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Abstract: The Urban Heat Island (UHI) is a micro-climatic phenomenon that influences the urban areas by elevating its 
temperature. UHI not only causes the thermal discomfort but also exert serious health issues along with aggravation of 
urban microclimate. Although a lot of research has been done on this phenomenon but UHI effect on micro scale is still 
less explored. This paper attempts to make a contribution in UHI studies of micro-climate.  It consists of examination 
of UHI impact on microclimate of Aligarh city areas using mobile traverse method. This study determined the presence 
and extent of UHI’s microclimate variation within urban communities of different environmental layout and functional 
uses. The UHI effect started to appear from early afternoon and continue to rise with maximum UHI intensity recorded 
at early night. The highest recorded UHI intensity was 3.1 °C (at 21:00 hrs.), and the lowest was 0.6 °C (at 09:00 hrs.). 
A comparison of two districts of the same city located at a distance of 3 km and differing in population density, the 
number of buildings and landscaping showed that in the L1 area with more dense population and low landscaping, the 
temperature was consistently higher during the daily period; also the L1 region had less humidity, which combined 
with the already high temperature, makes it difficult to breathe and control the microclimate. These findings can 
be used for consideration for the future sustainable development of the affected area in regard of thermal comfort, 
environmental health and urban planning.

Keywords: Urban Heat Island, Urbanization, Temperature Increase, Mobile Traverse Method, Thermal Comfort, 
Environmental Layout, Urban Planning.

1. INTRODUCTION 

Rapid urban grain change has an impact on a city’s 
local energy balance and, consequently, its thermal 
and climatic characteristics [1, 2]. It is predicted 
that with the growth of cities, the negative impacts 
on the environment will increase [3]. Urban Heat 
Island effect is one of the environmental issues that 
are being caused by such scenarios [4]. The first 
account of the urban heat phenomenon dates back 
to 1818 [5] therefore numerous additional research 
were carried out in numerous places worldwide to 

better understand the phenomenon [6, 7]. Each city 
is found to have a unique microclimate that differs 
from the regional climate pattern and is impacted by 
the urban form, weather, topography, water features, 
and greenery [8, 9]. Urban heat island impact is 
defined by the difference between the temperature 
of an urban region and that of its surroundings. This 
difference is often referred to as urban heat island 
intensity (UHII) or strength [10]. The well-known 
Intergovernmental Panel on Climate Change 
[11] report acknowledges the occurrence of UHI 
brought on by urbanization, loss of plant cover, and 



an increase in anthropogenic heat and discusses the 
essential mitigation measures. The sixth assessment 
report [12] acknowledged the significant changes 
in the climate caused by humans’ excessive 
interventions in their environment.

UHI phenomena generally comes in two flavors. 
The severity of surface urban heat island (SUHI) 
varies with the strength of the sun, the weather, 
and the amount of ground cover. It is often highest 
during the daytime and can reach temperatures of 10 
to 15 °C [13]. Usually, there is a close relationship 
between the temperatures of near surface air and the 
ground surface [14]. Warmer air in urban areas than 
in their surroundings characterizes atmospheric 
municipal heat island (AUHI), which is divided 
into two categories based on height as stated: (i) 
Urban heat island canopy. The air expanse that is 
below the buildings and trees tops, but above the 
ground is called the canopy layer. Due to the fact 
that the majority of activities only take place in the 
canopy layer, the UHI in this layer immediately 
influences person functionality [9, 15, 16]. (ii) 
Heat island in the urban boundary layer. This UHI 
spreads from rooftops and treetops all the way 
down to the point where urban environments have 
no more influence to the atmospheric air. Typically, 
this vertical spacing from the zone’s surface is 
less than 1.5 km (or one mile) [7] (Figure 1). 

Cities have been known to have the UHI effect, 
preferably in areas that are more populated or 
densely built up than the surrounding countryside 
[17]. Solar radiation exposure is influenced by the 
buildings location orientation and the occupied 
volume of these buildings, and the aspect ratio of 

the space between them [18]. The heat produced by 
human activity and solar radiation congregates as 
long-wave radiation, which diminishes as a result 
of the intricate heat transfer betwixt buildings and is 
trapped betwixt them [19], raising the temperature 
of the region. Buildings that are close together not 
only trap heat but also hinder airflow and ventilation, 
which furthers the phenomenon’s intensification 
[20]. Many studies have demonstrated that air 
temperature in cities is influenced by surface 
temperature of municipal superficies materials [14, 
21, 22]. The sun frequently heats urban surfaces 
like pavements and roofs between 27 and 50°C, 
making them hotter than the air [10, 23]. This heat 
is progressively released into the environment after 
being absorbed during the day, which contributes 
to the UHI effect [24]. All of this occurs because 
materials’ thermal and radiative qualities affect how 
heat is exchanged in urban environments [9, 18]. 
Dark-colored materials have a low albedo while 
white, bright, and reflecting materials have a high 
albedo [25]. 80 % of the sunlight is absorbed by 
the pavement and roofs that cover 60 % of urban 
areas [9]. By evapotranspiration, CO2 absorption, 
and giving shade to surfaces exposed to the sun, 
trees and plants are known to keep the environment 
cool [10]. Greenery’s high albedo contributes to its 
ability to reflect heat back onto itself. The efficiency 
of this natural cooling drastically decreases with 
the loss of green space, causing municipal warming 
[13, 18, 26]. The UHI impact is more pronounced 
in clear, calm conditions than in cloudy, windy 
conditions [27]. When the temperature rises, the 
relative humidity decreases, resulting in drier air, 
but when the temperature drops, the air gets wet, 
resulting in a rise in relative humidity [28].

Fig. 1.  Two-layer representation of atmospheric air thermal alteration in an 
municipal setting

Source: Redrawn from (Oke, 1976)
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In addition to deteriorating the environment, 
UHI also affects air quality, human comfort, 
and the demand for cooling energy, which 
exacerbates problems like global warming. If the 
air temperature rises even by 1 °C, then in cities 
electricity consumption increases on average by 
2 to 4 %, according to Akbari et al. [29], which 
creates the need to search for alternative energy 
sources [30, 31, 32]. The study also showed that, 
in order to make up for the increase between 0.5 
and 3.0 °C in municipal temperature, 5–10 % of the 
power used in cities is used to cool buildings. When 
the temperature rises, so do the needs for water for 
cooling, watering plants, and human consumption 
[33, 34], as well as for power. Those with low 
thermal tolerance are susceptible to significant 
illnesses such cardiovascular stress, cardio 
respiratory diseases, heat cramps, blood clots, and, 
in some circumstances, death due to the extreme heat 
[35, 36]. With each degree of temperature increase, 
those who live in such unfavourable conditions 
have less sleep, which can amount to up to two 
weeks of insufficient sleep annually and directly 
contribute to an increase in health morbidities [37, 
38]. Thus, the urban heat island effect has been 
explored to varying degrees in many scientific 
papers demonstrating the impact of land use/land 
cover (LU/LC) and green cover on the air quality 
index [39]; it is shown that the lack of green spaces 
is the main problem, and this problem will only be 
exacerbated due to overpopulation associated with 
the rapid growth of cities [40]; analyzed the law 
of spatio-temporal evolution and determined the 
differences between urban heat islands in winter 
and summer [41]; impact of urban heat islands 
on heat-related cardiovascular morbidity [42]; 
explored nighttime urban heat island intensities 
during Covid-19 lockdown and ecological habitat 
[43, 44]; investigated the difference between urban 
and rural heat [45]. However, the authors did not 
reveal studies of the comparative nature of two 
districts of the same city located close to each other, 
but having different characteristics, such as social 
activity, population density in the area, the degree 
of development and landscaping of the territory, 
etc.

The present study is conducted to investigate 
and assess the effects of UHI on carefully chosen 
places, namely: Center Point Chauraha and Staff 

Club Chauraha, based on local climates for two 
districts of the city of Aligarh, located close to 
each other, but have different characteristics. The 
city of Aligarh is part of the northern Indian state 
of Uttar Pradesh, around 132 km southeast of New 
Delhi, and located between the Ganga and Yamuna 
rivers, in the middle of the doab. Furthermore, to 
investigate the impact of UHI, this study solely 
evaluates the relative humidity (%) and ambient 
dry bulb air temperature in the canopy layer at two 
specifically chosen locations in Aligarh.

2. MATERIALS AND METHODS

For the purpose of gathering data, two places 
in Aligarh city were carefully chosen. The 
microclimatic environmental conditions at these 
two areas are in contrast to one another. Center 
Point Chauraha is the first location, designated as 
L1, while Staff Club Chauraha, on the campus of 
Aligarh Muslim University, is the second location, 
designated as L2. The two areas are roughly 3 
kilometers apart. Since L1 is a Central Business 
District (CBD), it receives the majority of the city’s 
foot traffic. The area, which is characterized by 
both commercial and residential land use, is located 
in the heart of Aligarh City’s high density sector. 
Due to the paucity of urban vegetation relative to 
the built-up region, the urban grain of the area is 
poorly preserved. On the spine route of the A.M.U. 
campus, L2 sees a fair volume of traffic flow. 
Compared to other locations, the area around has 
a high level of vegetation and greenery. In close 
proximity to the place is a public park.

The information is gathered five times a day, 
from 9:00 to 12:00, 15:00 to 18:00, and 21:00 to 
21:00, for a period of 23 days, from April 22 to 
May 15, 2022. Due to the unfavorable weather, one 
day from the survey period – May 4, 2022 – was 
excluded. To capture and comprehend the urban 
configuration of the research regions, radial buffer 
zones of 500m were taken into consideration at both 
locations. To prevent changes in the microclimate, 
each survey was finished within 30 minutes. Based 
on the past research procedures, all the precautions 
and techniques were used [10, 16, 18, 46]. The 
UHI intensity across the study period, which varied 
from morning to night and affected micro-climatic 
factors depending on distinct urban settings, was 
then depicted in tables and graphs and compared 
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using the temperature and humidity measurements 
from the two locations.

In order to gain information about the causes of 
thermal discomfort and evidence of microclimatic 
variation, data are collected utilizing mobile traverse 
method-portable equipment. During measurements, 
the apparatus was fixed to a tripod stand that was 
1.3 meters above the ground. The sensor was 
effectively protected from direct sunlight while 
still ensuring airflow by having a hard cardboard 
covering it. Before taking readings, the equipment 
was left in place for a sufficient amount of time to 
come into balance with its environment.

3. RESULTS AND DISCUSSION

According to analysis of field measurement data, 
L1 experienced a greater temperature than L2, 
as indicated in Table 1. The mean temperature 
difference ranged from 0.87 °C in the morning to 
2.23 °C at night (Table 1). As a result, the L1 region 
exhibits urban warmth, where heat stored during the 
day is later released into the atmosphere, delaying 
the cooling of urban space. Given that most past 
studies have used the same pattern, this UHI pattern 
justifies the term «urban heat island» [10,  18, 47].
By daybreak, the considerable UHI effect began 

to show evident, and urban buildings continued 
to warm up until late in the day. After that, the 
temperature lowers significantly while the UHII 
rises, peaking at night. The highest recorded UHI 
intensity was 3.1 °C when it was seen at 21:00 
hours, and the lowest was 0.6 °C when it was 
seen at 09:00 hrs (Table 2). This is taking place as 
a result of Location 1’s UHI phenomenon, which 
causes heat to be absorbed during the day and then 
slowly released after nightfall. The occurrence at 
L1 may have existed due to human heat, exposed 
pavement areas, increased traffic volume, decreased 
vegetation, and strong traffic influx. Several causes 
of UHI production have been verified in earlier 
research [10].

This study indicates that microclimatic 
variables can have a big impact on temperature and 
humidity over short distances, as the 3 km used in 
this study. L1’s temperature was consistently higher 
than L2’s (Table 1, Table 2). This is taking place 
as a result of L1, which is a high-density area with 
artificial surfaces and little vegetation (Figure 2). 
Due to large asphalt roadways, exposed dense mass, 
and few pockets of shade, the sun-exposed surfaces 
are more prevalent in the L1 area. As a result, L1 
urban settings absorb more heat throughout the 
day and have less long wave cooling afterwards, 

Table 1.  The difference between the L1 and L2 mean temperatures (°C) at specific three hours’ time intervals 
between 09:00 to 21:00 hrs. during the survey period of 23 days

Mean Temperature Difference (oC)
Time Mean Humidity Center Point 

Chauraha (L1)
Mean Humidity Staffclub Chauraha 

(L2)
Mean Difference

09:00 36.63 35.76 0.87
12:00 41.80 40.43 1.37
15:00 42.78 41.13 1.65
18:00 37.64 35.80 1.83
21:00 34.00 31.77 2.23

Average = 1.59

Table 2.  Maximum and minimum UHI Intensity (UHII) at selected three hours’ time interval between 09:00 to 
21:00 hrs. during the survey period of 23 days at L1 and L2

Analysis of UHI Intensity (UHII)
Time Maximum UHI Minimum UHI
09:00 1.4 0.6
12:00 1.8 1.1
15:00 2 1.2
18:00 2.4 1.4
21:00 3.1 1.6
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21:00 3.1 1.6 

 

 

 Fig 2.  Picture depicting the built-up and greenery within the considered 500 meters of the research area 
Fig 2.  Picture depicting the built-up and greenery within the considered 500 meters of the 
research area
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which increases the intensity of UHI. Because it 
has been proven that asphalt absorbs heat during 
the day and surface temperatures can reach 67 
°C [48] and releases heat at night. However, by 
adding various color pigments, the temperature of 
the asphalt pavement can be reduced by 5.4 °C per 
day [49]. As a result of reduced density and high 
green cover, L2 temperature increased less than 
L1 temperature throughout the diurnal period and 
decreased significantly after sunset (Figure 2). The 
building density of buildings and the used facing 
materials significantly increase the air temperature 
of the urban environment [50, 51]. In other 
words, depending on the spatial composition and 
urban features, the urban heat island effect and its 
amplitude might change at lower scales [15, 52].

As shown in Table 3, the mean relative 
humidity was seen to be rising starting in the 
evening and was thought to be the case until early 
in the morning. It was recorded at its lowest point 
in the late afternoon, typically about 15:30 when 
the temperature was at its highest. This explains 
why temperature and relative humidity have an 
inversely proportional relationship, meaning that 
as temperature rises, relative humidity decreases, 
making the air drier [28]. Because L1 had less 
humidity than L2 (Table 3), paired with an already 
high temperature, L1’s micro-climate is difficult for 
urban residents to control. This may be taking place 
because there are more urban materials at L1 than 
L2, which are less permeable to water.

4. CONCLUSION 

The empirical evidence from this study supports 
the assertion that UHI impact is common in densely 
populated metropolitan regions. In contrast to L1, 

which has a high concentration of greenery and is 
less densely populated, L2 has a lower temperature 
rise and higher cooling than L1. Furthermore, this 
study proves that diurnal temperature variations 
in built environments occur over relatively small 
distances and are influenced by urban spatial 
design. The findings of this study indicate that 
UHII was found to be more severe after sunset. 
Understanding the relationship between the specified 
microclimatic measures, such as ambient dry bulb 
temperature and relative humidity fluctuations, 
and microclimatic conditions was made easier by 
the spatial study of urban fabric at selected places. 
L1 had lower humidity and a higher temperature 
pattern than L2 because of the location’s weak 
green cover and water-impermeable surfaces (Table 
1, Table 3). Similar findings have been drawn by 
other researchers who have shown how many 
environmental factors in urban environments can 
cause 2 °C microclimatic changes that may indicate 
serious problems with UHI; who substantiated 
that temperature fluctuations even by 0.69 °C can 
be considered significant. According to this study, 
urban dwellers at L1 can experience significant 
unfavourable microclimatic conditions due to 
measured mean temperature differences of 1.37 °C 
at noon and 1.65 °C at 15:00 hours.

A deeper understanding of microclimatic 
UHI can be produced by such study endeavors. 
The important component of healthy and 
energetic public spaces is a microclimate that is 
thermally comfortable. Good understanding of 
daily fluctuations in urban temperature can aid 
authorities and planners in understanding for better 
existing and future development. This can be done 
by transforming existing metropolitan areas in a 
clever and small-scale manner.

Table 3.  Mean relative humidity (%) at L1 and L2, as well as the difference between them at a certain moment 
throughout the survey period of 23 days

Mean Humidity Data (%)

Time Mean Humidity Center Point 
Chauraha (L1)

Mean Humidity Staffclub Chaura-
ha (L2)

Mean Difference

09:00 33.01 34.96 1.95

12:00 25.73 27.21 1.49

15:00 23.58 26.43 2.85

18:00 29.80 32.61 2.82

21:00 36.08 40.70 4.63
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5. RECOMMENDATIONS

5.1  Altering Roofing Materials – Cool Roofs

Create the idea of cool roofing by replacing 
heated roof materials with cool materials (high 
albedo value). According to a National Centre 
for Atmospheric Research (NCAR) study from 
2010, white painted roofs can minimize the UHI 
effect by 33 %, and if cool roofs can be achieved 
by changing colour, the cost of the roof is not 
increased. Engineers at Prude University created 
a “ultra white” paint in 2021 that can reflect 98.1 
% of sunlight, aid in energy conservation, and 
counteract climate change. This paint can save 10 
K.W. of cooling power when applied to a 93 sq.m. 
roof area.

5.2   Bringing Down Anthropogenic Heat 

Human activity produces anthropogenic heat, with 
sources including illumination, building cooling 
and heating systems, and moving automobiles [53], 
which creates the need to search for alternative 
energy sources [30, 31] in the conditions of the 
energy crisis. The temperature in metropolitan 
areas may rise by 2 to 3 °C as a result of this 
heat [54]. Thus, we can observe a vicious circle, 
since the earlier manuscript emphasized that 
the consequences of a one degree increase in air 
temperature is an increase in energy consumption 
[29], in addition, building-integrated photovoltaic 
system panels can potentially increase UHI 
intensity [30]. Encouraging public transit, limiting 
the use of private motor vehicles, and switching 
to cleaner fuels can all help reduce the impact of 
UHI. It may be more energy efficient to switch 
to an efficient cooling/heating system like VRF 
(Variant Refrigerant Flow). They operate quietly, 
consistently give comfort, take up less room, and 
offer superior control [55].

5.3   Increasing the Amount of Greenery

Increasing vegetation cover is one of the most 
effective ways to reduce the effects of heat on 
the urban environment [56, 57]. Shade, thermal 
insulation, and noise and air pollution control are all 
provided by vegetation [58]. Vegetation is observed 
to reduce the near-surface air temperature by 1-4.7 
%, especially when UHII is significant [59, 60]. 

Another crucial factor to take into account is the 
selective planting of trees. For cooling, shade, and 
evapotranspiration, their healthy growth and type 
of tree must be taken into consideration. Plantations 
might benefit from shade trees. They have a large 
canopy and can shade homes and pedestrians while 
reducing the amount of direct sunlight that hits 
urban surfaces, keeping the microclimate cool [61]. 
A mature tree may evapotranspire up to 450 liters of 
water per day, which is equal to 20 hours of use of 
a five-star air conditioner [62]. In their simulation 
study conducted in Canadian cities, Akbari and 
Taha [61] found that planting 30 % more trees 
might result in 10 % energy savings from heating 
and air conditioning. According to Theeuwes et al. 
[63], temperature typically drops by 0.6 K for every 
10 % increase in vegetation.
5.4   More Porous and Permeable Surfaces
Water can percolate through pavement or plant 
and reach a substrate layer through permeable 
surfaces, which encourages deep infiltration [64]. 
These characteristics should reduce temperature to 
a respectable degree [17]. Turf pavers can be used 
in place of the typical tiles found on sidewalks, 
outdoor areas, and parking lots. Further to the 
water permeability quality, they contribute to the 
“feel good” quality of green space. Porous concrete 
paving stones, which not only allow water to get 
absorbed but also aid trees in consuming nearby 
water, can be utilized in places where turf tiles 
are impractical. For pedestrian walkways, porous 
concrete is advised since it requires less washing 
for cleaning and maintenance [62].
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