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Abstract: Agriculture is crucial to economic growth and development. Crop yield forecasting is critical for food 
production which includes vegetables, fruits, flowers, and cattle. Artificial Intelligence (AI) is rising in agriculture, 
providing farmers with real-time or long-term insights about their fields. It allows us to identify the areas that 
require irrigation, fertilization, or pesticide treatment. Statistical models struggle to track complex relationships in 
crop yields due to numerous factors. Machine Learning (ML) and Deep Learning (DL) algorithms can solve this 
problem by training themselves in these relationships, enabling accurate predictions in agricultural yield prediction 
methods. Predicting product performance in agriculture is challenging due to various factors, but profit forecasting 
improves decision-making, production, economics, and food safety. The present study focuses on the use of ML and 
DL algorithms to suggest a novel decision support system for crop yield prediction with the objectives to develop 
a robust, accurate model, investigate algorithm effectiveness, and create a user-friendly system for informed crop 
production decisions. According to the results, the developed system is capable of making precise predictions, which 
can support farmers in making better decisions about how to manage their crops. The simulation results demonstrate 
that the intelligent decision support system proposed for crop yield prediction using ML and DL algorithms is capable 
of achieving high accuracy and precision. The system can be used to help farmers make better decisions about crop 
planting and management, which can lead to increased crop yields and profits. The results of our experiment show that 
our model is better than the others and it achieves an accuracy of 99.82 %. Additionally, we utilized ML to condense 
the input space while preserving high accuracy.

Keywords:  Machine Learning Algorithm, Deep Neural Network, Deep Learning Algorithm, Crop Yield Forecasting, 
Artificial Intelligence, Agricultural Productivity.

1. INTRODUCTION 

Digitization is having a major impact on many 
different areas of life including medicine, agriculture, 
consensus platforms, and weather forecasting, etc., 
[1]. Weather affects agrarian yield, food security, 
GDP, and environmental protection. ML and DL 
techniques improve the prediction of agricultural 
production by capturing complex correlations 
between crop output and environmental parameters 
[2]. Remote sensing improves agricultural yield 
prediction, but noisy data challenges accuracy [3]. 
ML enhances agricultural planning and production, 
but challenges remain in dataset quality, algorithms, 
and decision-making integration [4, 5]. AI aids 

industrial sectors, while agriculture faces climate 
change risks. Climate change impacts agricultural 
industry, affecting livelihoods and food security 
[6]. Post-hoc methods clarify trained predictions, 
process methods improve interpretation. 
Agricultural planning optimizes land use and 
yields using machine learning algorithms [7, 8]. 
Precision agriculture uses GPS, remote sensing, 
and internet technologies to manage crops, reduce 
fertilizers, pesticides, and water usage [9]. As such 
the precision agriculture ensures crop-specific 
product quality control. Maximizing resources 
and predicting yields using ML algorithms and DL 
techniques. The aim is to make the most of what we 
have while conserving resources. Yield predictions 



were made using ML algorithms and DL such as 
linear regression and multiple regressions. ML 
techniques such as RF, SVM, multiplexer, logistic 
regression, and DL techniques such as DCNN and 
LSTM can provide quick and accurate solutions to 
this problem [10]. Agricultural sustainability, food 
availability, productivity, and farmers’ cultural 
familiarity are imperative for food safety and food 
security [11-13]. The UN Sustainable Development 
Goals (SDGs) for 2030 include zero hunger and 
sustainable agriculture. DL techniques predict crops 
using Convolution Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs) [14, 15]. Smart 
farming consists of advance precision in agriculture 
with intelligent, remote solutions [16-18]. The 
rubber market grows because deep learning aids 
rubber yield forecasts with accuracy and robustness 
[19]. Traditional methods overlook complex factors 
affecting yields [20]. The parameters that have 
had a major impact on crops are water, ultraviolet 
(UV) radiations, pesticides, fertilizers, and the 
area of   land covered by the area. A proposed ML 
model illustrating the use of NN and related ANN 
algorithms was evaluated. The dataset consists 
of 140 data points that represent the effect of the 
attribute on crop yield. Predicting crop yields is 
crucial for informed decisions in agriculture, but 
traditional methods rely on limited statistical models 
that are unable to capture the complex relationship 
between yield and factors like weather, soil 
conditions, and pests [21, 22]. Traditional methods 
struggle with predicting crop yields due to limited 
statistical models. DL effectively performs image 
classification, speech recognition, and crop yield 
forecasting using CNN and weather parameters 
[23]. US soybean yield prediction using neural 
networks and CNN outperforms remote sensing by 
15 % on average MAPE (mean absolute percentage 
error), incorporating spatiotemporal features. [24, 
25]. IoT technology offers diverse applications in 
smart homes, cities, traffic management [26, 27]. 
Technology integrates agricultural equipment for 
optimal planting and fertilization decisions [28]. 
Smart machines enhance plant and animal growth 
monitoring accuracy [29, 30].

Satellite missions, remote sensing sensors, big 
data, artificial intelligence, and machine learning 
offer new opportunities for understanding crop 
processes and monitoring yield using remote sensing. 
Figure 1 shows that a thorough site survey is crucial 

for construction plans, with drones simplifying 
the process and achieving impressive results [31-
33]. Satellite remote sensing enhances monitoring 
efficiency for large, multi-scale applications [34, 
35]. In recent development, satellite remote sensing 
has been successfully used for crop monitoring 
to forecast output, accurately describe location, 
weather, and temporal changes, and estimate yields 
per pixel [36-39]. Machine vision technology has 
gained importance in agricultural automation [40].

Figure 2 shows the use of remote sensing for 
monitoring and yield estimation. The plant material 
used is reddish-orange Vitis vinifera L. cv. Bhopal 
was vaccinated at 110 degrees Richter. The land 
was planted in 2002 with dimensions of 2.5 × 1.4 
m (2857 vines ha-1) with ropes connected to the 
north-south vertical trusses. Remote sensing, big 
data, AI, and ML tools were adopted for sustainable 
agriculture [41]. AI advancements and Graphics 
Processing Unit (GPU) and Deep Belief Network 
(DBN) technologies have significantly improved 
plots with 1.2 drip nozzles [42]. Computer vision 
technology enhances resource efficiency in 
agricultural production through decision support 
[43, 44]. The approach challenges noise and 
distortion in underwater photographs by creating a 
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regression, and DL techniques such as DCNN and LSTM 
can provide quick and accurate solutions to this problem 
[10]. Agricultural sustainability, food availability, 
productivity, and farmers' cultural familiarity are 
imperative for food safety and food security [11-13]. The 
UN Sustainable Development Goals (SDGs) for 2030 
include zero hunger and sustainable agriculture. DL 
techniques predict crops using Convolution Neural 
Networks (CNNs) and Recurrent Neural Networks 
(RNNs) [14, 15]. Smart farming consists of advance 
precision in agriculture with intelligent, remote solutions 
[16-18]. The rubber market grows because deep learning 
aids rubber yield forecasts with accuracy and robustness 
[19]. Traditional methods overlook complex factors 
affecting yields [20]. The parameters that have had a major 
impact on crops are water, ultraviolet (UV) radiations, 
pesticides, fertilizers, and the area of land covered by the 
area. A proposed ML model illustrating the use of NN and 
related ANN algorithms was evaluated. The dataset 
consists of 140 data points that represent the effect of the 
attribute on crop yield. Predicting crop yields is crucial for 
informed decisions in agriculture, but traditional methods 
rely on limited statistical models that are unable to capture 
the complex relationship between yield and factors like 
weather, soil conditions, and pests [21, 22]. Traditional 
methods struggle with predicting crop yields due to limited 
statistical models. DL effectively performs image 
classification, speech recognition, and crop yield 
forecasting using CNN and weather parameters [23]. US 
soybean yield prediction using neural networks and CNN 
outperforms remote sensing by 15 % on average MAPE 
(mean absolute percentage error), incorporating 
spatiotemporal features. [24, 25]. IoT technology offers 
diverse applications in smart homes, cities, traffic 
management [26, 27]. Technology integrates agricultural 
equipment for optimal planting and fertilization decisions 
[28]. Smart machines enhance plant and animal growth 
monitoring accuracy [29, 30]. 

 

Fig. 1. IoT sensors on the ground and in farm equipment [31] 

Satellite missions, remote sensing sensors, big data, 
artificial intelligence, and machine learning offer new 
opportunities for understanding crop processes and 
monitoring yield using remote sensing. Figure 1 shows 
that a thorough site survey is crucial for construction plans, 
with drones simplifying the process and achieving 
impressive results [31-33]. Satellite remote sensing 
enhances monitoring efficiency for large, multi-scale 
applications [34, 35]. In recent development, satellite 
remote sensing has been successfully used for crop 
monitoring to forecast output, accurately describe 
location, weather, and temporal changes, and estimate 
yields per pixel [36-39]. Machine vision technology has 
gained importance in agricultural automation [40]. 

 

Fig. 2. Remote Sensing for Crop Monitoring and Yield 
Estimation [41] 
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vaccinated at 110 degrees Richter. The land was planted in 
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(RNNs) [14, 15]. Smart farming consists of advance 
precision in agriculture with intelligent, remote solutions 
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3D model using depth maps, overlapping tiles, and 
mosaic images [45]. Figure 3 categorizes ML models 
into feature engineering-based and end-to-end Deep 
Neural Network (DNN) pipelines, highlighting 
similarities in interpretation paradigms, focusing 
on understanding neural representations [46].

    The typical objectives and contributions of the 
present study are as follows: 
1)  Estimation of winter wheat yields using data 

from multiple sources at both district and pixel 
levels in large areas by comparing multiple ML 
and DL methods, including RNN and Random 
Forest (RF) algorithms.

2) To explore factors such as soil, weather, and 
crops that are important in predicting yield. 

3)  Finally, we propose a scalable, simple, and 
cost-effective operating modeling approach for 
accurate and fast yield estimation.

  The present study also reviews the literature 
on crop forecasting, analyzes planning strategies, 
and discusses experiments, results, and ongoing 
research. Table 1 depicts a summary of different 
studies on agricultural yield using various 
techniques, approaches, and models, utilizing 
diverse datasets. The research utilized Support 
Vector Machine (SVM), CNN, Long Short-
term Memory Networks (LSTM), and other ML 
algorithms. The performance and accuracy of each 
algorithm is being varied. 

2. MATERIALS AND METHODS 

The proposed method uses data from the Kaggle 
database to estimate crop yield predictions [56]. 
Precipitation, temperature, air pressure, vapor 
pressure, and the frequency of rainy days are all 
examples of climatic parameters. The information 
in this document is geographically organized by 
latitude and county. Random Forest (RF) and 

Artificial Neural Network (ANN) algorithms 
are powerful ML tools for crop yield analysis, 
combining ensemble learning and AI networks to 
make decisive decisions and recognize complex 
relationships between inputs and outputs. The 
random forest-based crop mapping framework 
utilizes various data sources and remote sensing 
data to enhance crop classification accuracy and 
efficiency. This method aids in land use planning, 
precision agriculture, environmental monitoring, 
advancing agriculture, and remote sensing. RF 
and ANN are chosen for crop yield analysis due to 
their efficiency in handling large data sets, ability 
to learn complex relationships, and easy training, 
making them suitable for time-consuming tasks. 
ML approaches like Bayes and Decision Trees are 
not suitable for this task due to their probabilistic 
nature and limited handling of large datasets [57]. 
Decision Trees are unsupervised learning algorithms 
for classification and regression tasks, but they lack 
complex relationship learning capabilities. The 
use of existing datasets and various ML and DL 
approaches for crop yield prediction at different 
measures in high-yield agricultural manufacturing 
locations requires increased limited attention [58]. 

DL, which uses neural networks to learn 
features directly from the data, is the basis of 
present work. The DL approach is more flexible 
and enables to achieve better results for a series of 
tasks [59]. In terms of robustness, scalability and 
interpretation ability, the present work is better than 
the other because it is based on DL techniques, 
which are much more powerful and flexible than 
traditional methods of ML. 

Figure 4 shows the framework for the present 
study using DL approach. Modules for feature 
extraction, Decision Support System (DSS), and 
data preprocessing are all included in the framework. 
Performance measurement and forecasting are also 
included in the DSS module. With ML and DL, 
predictions can be made, and performance can be 
evaluated by looking at the DSS’s accuracy.

2.1 Dataset

The dataset used in the present study is from 
Kaggle, hypothetical data is used which is a public 
data repository [56]. The MSMD feature selection 
method improves agricultural classification 
efficiency and accuracy by reducing redundancy 
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2002 with dimensions of 2.5 × 1.4 m (2857 vines ha-1) 
with ropes connected to the north-south vertical trusses. 
Remote sensing, big data, AI, and ML tools were adopted 
for sustainable agriculture [41]. AI advancements and 
Graphics Processing Unit (GPU) and Deep Belief 
Network (DBN) technologies have significantly improved 
plots with 1.2 drip nozzles [42]. Computer vision 
technology enhances resource efficiency in agricultural 
production through decision support [43, 44]. The 
approach challenges noise and distortion in underwater 
photographs by creating a 3D model using depth maps, 
overlapping tiles, and mosaic images [45]. Figure 3 
categorizes ML models into feature engineering-based and 
end-to-end Deep Neural Network (DNN) pipelines, 
highlighting similarities in interpretation paradigms, 
focusing on understanding neural representations [46]. 

 

Fig. 3. Techniques for ML and DL model [46] 

  The typical objectives and contributions of the present 
study are as follows:  

 1) Estimation of winter wheat yields using data from 
multiple sources at both district and pixel levels in large 
areas by comparing multiple ML and DL methods, 
including RNN and Random Forest (RF) algorithms. 

 2) To explore factors such as soil, weather, and crops that 
are important in predicting yield.  

3) Finally, we propose a scalable, simple, and cost-
effective operating modeling approach for accurate and 
fast yield estimation. 

 The present study also reviews the literature on crop 
forecasting, analyzes planning strategies, and discusses 
experiments, results, and ongoing research. Table 1 
depicts a summary of different studies on agricultural yield 
using various techniques, approaches, and models, 
utilizing diverse datasets. The research utilized Support 
Vector Machine (SVM), CNN, Long Short-term Memory 
Networks (LSTM), and other ML algorithms. The 
performance and accuracy of each algorithm is being 
varied.  

    Table 1. Prediction algorithm as applied in ML and DL 

Ref No Algorithm Dataset Used Results 

[47] Deep neural network Each model was first trained 
with 900,000 data sets. 

The 10-neuron, 5-layer Bayesian DNN 
model is the same as the original 400-
neuron 10-layer DNN model, although the 
number of neural networks is reduced by 
about 80. 

[48] Hybrid machine learning, 
(ANN-ICA), (ANN-GWO) 

Wheat, barley, potato, sugar 
beet 

ANN-GWO showed better prediction 
results than the ANN-ICA model with R = 
0.48, RMSE = 3.19, and MEA = 26.65. 

[49] Convolutional neural 
network with 1-D 
Convolutional operation 

Meteorological, 
soil, and plant phenology 
data from 271 German 
districts over 21 years (1999–
2019). 

RMSE 7-14% lower, MAE 3-15% lower, 
and correlation coefficient 4-50% higher 
than the best-performing reference factor 
on all test data. 

Fig. 3. Techniques for ML and DL model [46]
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and focusing on optimal features. It enhances 
precision in farmland mapping using multi-source 
imagery, making it a significant addition to remote 
sensing and land cover categorization. The dataset 
contains information on crop yield, climate, and 
other factors. 

Figure 5 depicts a visual representation of the dataset 
in the combined bi-temporal optical radar data for crop 
distribution in pictorial form recorded by Rapid Eye 
(optical) satellites and polarization radar data captured 
by UAVSAR (Unmanned Aerial Vehicle Synthetic 
Aperture Radars) in a rural area close to Winnipeg, 
Canada and are used in the present study. At harvest 

Table 1. Prediction algorithm as applied in ML and DL
Ref No Algorithm Dataset Used Results

[47] Deep neural network Each model was first trained with 
900,000 data sets.

The 10-neuron, 5-layer Bayesian 
DNN model is the same as the 
original 400-neuron 10-layer DNN 
model, although the number of neural 
networks is reduced by about 80.

[48] Hybrid machine learning,
(ANN-ICA), (ANN-GWO)

Wheat, barley, potato, sugar beet ANN-GWO showed better prediction 
results than the ANN-ICA model 
with R = 0.48, RMSE = 3.19, and 
MEA = 26.65.

[49] Convolutional neural 
network with 1-D 
Convolutional operation

Meteorological, 
soil, and plant phenology 
data from 271 German districts 
over 21 years (1999–2019).

RMSE 7-14% lower, MAE 3-15% 
lower, and correlation coefficient 
4-50% higher than the best-
performing reference factor on all 
test data.

[50] (ML): XGBoost 
Algorithm, (CNN), Deep 
(DNN), CNNXGBoost, 
(RNN), and CNN (LSTM).

The soybean dataset contains 
25345 samples and 395 factors, 
such as climate and soil parameters.

CNN and DNN hybrid models have 
rmse 0.276, mse 0.071, mae 0.199, 
and R2 0.87; The  XGBoost models 
are better than other models.

[51] BPA with FFNN and ANN regional soil parameter Regional soil factors may have a 
critical role in enriching the CYP.

[52] Deep Recurrent Q-Network 
model

Vellore district in the southern Accuracy of 93.7%.

 Wheat crop simulation 
model (CSM), remote 
sensing (RS)

The use of Sentinel 2A and 
Landsat 8 imagery and in-person 
LAI measurements is used for 
verification

NE increases by 2%, 5%, 3%, and 
1% more on simulated days until 
flowering.

[53] Imagery satellite, (NDVI), 
(SAVI).

East Java with various spatial and 
remote sensing datasets

NDVI (R2 = 77.81%) and SAVI 
(R2 = 72.8%).

[54] Backpropagation Neural Networks 
(BPNN) and 
Genetic Algorithms (GA)

When combining 
the three main tobacco growth 
metrics (plant density, 
nitrogen fertilization, and leaf count), 
prepare to plant goals (yield or QC), 
weather, and soil information.

77.66 kg/mu of smoke is produced, 
and the CQ is 81.02. The 
main objective is to smoke QC with 
a wait of 80.

[55] Information and 
communication 
technologies (ICTs), 
DSSPIM

Southern Spain’s greenhouses are 
home to orange and tomato trees.

Orange plants demonstrate how 20 % 
less water is used when implementing 
a water management method for tree 
crops.
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Fig. 4. The framework for the proposed methods (Figure needs 
to be improved for clarity and for better vision) 

DL, which uses neural networks to learn features 
directly from the data, is the basis of present work. The DL 
approach is more flexible and enables to achieve better 
results for a series of tasks [59]. In terms of robustness, 
scalability and interpretation ability, the present work is 
better than the other because it is based on DL techniques, 
which are much more powerful and flexible than 
traditional methods of ML.  

Figure 4 shows the framework for the present study 
using DL approach. Modules for feature extraction, 
Decision Support System (DSS), and data preprocessing 
are all included in the framework. Performance 
measurement and forecasting are also included in the DSS 
module. With ML and DL, predictions can be made, and 
performance can be evaluated by looking at the DSS's 
accuracy. 

2.1 Dataset 
The dataset used in the present study is from Kaggle, 
hypothetical data is used which is a public data repository 
[56]. The MSMD feature selection method improves 

agricultural classification efficiency and accuracy by 
reducing redundancy and focusing on optimal features. It 
enhances precision in farmland mapping using multi-
source imagery, making it a significant addition to remote 
sensing and land cover categorization. The dataset 
contains information on crop yield, climate, and other 
factors.  

 

Fig. 5. The visual illustration of the sample images used in this 
study 

Figure 5 depicts a visual representation of the dataset 
in the combined bi-temporal optical radar data for crop 
distribution in pictorial form recorded by Rapid Eye 
(optical) satellites and polarization radar data captured by 
UAVSAR (Unmanned Aerial Vehicle Synthetic Aperture 
Radars) in a rural area close to Winnipeg, Canada and are 
used in the present study. At harvest time, seven crops 
were grown in the region: corn, peas, canola, soybeans, 
oats, wheat, and hardwoods.  

Predict crop yields for five Gulf-grown crops: potatoes, 
melons, dates, wheat, and maize (corn). A prediction 
model was developed using five independent variables: 
year, rainfall, pesticide, temperature fluctuations, and 
nitrogen fertilizer. Crop prediction is crucial for decision-
making in agriculture and uses input variables to 
determine food availability for the upcoming years. 

 
2.2 Data preprocessing and feature extraction 

In order to address the various issues, which come due to 
incompleteness, inconsistency and missing of values 
against various features of the dataset, a data 

Fig. 4. The framework for the proposed methods 
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time, seven crops were grown in the region: corn, peas, 
canola, soybeans, oats, wheat, and hardwoods. 

Predict crop yields for five Gulf-grown crops: 
potatoes, melons, dates, wheat, and maize (corn). 
A prediction model was developed using five 
independent variables: year, rainfall, pesticide, 
temperature fluctuations, and nitrogen fertilizer. 
Crop prediction is crucial for decision-making in 
agriculture and uses input variables to determine 
food availability for the upcoming years.

2.2 Data preprocessing and feature extraction

In order to address the various issues, which 
come due to incompleteness, inconsistency and 
missing of values against various features of the 
dataset, a data preprocessing technique known 
as normalization is introduced. After the data is 
preprocessed, it can generate promising results 
from simulations. Following feature extraction 
and data pre-processing, there are 12 features 
in the dataset, including derived features. These 
include longitude, latitude, altitude, and day length, 
quantity of precipitation, minitemp, maxitemp, 
ndvi, wind speed, mean temperature, standardized 
temperature, and yield are among the functions. 

2.3 Model Selection

It is intended to develop an intelligent DSS for crop 
yield monitoring using RF and ANN. 

2.3.1 Random Forest (RF)

We have used the RF Classifier from scikit-learn to 
simulate RF-based engines. With a few exceptions 
indicated below, the default set of settings is utilized 
initially:

 ● ‘n estimators’- (n shows the trees that makeup 
the forest, default size is 10);

 ● ‘Max depth’ - The maximum depth of the tree 
(default: none). If the setting is ‘None,’ the 
documentation indicates that “tree vertices are 
expanded until all the Childs are pure or until 
all child node contain less than min samples 
split”;

 ● ‘Min samples split’ – This parameter shows the 
required least number of samples to separate 
an internal node in the tree (it is set to 2 by 
default);

 ● ‘Min samples leaf’ - The very bare least number 
of nodes, correspondingly); 

 ● One seven-node output layer.

Since entities are standardized real numbers, 
`ReLU was chosen as the activation function 
of optimal hidden layers. Also, since this is a 
multiclass classification exercise, where the output 
is intended to be binary (‘1’ for the specified class, 
‘0’ for all other classes), choosing ‘softmax’ makes 
the layer output trigger function seem appropriate. 
This is a multi-class classification exercise, and 
“categorical_crossentropy” is selected as the loss 
function. Adaptive performance is evaluated using 
“accuracy” as a metric for selection. For samples in 
freshly formed leaves, the default is one.
2.3.2 Artificial Neural Network (ANN)
The ANN design has a sequential structure that 
includes:

 ● 1-Input layer (102 input nodes);
 ● 3-Hidden layers (204, 204 and 102 nodes, 

respectively);
 ● one seven-node output layer

Figure 6 represents the adaptive performance 
being assessed using “accuracy” as a selection 
criteria. Because entities are standardized real 
numbers, the activation function ‘relu’ was used for 
buried layers. Also, because, this is a meticulous 
classification exercise with binary output (‘1’ for 
the chosen class, ‘0’ for all other classes), choosing 
‘softmax’ makes the layer output trigger function 
seem appropriate. This is a multi-class classification 
task with “categorical_crossentropy”, as the loss 
function.

3. RESULTS AND DISCUSSION

In this section, various evaluation matrices used for 
the proposed technique are discussed.
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oats, wheat, and hardwoods.  

Predict crop yields for five Gulf-grown crops: potatoes, 
melons, dates, wheat, and maize (corn). A prediction 
model was developed using five independent variables: 
year, rainfall, pesticide, temperature fluctuations, and 
nitrogen fertilizer. Crop prediction is crucial for decision-
making in agriculture and uses input variables to 
determine food availability for the upcoming years. 

 
2.2 Data preprocessing and feature extraction 

In order to address the various issues, which come due to 
incompleteness, inconsistency and missing of values 
against various features of the dataset, a data 

Fig. 5. The visual illustration of the sample images used 
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3.1 Evaluation Matrices

The performance here is measured with both the 
evaluation and confusion matrices for both 
models (Random Forest and Neural Network) of 
the confusion matrix.
• Columns represent expected classes;
• whereas rows represent actual classes 
3.1.1  Confusion Matrix

A confusion matrix is a 2x2 matrix structure that is 
useful for visualizing an algorithm’s performance. 
The true positive rate (TPR) is defined as the entire 
number of positives that have been given that 
classification.

                               (1)

Where TP denotes the true positive and FN shows 
false negative.  
The true negative rate is the proportion of conditions 
that qualify as negative.

                                (2)

The false positive rate is the proportion of instances 
that are misclassified or anticipated as being 
negative.

                                 (3)

The false negative rate is the proportion of positive 
cases reported or anticipated as negative.

                                 (4)

3.1.2  Accuracy

It measures the proportion of accurate predictions 
to all calculations.

             (5)

3.1.3  Precision 

It is the ratio between TPs combined with a number 
of TPs and FPs.

                        (6)
3.1.4  Recall

It is defined as the product of the ratio of TPs and 
the sum of the TP and FN numbers.

                             (7)

3.1.5  F1-score

Recall and accuracy are averaged mathematically, 
and it takes into consideration both false positive 
and false negative (FN) outcomes.

                    (8)

Figure 7 depicts the data visually, revealing a 
substantial variance in agricultural yields across 
different locations, with a focus on autumn-sown 
winter crops. What sticks out is that winter crops 
have a substantially higher amount of variance from 
year to year, indicating that their yields fluctuate 
more pronouncedly than other crop types.

Figure 8 focuses on training an algorithm 
utilizing multispectral satellite photos containing 
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preprocessing technique known as normalization is 
introduced. After the data is preprocessed, it can generate 
promising results from simulations. Following feature 
extraction and data pre-processing, there are 12 features in 
the dataset, including derived features. These include 
longitude, latitude, altitude, and day length, quantity of 
precipitation, minitemp, maxitemp, ndvi, wind speed, 
mean temperature, standardized temperature, and yield are 
among the functions.  

2.3 Model Selection 
It is intended to develop an intelligent DSS for crop yield 
monitoring using RF and ANN.  

2.3.1 Random Forest (RF) 
We have used the RF Classifier from scikit-learn to 
simulate RF-based engines. With a few exceptions 
indicated below, the default set of settings is utilized 
initially: 

• 'n estimators'- (n shows the trees that makeup the 
forest, default size is 10); 

• 'Max depth' - The maximum depth of the tree (default: 
none). If the setting is 'None,' the documentation 
indicates that "tree vertices are expanded until all the 
Childs are pure or until all child node contain less 
than min samples split"; 

• 'Min samples split' – This parameter shows the 
required least number of samples to separate an 
internal node in the tree (it is set to 2 by default); 

• 'Min samples leaf' - The very bare least number of 
nodes, correspondingly);  

• One seven-node output layer. 
Since entities are standardized real numbers, `ReLU was 
chosen as the activation function of optimal hidden layers. 
Also, since this is a multiclass classification exercise, 
where the output is intended to be binary ('1' for the 
specified class, '0' for all other classes), choosing 'softmax' 
makes the layer output trigger function seem appropriate. 
This is a multi-class classification exercise, and 
"categorical_crossentropy" is selected as the loss function. 

Adaptive performance is evaluated using "accuracy" as a 
metric for selection. For samples in freshly formed leaves, 
the default is one. 

2.3.2 Artificial Neural Network (ANN) 

The ANN design has a sequential structure that includes: 

• 1-Input layer (102 input nodes); 

• 3-Hidden layers (204, 204 and 102 nodes, 
respectively); 

• one seven-node output layer 

 

Fig. 6. The proposed Artificial Neural Network Model 

Figure 6 represents the adaptive performance being 
assessed using "accuracy" as a selection criteria. Because 
entities are standardized real numbers, the activation 
function 'relu' was used for buried layers. Also, because, 
this is a meticulous classification exercise with binary 
output ('1' for the chosen class, '0' for all other classes), 
choosing 'softmax' makes the layer output trigger function 
seem appropriate. This is a multi-class classification task 
with "categorical_crossentropy", as the loss function. 

3. RESULTS AND DISCUSSION 

In this section, various evaluation matrices used for the 
proposed technique are discussed. 

3.1 Evaluation Matrices 
The performance here is measured with both the 
evaluation and confusion matrices for both models 
(Random Forest and Neural Network) of 
the confusion matrix. 

Fig. 6. The proposed Artificial Neural Network Model

Fig. 8. Training and validation loss for the multi-
temporal ANN model
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• Columns represent expected classes; 
• whereas rows represent actual classes  
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positive rate (TPR) is defined as the entire number of 
positives that have been given that classification. 
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are misclassified or anticipated as being negative. 
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𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹                                 (3) 

The false negative rate is the proportion of positive cases 
reported or anticipated as negative. 
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𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇                                 (4) 
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3.1.3  Precision  
It is the ratio between TPs combined with a number of TPs 
and FPs. 
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𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇                        (6) 

3.1.4  Recall 
It is defined as the product of the ratio of TPs and the sum 
of the TP and FN numbers. 
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𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                             (7) 

3.1.5  F1-score 
Recall and accuracy are averaged mathematically, and it 
takes into consideration both false positive and false 
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Figure 7 depicts the data visually, revealing a substantial 
variance in agricultural yields across different locations, 
with a focus on autumn-sown winter crops. What sticks 
out is that winter crops have a substantially higher amount 
of variance from year to year, indicating that their yields 
fluctuate more pronouncedly than other crop types. 
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Figure 8 focuses on training an algorithm utilizing 
multispectral satellite photos containing information on 
crop kinds and their respective areas. Only these photos 
with crop type and area encoding were used to train the 

An Intelligent Decision Support System for Crop Yield Prediction 

 7  
 

• Columns represent expected classes; 
• whereas rows represent actual classes  

3.1.1  Confusion Matrix 
A confusion matrix is a 2x2 matrix structure that is useful 
for visualizing an algorithm's performance. The true 
positive rate (TPR) is defined as the entire number of 
positives that have been given that classification. 

TPR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                               (1) 

Where TP denotes the true positive and FN shows false 
negative.   
The true negative rate is the proportion of conditions that 
qualify as negative. 

TNR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹                                (2) 

The false positive rate is the proportion of instances that 
are misclassified or anticipated as being negative. 

FPR = 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹                                 (3) 

The false negative rate is the proportion of positive cases 
reported or anticipated as negative. 

FNR = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇                                 (4) 

3.1.2  Accuracy 
It measures the proportion of accurate predictions to all 
calculations. 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝐹𝐹             (5) 

3.1.3  Precision  
It is the ratio between TPs combined with a number of TPs 
and FPs. 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇                        (6) 

3.1.4  Recall 
It is defined as the product of the ratio of TPs and the sum 
of the TP and FN numbers. 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                             (7) 

3.1.5  F1-score 
Recall and accuracy are averaged mathematically, and it 
takes into consideration both false positive and false 
negative (FN) outcomes. 

F1 − score = 2 ∗ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)
(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)                    (8) 

 

Fig. 7.  Crop production statistics 

Figure 7 depicts the data visually, revealing a substantial 
variance in agricultural yields across different locations, 
with a focus on autumn-sown winter crops. What sticks 
out is that winter crops have a substantially higher amount 
of variance from year to year, indicating that their yields 
fluctuate more pronouncedly than other crop types. 

 

Fig. 8. Training and validation loss for the multi-temporal ANN 
model 

Figure 8 focuses on training an algorithm utilizing 
multispectral satellite photos containing information on 
crop kinds and their respective areas. Only these photos 
with crop type and area encoding were used to train the 

An Intelligent Decision Support System for Crop Yield Prediction 

 7  
 

• Columns represent expected classes; 
• whereas rows represent actual classes  

3.1.1  Confusion Matrix 
A confusion matrix is a 2x2 matrix structure that is useful 
for visualizing an algorithm's performance. The true 
positive rate (TPR) is defined as the entire number of 
positives that have been given that classification. 

TPR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                               (1) 

Where TP denotes the true positive and FN shows false 
negative.   
The true negative rate is the proportion of conditions that 
qualify as negative. 

TNR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹                                (2) 

The false positive rate is the proportion of instances that 
are misclassified or anticipated as being negative. 

FPR = 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹                                 (3) 

The false negative rate is the proportion of positive cases 
reported or anticipated as negative. 

FNR = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇                                 (4) 

3.1.2  Accuracy 
It measures the proportion of accurate predictions to all 
calculations. 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝐹𝐹             (5) 

3.1.3  Precision  
It is the ratio between TPs combined with a number of TPs 
and FPs. 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇                        (6) 

3.1.4  Recall 
It is defined as the product of the ratio of TPs and the sum 
of the TP and FN numbers. 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                             (7) 

3.1.5  F1-score 
Recall and accuracy are averaged mathematically, and it 
takes into consideration both false positive and false 
negative (FN) outcomes. 

F1 − score = 2 ∗ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)
(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)                    (8) 

 

Fig. 7.  Crop production statistics 

Figure 7 depicts the data visually, revealing a substantial 
variance in agricultural yields across different locations, 
with a focus on autumn-sown winter crops. What sticks 
out is that winter crops have a substantially higher amount 
of variance from year to year, indicating that their yields 
fluctuate more pronouncedly than other crop types. 

 

Fig. 8. Training and validation loss for the multi-temporal ANN 
model 

Figure 8 focuses on training an algorithm utilizing 
multispectral satellite photos containing information on 
crop kinds and their respective areas. Only these photos 
with crop type and area encoding were used to train the 

An Intelligent Decision Support System for Crop Yield Prediction 

 7  
 

• Columns represent expected classes; 
• whereas rows represent actual classes  

3.1.1  Confusion Matrix 
A confusion matrix is a 2x2 matrix structure that is useful 
for visualizing an algorithm's performance. The true 
positive rate (TPR) is defined as the entire number of 
positives that have been given that classification. 

TPR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                               (1) 

Where TP denotes the true positive and FN shows false 
negative.   
The true negative rate is the proportion of conditions that 
qualify as negative. 

TNR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹                                (2) 

The false positive rate is the proportion of instances that 
are misclassified or anticipated as being negative. 

FPR = 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹                                 (3) 

The false negative rate is the proportion of positive cases 
reported or anticipated as negative. 

FNR = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇                                 (4) 

3.1.2  Accuracy 
It measures the proportion of accurate predictions to all 
calculations. 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝐹𝐹             (5) 

3.1.3  Precision  
It is the ratio between TPs combined with a number of TPs 
and FPs. 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇                        (6) 

3.1.4  Recall 
It is defined as the product of the ratio of TPs and the sum 
of the TP and FN numbers. 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                             (7) 

3.1.5  F1-score 
Recall and accuracy are averaged mathematically, and it 
takes into consideration both false positive and false 
negative (FN) outcomes. 

F1 − score = 2 ∗ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)
(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)                    (8) 

 

Fig. 7.  Crop production statistics 

Figure 7 depicts the data visually, revealing a substantial 
variance in agricultural yields across different locations, 
with a focus on autumn-sown winter crops. What sticks 
out is that winter crops have a substantially higher amount 
of variance from year to year, indicating that their yields 
fluctuate more pronouncedly than other crop types. 

 

Fig. 8. Training and validation loss for the multi-temporal ANN 
model 

Figure 8 focuses on training an algorithm utilizing 
multispectral satellite photos containing information on 
crop kinds and their respective areas. Only these photos 
with crop type and area encoding were used to train the 

An Intelligent Decision Support System for Crop Yield Prediction 

 7  
 

• Columns represent expected classes; 
• whereas rows represent actual classes  

3.1.1  Confusion Matrix 
A confusion matrix is a 2x2 matrix structure that is useful 
for visualizing an algorithm's performance. The true 
positive rate (TPR) is defined as the entire number of 
positives that have been given that classification. 

TPR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                               (1) 

Where TP denotes the true positive and FN shows false 
negative.   
The true negative rate is the proportion of conditions that 
qualify as negative. 

TNR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹                                (2) 

The false positive rate is the proportion of instances that 
are misclassified or anticipated as being negative. 

FPR = 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹                                 (3) 

The false negative rate is the proportion of positive cases 
reported or anticipated as negative. 

FNR = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇                                 (4) 

3.1.2  Accuracy 
It measures the proportion of accurate predictions to all 
calculations. 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝐹𝐹             (5) 

3.1.3  Precision  
It is the ratio between TPs combined with a number of TPs 
and FPs. 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇                        (6) 

3.1.4  Recall 
It is defined as the product of the ratio of TPs and the sum 
of the TP and FN numbers. 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                             (7) 

3.1.5  F1-score 
Recall and accuracy are averaged mathematically, and it 
takes into consideration both false positive and false 
negative (FN) outcomes. 

F1 − score = 2 ∗ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)
(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)                    (8) 

 

Fig. 7.  Crop production statistics 

Figure 7 depicts the data visually, revealing a substantial 
variance in agricultural yields across different locations, 
with a focus on autumn-sown winter crops. What sticks 
out is that winter crops have a substantially higher amount 
of variance from year to year, indicating that their yields 
fluctuate more pronouncedly than other crop types. 

 

Fig. 8. Training and validation loss for the multi-temporal ANN 
model 

Figure 8 focuses on training an algorithm utilizing 
multispectral satellite photos containing information on 
crop kinds and their respective areas. Only these photos 
with crop type and area encoding were used to train the 

An Intelligent Decision Support System for Crop Yield Prediction 

 7  
 

• Columns represent expected classes; 
• whereas rows represent actual classes  

3.1.1  Confusion Matrix 
A confusion matrix is a 2x2 matrix structure that is useful 
for visualizing an algorithm's performance. The true 
positive rate (TPR) is defined as the entire number of 
positives that have been given that classification. 

TPR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                               (1) 

Where TP denotes the true positive and FN shows false 
negative.   
The true negative rate is the proportion of conditions that 
qualify as negative. 

TNR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹                                (2) 

The false positive rate is the proportion of instances that 
are misclassified or anticipated as being negative. 

FPR = 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹                                 (3) 

The false negative rate is the proportion of positive cases 
reported or anticipated as negative. 

FNR = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇                                 (4) 

3.1.2  Accuracy 
It measures the proportion of accurate predictions to all 
calculations. 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝐹𝐹             (5) 

3.1.3  Precision  
It is the ratio between TPs combined with a number of TPs 
and FPs. 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇                        (6) 

3.1.4  Recall 
It is defined as the product of the ratio of TPs and the sum 
of the TP and FN numbers. 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                             (7) 

3.1.5  F1-score 
Recall and accuracy are averaged mathematically, and it 
takes into consideration both false positive and false 
negative (FN) outcomes. 

F1 − score = 2 ∗ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)
(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)                    (8) 

 

Fig. 7.  Crop production statistics 

Figure 7 depicts the data visually, revealing a substantial 
variance in agricultural yields across different locations, 
with a focus on autumn-sown winter crops. What sticks 
out is that winter crops have a substantially higher amount 
of variance from year to year, indicating that their yields 
fluctuate more pronouncedly than other crop types. 

 

Fig. 8. Training and validation loss for the multi-temporal ANN 
model 

Figure 8 focuses on training an algorithm utilizing 
multispectral satellite photos containing information on 
crop kinds and their respective areas. Only these photos 
with crop type and area encoding were used to train the 

An Intelligent Decision Support System for Crop Yield Prediction 

 7  
 

• Columns represent expected classes; 
• whereas rows represent actual classes  

3.1.1  Confusion Matrix 
A confusion matrix is a 2x2 matrix structure that is useful 
for visualizing an algorithm's performance. The true 
positive rate (TPR) is defined as the entire number of 
positives that have been given that classification. 

TPR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                               (1) 

Where TP denotes the true positive and FN shows false 
negative.   
The true negative rate is the proportion of conditions that 
qualify as negative. 

TNR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹                                (2) 

The false positive rate is the proportion of instances that 
are misclassified or anticipated as being negative. 

FPR = 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹                                 (3) 

The false negative rate is the proportion of positive cases 
reported or anticipated as negative. 

FNR = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇                                 (4) 

3.1.2  Accuracy 
It measures the proportion of accurate predictions to all 
calculations. 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝐹𝐹             (5) 

3.1.3  Precision  
It is the ratio between TPs combined with a number of TPs 
and FPs. 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇                        (6) 

3.1.4  Recall 
It is defined as the product of the ratio of TPs and the sum 
of the TP and FN numbers. 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                             (7) 

3.1.5  F1-score 
Recall and accuracy are averaged mathematically, and it 
takes into consideration both false positive and false 
negative (FN) outcomes. 

F1 − score = 2 ∗ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)
(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)                    (8) 

 

Fig. 7.  Crop production statistics 

Figure 7 depicts the data visually, revealing a substantial 
variance in agricultural yields across different locations, 
with a focus on autumn-sown winter crops. What sticks 
out is that winter crops have a substantially higher amount 
of variance from year to year, indicating that their yields 
fluctuate more pronouncedly than other crop types. 

 

Fig. 8. Training and validation loss for the multi-temporal ANN 
model 

Figure 8 focuses on training an algorithm utilizing 
multispectral satellite photos containing information on 
crop kinds and their respective areas. Only these photos 
with crop type and area encoding were used to train the 

Fig. 7.  Crop production statistics

An Intelligent Decision Support System for Crop Yield Prediction 

 7  
 

• Columns represent expected classes; 
• whereas rows represent actual classes  

3.1.1  Confusion Matrix 
A confusion matrix is a 2x2 matrix structure that is useful 
for visualizing an algorithm's performance. The true 
positive rate (TPR) is defined as the entire number of 
positives that have been given that classification. 

TPR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                               (1) 

Where TP denotes the true positive and FN shows false 
negative.   
The true negative rate is the proportion of conditions that 
qualify as negative. 

TNR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹                                (2) 

The false positive rate is the proportion of instances that 
are misclassified or anticipated as being negative. 

FPR = 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹                                 (3) 

The false negative rate is the proportion of positive cases 
reported or anticipated as negative. 

FNR = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇                                 (4) 

3.1.2  Accuracy 
It measures the proportion of accurate predictions to all 
calculations. 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝐹𝐹             (5) 

3.1.3  Precision  
It is the ratio between TPs combined with a number of TPs 
and FPs. 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇                        (6) 

3.1.4  Recall 
It is defined as the product of the ratio of TPs and the sum 
of the TP and FN numbers. 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                             (7) 

3.1.5  F1-score 
Recall and accuracy are averaged mathematically, and it 
takes into consideration both false positive and false 
negative (FN) outcomes. 

F1 − score = 2 ∗ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)
(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)                    (8) 

 

Fig. 7.  Crop production statistics 

Figure 7 depicts the data visually, revealing a substantial 
variance in agricultural yields across different locations, 
with a focus on autumn-sown winter crops. What sticks 
out is that winter crops have a substantially higher amount 
of variance from year to year, indicating that their yields 
fluctuate more pronouncedly than other crop types. 

 

Fig. 8. Training and validation loss for the multi-temporal ANN 
model 

Figure 8 focuses on training an algorithm utilizing 
multispectral satellite photos containing information on 
crop kinds and their respective areas. Only these photos 
with crop type and area encoding were used to train the 

An Intelligent Decision Support System for Crop Yield Prediction 

 7  
 

• Columns represent expected classes; 
• whereas rows represent actual classes  

3.1.1  Confusion Matrix 
A confusion matrix is a 2x2 matrix structure that is useful 
for visualizing an algorithm's performance. The true 
positive rate (TPR) is defined as the entire number of 
positives that have been given that classification. 

TPR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                               (1) 

Where TP denotes the true positive and FN shows false 
negative.   
The true negative rate is the proportion of conditions that 
qualify as negative. 

TNR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹                                (2) 

The false positive rate is the proportion of instances that 
are misclassified or anticipated as being negative. 

FPR = 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹                                 (3) 

The false negative rate is the proportion of positive cases 
reported or anticipated as negative. 

FNR = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇                                 (4) 

3.1.2  Accuracy 
It measures the proportion of accurate predictions to all 
calculations. 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝐹𝐹             (5) 

3.1.3  Precision  
It is the ratio between TPs combined with a number of TPs 
and FPs. 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇                        (6) 

3.1.4  Recall 
It is defined as the product of the ratio of TPs and the sum 
of the TP and FN numbers. 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                             (7) 

3.1.5  F1-score 
Recall and accuracy are averaged mathematically, and it 
takes into consideration both false positive and false 
negative (FN) outcomes. 

F1 − score = 2 ∗ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)
(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)                    (8) 

 

Fig. 7.  Crop production statistics 

Figure 7 depicts the data visually, revealing a substantial 
variance in agricultural yields across different locations, 
with a focus on autumn-sown winter crops. What sticks 
out is that winter crops have a substantially higher amount 
of variance from year to year, indicating that their yields 
fluctuate more pronouncedly than other crop types. 

 

Fig. 8. Training and validation loss for the multi-temporal ANN 
model 

Figure 8 focuses on training an algorithm utilizing 
multispectral satellite photos containing information on 
crop kinds and their respective areas. Only these photos 
with crop type and area encoding were used to train the 

An Intelligent Decision Support System for Crop Yield Prediction 

 7  
 

• Columns represent expected classes; 
• whereas rows represent actual classes  

3.1.1  Confusion Matrix 
A confusion matrix is a 2x2 matrix structure that is useful 
for visualizing an algorithm's performance. The true 
positive rate (TPR) is defined as the entire number of 
positives that have been given that classification. 

TPR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                               (1) 

Where TP denotes the true positive and FN shows false 
negative.   
The true negative rate is the proportion of conditions that 
qualify as negative. 

TNR = 𝑇𝑇𝑇𝑇
𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹                                (2) 

The false positive rate is the proportion of instances that 
are misclassified or anticipated as being negative. 

FPR = 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹                                 (3) 

The false negative rate is the proportion of positive cases 
reported or anticipated as negative. 

FNR = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇                                 (4) 

3.1.2  Accuracy 
It measures the proportion of accurate predictions to all 
calculations. 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝐹𝐹             (5) 

3.1.3  Precision  
It is the ratio between TPs combined with a number of TPs 
and FPs. 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇                        (6) 

3.1.4  Recall 
It is defined as the product of the ratio of TPs and the sum 
of the TP and FN numbers. 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                             (7) 

3.1.5  F1-score 
Recall and accuracy are averaged mathematically, and it 
takes into consideration both false positive and false 
negative (FN) outcomes. 

F1 − score = 2 ∗ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)
(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)                    (8) 

 

Fig. 7.  Crop production statistics 

Figure 7 depicts the data visually, revealing a substantial 
variance in agricultural yields across different locations, 
with a focus on autumn-sown winter crops. What sticks 
out is that winter crops have a substantially higher amount 
of variance from year to year, indicating that their yields 
fluctuate more pronouncedly than other crop types. 

 

Fig. 8. Training and validation loss for the multi-temporal ANN 
model 

Figure 8 focuses on training an algorithm utilizing 
multispectral satellite photos containing information on 
crop kinds and their respective areas. Only these photos 
with crop type and area encoding were used to train the 

42 Bibi et al



information on crop kinds and their respective 
areas. Only these photos with crop type and area 
encoding were used to train the algorithm in this 
scenario. The training and validation losses of the 
multi-temporal Artificial Neural Network (ANN) 
model are evaluated. The best results from the 
single-image ANN trials served as the foundation 
for the training process, and subsequent photos with 
a pixel mask inserted as a separate channel were 
employed in this context. To test how well these 
models work, both statistics matrices and confusion 
matrices are used in this evaluation.

It is important to mention how crucial good data 
preparation is. The dataset used in present studies 
was originally found hampered by high feature 
intercorrelation, but it eventually proved to be 
fairly robust and representative. The neural network 
outperformed the random forest by a little margin. 
The accuracy scores for each crop variety were 
usually comparable, all of which were greater than 
99 %. The “broadleaf” class was an outlier, having 
much lower accuracy values. This is to be expected 
that this class (with the fewest observations) is 
the most erroneously represented. Deep learning 
proved clearly superior at forecasting such harvests 
when focusing on the “broadleaf” class, indicating 
that it might be a more effective option in dealing 
with misrepresented classes in general.

Fig. 9. Training and validation loss for the Illustration of stochastic epoch sampling (a) Simulated normal epochs,  
(b) With stochastic epoch sampling, and (c) Pre-trained ANN and RF.

According to Figures 9 and 10, the lowest 
loss was achieved at 77.53 kg/1000m2. This figure 
demonstrates a 5.3% improvement over individual 
multi-temporal ANN findings and a 6.6% 
improvement over the crop classes Random Forest 
(RF) model. These graphs are created by mapping 
the distribution patterns of specific features and 
investigating their correlations with the dependent 
variable, given as “score.” This study is made 
possible by using a custom function named “training 
example.” This function, in particular, allows us to 
acquire insight into how these attributes are related 
with the “score.” This analysis is performed on the 
seven attributes that have the strongest relationships 
with the dependent variable “score” to provide an 
initial comprehension of the data’s behavior.

Figures 11 and 12 provide a comparison that 
focuses on evaluating the performance of two 
distinct models in predicting the same item. This 
evaluation entails adding farm-scale yields into 
predictions and then comparing these predictions 
to anticipated and actual crop production at the 
commune scale. The findings of this analysis 
confirm the presence of biases in numerous factors. 
However, it is vital to highlight that no changes 
will be made in advance to address these biases. 
The analysis is carried out with the assumption that 
these biases exist and will be considered throughout 

Bibi et al 

algorithm in this scenario. The training and validation 
losses of the multi-temporal Artificial Neural Network 
(ANN) model are evaluated. The best results from the 
single-image ANN trials served as the foundation for the 
training process, and subsequent photos with a pixel mask 
inserted as a separate channel were employed in this 
context. To test how well these models work, both 
statistics matrices and confusion matrices are used in this 
evaluation. 

It is important to mention how crucial good data 
preparation is. The dataset used in present studies was 
originally found hampered by high feature 

intercorrelation, but it eventually proved to be fairly robust 
and representative. The neural network outperformed the 
random forest by a little margin. The accuracy scores for 
each crop variety were usually comparable, all of which 
were greater than 99 %. The "broadleaf" class was an 
outlier, having much lower accuracy values. This is to be 
expected that this class (with the fewest observations) is 
the most erroneously represented. Deep learning proved 
clearly superior at forecasting such harvests when 
focusing on the "broadleaf" class, indicating that it might 
be a more effective option in dealing with misrepresented 
classes in general. 

Fig. 9. Training and validation loss for the Illustration of stochastic epoch sampling (a) Simulated normal epochs, (b) With 
stochastic epoch sampling, and (c) Pre-trained ANN and RF.
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the review. It’s worth noting that the sample size for 
each set of data points is 64 for each batch of data 
used. In every epoch, model has to interpretation to 
more than 5,000 diverse bunches. Few epochs may 
suffice to lead to top accuracy, minimum loss levels 
already in the start of the model training. Depending 
on how well trained classifiers performed overall, 
this choice might be reconsidered later. To compare 
deep neural networks and traditional random forests 
machine learning approaches, two separate sets of 
tensors will be produced and used in each learning 
experiment. After highly correlated characteristics 
were eliminated, this dataset now comprises 
325,834 observations, which include one column 
for labels (integers ranging from 1 to 7); 102 
columns for features. Following that, the unique 
features tensor and the two label tensors are divided 
into training and testing sets. The training set will 

have 80% of the observations, with the testing set 
holding the remaining 20%.
 

Table 2 represents that the grouping of optical 
and radar-based information produces extremely 
precise distant cropland mapping. It is important 
to note, however, that selecting the appropriate 
number of trees and depth parameters may have 
a significant influence on the results. Experiments 
with fewer trees and lower depth topologies 
revealed some deterioration, as predicted/expected. 
When utilized correctly, random forests are good 
predictors, with performance equivalent to more 
sophisticated, complicated algorithms. From the 
simulation results, it is crystal clear that NN-based 
model outperformed the RF-model to some extent.

Figure 13 and 14 show that the performance of 
the random forest classification will be preserved, 
with original labels (integers ranging from 1 to 
7) being accommodated into one unidimensional 
array. The label column for neural network 
classification will be encoded one-hot using the 
“Pandas’ get_dummies method” (/kaggle/input/
cropland-mapping). As a result, labels will now be 
made up of seven binary parts, each of which refers 
to a different crop class, allowing for final class 
identification based on the array member with the 
greatest anticipated value.

Table 2.  Comparison results
RF Percentage ANN Percentage
Accuracy 99.64 Accuracy 99.82

Precision 99.29 Precision 99.79

Recall 99.29 Recall 99.38

F-Score 99.29 F-Score 99.58
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findings and a 6.6% improvement over the crop classes 
Random Forest (RF) model. These graphs are created by 
mapping the distribution patterns of specific features and 
investigating their correlations with the dependent 
variable, given as "score." This study is made possible by 
using a custom function named "training example." This 
function, in particular, allows us to acquire insight into 
how these attributes are related with the "score." This 
analysis is performed on the seven attributes that have the 
strongest relationships with the dependent variable "score" 
to provide an initial comprehension of the data's behavior. 
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Figures 11 and 12 provide a comparison that focuses 
on evaluating the performance of two distinct models in 
predicting the same item. This evaluation entails adding 
farm-scale yields into predictions and then comparing 
these predictions to anticipated and actual crop production 
at the commune scale. The findings of this analysis 
confirm the presence of biases in numerous factors. 
However, it is vital to highlight that no changes will be 
made in advance to address these biases. The analysis is 
carried out with the assumption that these biases exist and 
will be considered throughout the review. It's worth noting 
that the sample size for each set of data points is 64 for 
each batch of data used. In every epoch, model has to 
interpretation to more than 5,000 diverse bunches. Few 
epochs may suffice to lead to top accuracy, minimum loss 
levels already in the start of the model training. Depending 
on how well trained classifiers performed overall, this 
choice might be reconsidered later. To compare deep 
neural networks and traditional random forests machine 
learning approaches, two separate sets of tensors will be 
produced and used in each learning experiment. After 
highly correlated characteristics were eliminated, this 
dataset now comprises 325,834 observations, which 
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7); 102 columns for features. Following that, the unique 
features tensor and the two label tensors are divided into 
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the observations, with the testing set holding the remaining 
20%. 

Table 2.  Comparison results 
RF Percentage ANN Percentage 

Accuracy 99.64 Accuracy 99.82 
Precision 99.29 Precision 99.79 
Recall 99.29 Recall 99.38 
F-Score 99.29 F-Score 99.58 

  
Table 2 represents that the grouping of optical and radar-
based information produces extremely precise distant 
cropland mapping. It is important to note, however, that 
selecting the appropriate number of trees and depth 
parameters may have a significant influence on the results. 
Experiments with fewer trees and lower depth topologies 
revealed some deterioration, as predicted/expected. When 
utilized correctly, random forests are good predictors, with 
performance equivalent to more sophisticated, 
complicated algorithms. From the simulation results, it is 
crystal clear that NN-based model outperformed the RF-
model to some extent. 

 

 
Fig. 14. The performance indicators of RF and ANN for                
cropland mapping 

Figure 13 and 14 show that the performance of the 
random forest classification will be preserved, with 
original labels (integers ranging from 1 to 7) being 
accommodated into one unidimensional array. The label 
column for neural network classification will be encoded 
one-hot using the “Pandas' get_dummies method” 
(/kaggle/input/cropland-mapping). As a result, labels will 
now be made up of seven binary parts, each of which refers 
to a different crop class, allowing for final class 
identification based on the array member with the greatest 
anticipated value.

Fig. 13. RF and ANN results 
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We have made comparisons with existing 
related studies to show that our results outperform in 
terms of accuracy using the different technique and 
the same type eof data. The empiricla evaluation 
of the proposed model with the existing studies, 
as depicted in Table 3, showed that the suggested 
model have achived more accuracy then the model 
in comparison. The suggested approach achieved 
the accuracy of 99.82% and super-passed all the 
other approaches.

4. CONCLUSIONS 

AI is a technology that is emerging in the field 
of agriculture. It can give farmers real-time or 
overtime insights into their field. This allows 
farmers to identify areas that require irrigation, 
fertilization, or pesticide treatment. AI businesses 
are creating agricultural robots that can effortlessly 
do a variety of duties. These robots are programmed 
to harvest crops and kill plants more quickly than 
people. These can predict crop yield monitoring 
using precision farming technique that use data 
sensors, connected devices, remote control devices, 
and other technologies to allow farmers to control 
their fields. It is concluded from the present studies 

that the RF and ANN models based decision 
support system can be potentially used to generate 
cropland mapping for crop yield prediction. It is 
also revealed that the ANN model outperformed in 
crop yield prediction as compared to other models. 
Future research is required to look into hybrid 
machine learning algorithms like random forest, 
support vector machine, multiple regressor, logistic 
regressor, and deep learning algorithms like Deep 
convolution neural network (DCNN) and LSTM 
to see whether they can give rather quicker and 
more accurate solutions in the domain of precise 
agriculture. It is suggested that the DCNN and LSTM 
models be used in pre-foliar disease prediction to 
estimate crop yield, taking into account the latest 
large-scale data from several nations to predict fruit 
quality, etc. Farmers and agricultural experts may 
test the results.
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