,21]+[11,2 \\ & 4,25,26,27] \end{aligned}$
43	9	7	6	$\begin{aligned} & {[2,3,4,5,6,10,21,35]+[7,9,12,13,14} \\ & , 15]+[11,17,18,19,20] \end{aligned}$
45	10	7	6	$\begin{aligned} & {[1,2,3,4,5,6,7,8,9]+[13,15,16,17,2} \\ & 1,22]+[10,11,12,18,19] \end{aligned}$

6. CATALOGUE OF MCNSBNDS

MCNSBNDs can be constructed for $v=$ $2 i \mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}-4 ; i$ integer, through method of cyclic shifts (Rule II) using i sets of shifts for k_{1}, one each for k_{2} and k_{3}. These $(i+2)$ sets of shifts are generated as:

- Consider $S=[0,1,2, \ldots, m-1, m]$, where $m=\frac{v-2}{2}$.
- Divide S in i groups of k_{1} values and one group of k_{2} values such that the sum of each group is divisible by $v-1$. Then delete one (any) value from each group, the resultant will be $(i+1)$ sets. Consider the last group as $(i+2)^{\text {th }}$ set of shifts which will consist of remaining $\mathrm{k}_{3}-2$ elements, and sum of these remaining elements should not be necessarily divisible of $v-1$. Hence required MCNSBNDs will be constructed in blocks of three different sizes using these $(i+2)$ sets.

v	k_{1}	k_{2}	k_{3}	Sets of Shifts
26	6	5	4	[8,9,10,11,12]+[4,5,6,7]+[1,2]t
38	6	5	4	$\begin{aligned} & {[3,4,5,7,16]+[9,10,14,15,18]+[1,6} \\ & , 13,17]+[11,12] \mathrm{t} \end{aligned}$
50	6	5	4	$\begin{aligned} & {[2,3,6,15,23]+[7,8,9,10} \\ & , 11]+[13,14,17,18,24]+ \\ & {[19,20,21,22]+[1,25] \mathrm{t}} \end{aligned}$
28	7	5	4	$[4,6,8,11,12,13]+[3,5,7,10]+[1,9] \mathrm{t}$
42	7	5	4	$\begin{aligned} & {[2,3,5,6,7,18]+[9,10,11,12,13,19]} \\ & +[15,16,17,20]+[1,4] \mathrm{t} \end{aligned}$
56	7	5	4	$\begin{aligned} & {[3,4,5,6,10,27]+[2,7,9,11,12,13]+} \\ & {[14,15,16,18,19,20]+[21,22,24,26} \\ &]+[23,25] \mathrm{t} \end{aligned}$
30	8	5	4	$\begin{aligned} & {[3,5,6,8,11,12,13]+[2,7,9,10]+[4,} \\ & 14] \mathrm{t} \end{aligned}$
46	8	5	4	$\begin{aligned} & {[1,2,3,4,5,9,21]+[8,10,11,12,13,1} \\ & 4,15]+[17,18,19,20]+[6,22] \mathrm{t} \end{aligned}$
32	9	5	4	$\begin{aligned} & {[3,4,5,6,7,10,12,15]+[2,8,9,11]+[} \\ & 13,14] \mathrm{t} \end{aligned}$
50	9	5	4	$\begin{aligned} & {[3,4,7,8,11,18,23,24]+[} \\ & 6,9,10,12,13,14,15,17]+ \\ & {[19,20,21,22]+[1,5] \mathrm{t}} \end{aligned}$
34	10	5	4	$\begin{aligned} & {[2,4,5,6,7,8,9,10,15]+[12,13,14,1} \\ & 6]+[1,3] \mathrm{t} \end{aligned}$
54	10	5	4	$\begin{aligned} & {[1,2,3,4,5,6,8,9,15]+\quad[10,11,12,1} \\ & 3,14,18,23,25,26]+[20,21,22,24] \\ & +[16,17] \mathrm{t} \end{aligned}$
32	7	6	5	$\begin{aligned} & {[5,8,10,12,13,14]+[3,4,6,7,9]+[1,} \\ & 11,15] \mathrm{t} \end{aligned}$
46	7	6	5	$\begin{aligned} & {[2,3,4,6,9,21]+[8,11,12,13,19,20]} \\ & +[14,15,16,17,18]+[1,5,22] \mathrm{t} \end{aligned}$
60	7	6	5	$\begin{aligned} & {[2,4,5,7,14,27]+[8,9,12,26,28,29]} \\ & +[15,16,17,18,19,20]+[21,22,23 \\ & 24,25]+ \\ & {[1,10,11] \mathrm{t}} \end{aligned}$
34	8	6	5	$\begin{aligned} & {[4,5,6,7,13,14,15]+[9,10,11,12,16} \\ &]+[0,1,3] \mathrm{t} \end{aligned}$
50	8	6	5	$\begin{aligned} & {[5,6,7,11,22,23,24]+[} \\ & 9,10,12,13,14,15,21]+ \\ & {[16,17,18,19,20]+[1,2,3] \mathrm{t}} \end{aligned}$
36	9	6	5	$\begin{aligned} & {[3,4,5,6,7,14,15,16]+[9,11,12,13,} \\ & 17]+[1,2,10] \mathrm{t} \end{aligned}$
54	9	6	5	$\begin{aligned} & {[3,4,7,8,13,22,24,25]+[9,10,11,12} \\ & , 14,15,16,17]+[18,19,20,21,23]+[\\ & 1,6,26] \mathrm{t} \end{aligned}$
38	10	6	5	$\begin{aligned} & {[2,3,5,6,7,8,10,16,17]+[11,12,13,} \\ & 14,15]+[1,4,18] \mathrm{t} \end{aligned}$

$\left.\begin{array}{ccccc}58 & 10 & 6 & 5 & {[5,6,7,8,9,10,19,24,26]} \\ & & & & +[12,13,14,15,16,17,18,27,28]+ \\ & & & {[20,21,22,23,25]+[1,2,4] \mathrm{t}}\end{array}\right\}$

7. SUMMARY AND CONCLUSION

Easy methods to generate four important classes of neighbor designs namely; MCBNDs, MCSBNDs, CQRNDs and MCNSBNDs are developed in this article for almost every case of v. The developed methods produce these designs in equal as well as in unequal block sizes. The proposed designs are useful to (i) estimate the treatment effect and neighbor effect independently, and (ii) minimize the bias due to neighbor effects. The presented catalogues are useful for the experimenters because these provide them the design of their own choice.

8. ACKNOWLEDGEMENTS

Authors are thankful to the reviewers for their valuable corrections and suggestions.

9. CONFLICT OF INTEREST

The authors declare no conflict of interest.

10. REFERENCES

1. J.M. Azais. Design of experiments for studying intergenotypic competition. Journal of the Royal Statistical Society: Series B 49: 334-345 (1987).
2. J.M. Azais, R.A. Bailey, and H. Monod. A catalogue of efficient neighbor designs with border plots. Biometrics 49(4): 1252- 1261 (1993).
3. J. Kunert. Randomization of neighbour balanced designs. Biometrical Journal 42(1): 111-118 (2000).
4. J.S. Tomar, S. Jaggi, and C. Varghese. On totally balanced block designs for competition
effects. Journal of Applied Statistics 32(1): 8797 (2005).
5. D.H. Rees. Some designs of use in serology. Biometrics 23: 779-791 (1967).
6. B.L. Misra, Bhagwandas, and S.M. Nutan. Families of neighbor designs and their analysis Communications in Statistics - Simulation and Computation 20: 427-436 (1991).
7. D.A. Preece. Balanced Ouchterlony neighbor designs. Journal of Combinatorial Mathematics and Combinatorial Computing 15: 197-219 (1994).
8. N.K. Chaure, and B.L. Misra. On construction of generalized neighbor design. Sankhya Series B 58: 245-253 (1996).
9. S. Jaggi, V.K. Gupta, and J. Ashraf. On block designs partially balanced for neighbouring competition effects. Journal of Indian Statistical Association 44(1): 27-41 (2006).
10. S.M. Nutan. Families of proper generalized neighbor designs. Journal of Statistical Planning and Inference 137: 1681-1686 (2007).
11. R.G. Kedia, and B.L. Misra. On construction of generalized neighbor design of use in serology. Statistics and Probability Letters 18: 254-256 (2008).
12. R. Ahmed, M. Akhtar, and M.H. Tahir. Economical generalized neighbor designs of use in Serology. Computational Statistics and Data Analysis 53: 4584-4589 (2009).
13. I. Iqbal, M.H. Tahir, and S.S.A. Ghazali. Circular neighbor-balanced designs using cyclic shifts. Science in China Series A: Mathematics 52(10): 2243-2256 (2009).
14. M. Akhtar, R. Ahmed, and F. Yasmin. A catalogue of nearest neighbor balanced- designs in circular blocks of size five. Pakistan Journal of Statistics 26(2): 397- 405 (2010).
15. K.K.S. Meitei. Circular neighbour-balanced
designs and one-sided circular neighbourbalanced designs. Sankhyā: The Indian Journal of Statistics, Series B 72: 175-188 (2010).
16. R. Ahmed, and M. Akhtar. Designs balanced for neighbor effects in circular blocks of size six. Journal of Statistical Planning and Inference 141: 687-691 (2011).
17. F. Shehzad, M. Zafaryab, and R. Ahmed. Minimal neighbor designs in circular blocks of unequal sizes. Journal of Statistical Planning and Inference 141: 3681-3685 (2011).
18. I. Iqbal, M.H. Tahir, M.L. Aggarwal, A. Ali, and I. Ahmed. Generalized neighbor designs with block size 3. Journal of Statistical Planning and Inference 142: 626-632 (2012).
19. N. Hamad, and M. Hanif. Non-directional two-dimensional neighbor designs. Pakistan Journal of Statistics 33(4): 269-276 (2017).
20. S. Jaggi, D.K. Pateria, C. Varghese, E. Varghese, and A. Bhowmik. A note on circular neighbour balanced designs. Communications in Statistics - Simulation and Computation 47: 2896-2905 (2018).
21. K.P. Singh. A neighbor balanced design and its optimal certainty contribution. Bulletin of Pure and Applied Sciences Section - E-Mathematics \& Statistics 38E(2): 636-640 (2019).
22. K.K.S. Meitei. Universally Optimal One-sided Circular Neighbour-balanced Designs with k = 5. Calcutta Statistical Association Bulletin 72(2): 84-88 (2020).
23. A. Salam, R. Ahmed, M. Daniyal, and R.A. Berihan. Minimal circular nearly stronglybalanced neighbor designs when left and right neighbor effects are equal. Journal of Statistical Application and Probability 11(3): 883-891 (2021).
24. I. Iqbal. Construction of experimental design using cyclic shifts. Ph.D. Thesis, University of Kent at Canterbury, UK (1991).

[^0]: Received: March 2023; Accepted: June 2023
 *Corresponding Author: Rashid Ahmed < rashid701@hotmail.com>

