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Abstract: The remarkable characteristics of graphene render it well-suited for a diverse range of applications, 
particularly in the realm of electronic devices. After the synthesis process, the two-dimensional material known as 
graphene is then transferred onto a substrate. Silicon (Si) is considered a suitable choice for this purpose. Therefore, it 
has become essential to investigate the stability of graphene on silicon surfaces. This study utilized reactive molecular 
dynamics simulations to investigate the thermal stability of graphene on a Si (111) substrate across a temperature 
range of 300 to 1500 K. The results demonstrate the exceptional stability of graphene on this particular surface. This 
phenomenon can be explained by the restricted intermolecular interactions between the carbon atoms in graphene 
and the silicon atoms on the substrate surface. The study findings indicate that graphene exhibits a dome-shaped 
configuration on the Si (111) surface. In this configuration, only the carbon atoms located at the periphery of the 
graphene structure interact with the silicon atoms present on the underlying substrate.

Keywords: Graphene, Thermal Stability, Si (111) Surface, Dome-shaped Configuration, Reactive Molecular Dynamics 
Simulations. 

1. INTRODUCTION

The research community has shown significant 
interest in the two-dimensional material known as 
graphene [1–5]. Graphene is widely recognized for 
its exceptional properties, including high electronic 
conductivity [6], excellent optical transmission 
[7], and notable mechanical flexibility [8]. These 
characteristics position graphene as a promising 
material for potential applications in electronic 
devices, such as capacitors [9], transistors [10], 
and photodetectors [11], in the future. The catalytic 
ability of graphene in the combustion reaction 
of 1,3,5-trinitroperhydro-1,3,5-triazine has been 
investigated by Song et al. [12]. According to their 
findings, it has been reported that wrinkled graphene 
exhibits a higher level of reactivity compared to its 
flat counterpart [12]. Furthermore, graphene has 
been employed as a nano-scale composite material 
in the field of water filtration [13]. The researchers 
have successfully demonstrated a notable 

distinction between the water samples before and 
after filtration, suggesting that the filtration process 
is functioning effectively [13].

Graphene can be synthesized through various 
methods, one of which is chemical vapor deposition 
(CVD), a widely recognized technique known for its 
high efficiency and effectiveness. In the process of 
CVD, graphene is synthesized on metal substrates, 
including nickel (Ni), copper (Cu), and platinum 
(Pt). Following this, the graphene is then transferred 
onto alternative substrates, such as silicon (Si) and 
silicon dioxide (SiO2) surfaces [13, 14]. In 2009, 
a substrate made of polycrystalline Cu foil was 
utilized for the initial production of a large-area 
single-layered graphene film. This achievement has 
served as a catalyst for further investigation into 
the synthesis of graphene using metal foils and thin 
films [15]. In addition, the production of graphene 
can be achieved through deposition of metal films, 
offering potential advantages. The utilization of 



various metallic substrates for growth purposes 
can result in unique growth patterns, including 
rare metals beyond Cu and Ni, as well as binary or 
ternary alloys that are not easily available in foil 
form. The regulation of carbon content and the ratio 
of different metals in an alloy can be efficiently 
achieved through the control of metal film 
thickness. The aforementioned control mechanism 
has a direct impact on the deposition process of 
graphene and subsequently influences the quantity 
of layers that are formed. Multiple studies have 
documented that the process of deposition and 
annealing on particular single-crystal substrates can 
result in the formation of single-crystal metal films 
that display a preferred orientation. The carbon 
atoms located on or within the thin metal film 
have the ability to diffuse through it and ultimately 
reach the interface between the film and substrate. 
This phenomenon enables the direct growth of 
graphene on the substrate, thereby eliminating the 
requirement for growth through transfer methods 
[16]. Furthermore, Tai et al. [17] have achieved 
successful synthesis of graphene directly on a 
silicon substrate using metal-free ambient-pressure 
CVD. This method has resulted in the production 
of atomically flat monolayer or bilayer graphene, 
as well as concave bilayer and bulging few-layer 
graphene domains [18]. 

While Si is commonly used as a substrate 
for graphene in electronic applications, there is 
a limited amount of research available on the 
stability of graphene on Si surfaces. The stability 
of graphene on a Si (001) surface was examined 
by Javvaji et al. through molecular dynamics (MD) 
simulations at temperatures of 100, 300, and 900 K 
[19]. In a separate study, Zhang et al. [20] examined 
the bonding mechanism between graphene and 
the surface of a silicon substrate by applying a 
consistent vertical upward exfoliation velocity. 

The objective of the current study was to 
evaluate the stability of graphene on a Si (111) 
surface using reactive MD simulations. These 
computations facilitate the examination of the 
processes involved in the formation and dissociation 
of C–C and C–Si bonds on the substrate, which 
have not been thoroughly investigated in previous 
studies. The changes in the structural composition of 
graphene were determined through MD simulations 
conducted at various temperatures ranging from 
300 to 1500 K.

2. METHODOLOGY 

The calculations were performed using the ReaxFF 
module of the Amsterdam Modeling Suite 2022 
[21–23]. Additionally, we utilized the ReaxFF 
force field parameters proposed by Soria et al. 
[24] to accurately represent the atomic interactions 
involving Si–Si, Si–C, and C–C. Figure 1 illustrates 
the Si (111) substrate comprising of four layers 
having a total of 600 Si atoms. The lowermost two 
layers were held in a fixed position to accurately 
replicate the substrate’s thickness. Furthermore, 
the structural optimization was enhanced by the 
introduction of a carbon atom or carbon ring into 
the substrate. MD simulations were utilized to 
examine the thermal stability of graphene on the Si 
(111) surface. The temperature was incrementally 
increased from 300 to 1500 K in a systematic 
manner with increments of 100 K. A time step 
of 0.25×10-3 picoseconds was selected along 
with a temperature increase rate of 8 Kelvin per 
picosecond. Equilibration was performed at each 
temperature for a duration of 25 picoseconds. The 
temperature control in the simulation was achieved 
by utilizing the Nosé-Hoover thermostat [25-27].
The adsorption energies (Eads) of the C atoms and C 
rings at different sites on the Si (111) surface were 
calculated using the following equation:

           (1)

where, Esc represents the energy of the system, 
which includes the Si substrate and the C atom 
or ring, Es represents the energy of the substrate, 
while Ec represents the energy of the isolated C 
atom or ring. The analysis of the simulation results 
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metal foils and thin films [15]. In addition, the 
production of graphene can be achieved through 
deposition of metal films, offering potential advantages. 
The utilization of various metallic substrates for growth 
purposes can result in unique growth patterns, including 
rare metals beyond copper (Cu) and nickel (Ni), as well 
as binary or ternary alloys that are not easily available in 
foil form. The regulation of carbon content and the ratio 
of different metals in an alloy can be efficiently achieved 
through the control of metal film thickness. The 
aforementioned control mechanism has a direct impact 
on the deposition process of graphene and subsequently 
influences the quantity of layers that are formed. 
Multiple studies have documented that the process of 
deposition and annealing on particular single-crystal 
substrates can result in the formation of single-crystal 
metal films that display a preferred orientation. The 
carbon atoms located on or within the thin metal film 
have the ability to diffuse through it and ultimately reach 
the interface between the film and substrate. This 
phenomenon enables the direct growth of graphene on 
the substrate, thereby eliminating the requirement for 
growth through transfer methods [16]. 

Furthermore, Tai et al. [17] have achieved 
successful synthesis of graphene directly on a silicon 
substrate using metal-free ambient-pressure CVD. This 
method has resulted in the production of atomically flat 
monolayer or bilayer graphene, as well as concave 
bilayer and bulging few-layer graphene domains [18].  

While silicon (Si) is commonly used as a substrate 
for graphene in electronic applications, there is a limited 
amount of research available on the stability of graphene 
on Si surfaces. The stability of graphene on a Si (001) 
surface was examined by Javvaji et al. through 
molecular dynamics (MD) simulations at temperatures 
of 100, 300, and 900 K [19]. In a separate study, Zhang 
et al. [20] examined the bonding mechanism between 
graphene and the surface of a silicon substrate by 
applying a consistent vertical upward exfoliation 
velocity.  

The objective of the current study was to evaluate 
the stability of graphene on a Si (111) surface using 
reactive MD simulations. These computations facilitate 
the examination of the processes involved in the 

formation and dissociation of C–C and C–Si bonds on 
the substrate, which have not been thoroughly 
investigated in previous studies. The changes in the 
structural composition of graphene were determined 
through MD simulations conducted at various 
temperatures ranging from 300 to 1500 K. 

2. METHODOLOGY  

The calculations were performed using the ReaxFF 
module of the Amsterdam Modeling Suite 2022 [21–23]. 
Additionally, we utilized the ReaxFF force field 
parameters proposed by Soria et al. [24] to accurately 
represent the atomic interactions involving Si–Si, Si–C, 
and C–C. Figure 1 illustrates the Si (111) substrate 
comprising of four layers having a total of 600 Si atoms. 
The lowermost two layers were held in a fixed position 
to accurately replicate the substrate's thickness. 
Furthermore, the structural optimization was enhanced 
by the introduction of a carbon atom or carbon ring into 
the substrate.  

MD simulations were utilized to examine the 
thermal stability of graphene on the Si (111) surface. The 
temperature was incrementally increased from 300 to 
1500 K in a systematic manner with increments of 100 
K. A time step of 0.25×10-3 picoseconds was selected 
along with a temperature increase rate of 8 Kelvin per 
picosecond. Equilibration was performed at each 
temperature for a duration of 25 picoseconds. The 
temperature control in the simulation was achieved by 
utilizing the Nosé-Hoover thermostat [25-27]. 

The adsorption energies (Eads) of the C atoms and C 
rings at different sites on the Si (111) surface were 
calculated using the following equation: 

𝑬𝑬𝒂𝒂𝒂𝒂𝒂𝒂 = 𝑬𝑬𝒂𝒂𝒔𝒔 − (𝑬𝑬𝒂𝒂 + 𝑬𝑬𝒔𝒔)        (1) 

where, Esc represents the energy of the system, which 
includes the Si substrate and the C atom or ring, Es 
represents the energy of the substrate, while Ec 
represents the energy of the isolated C atom or ring. The 
analysis of the simulation results trajectory was 
conducted using the Ovito software [28]. Furthermore, a 
coordination analysis was conducted on the carbon 
atoms in graphene on the silicon (111) surface at various 
simulation temperatures. 
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3. RESULTS AND DISCUSSION 

The stability of graphene was evaluated through the 
calculation of adsorption energies for carbon (C) atoms 
and hexagonal carbon rings on the Si (111) substrate. 
Following that, it underwent evaluation via MD 
simulations, spanning a temperature range from 300 to 
1500 K. 

3.1     Adsorption Energies of C Atoms and C Rings 
on the Si (111) Surface 

In Table 1, the adsorption energies and heights of the C 
atoms at different sites on the Si (111) surface are 
presented. The results indicate that the C atoms located 
above the Si atoms in the second and third layers occupy 
the hollow 2 and hollow 3 sites, respectively. According 
to the data presented in Table 1, it can be observed that 
the hollow 2 site exhibits the highest adsorption energy 
(-3.87 eV), while the bridge site demonstrates the lowest 
adsorption energy (-5.74 eV). The h (Å) data pertains to 
the vertical distance between the carbon atoms and the 
Si (111) surface. The carbon atoms situated at the bridge 
site exhibit a vertical displacement of 0.12 Å from the Si 
(111) surface. Conversely, the carbon atoms positioned 

at the hollow 2 site show a greater vertical displacement 
of 1.66 Å from the substrate.  

 

Table 1. Adsorption energies (Eads) and heights (h) of C atoms 
at various sites on the Si (111) surface. 

Site Eads (eV) h (Å) 

Top -4.14 1.38 

Bridge -5.74 0.12 

Hollow 2 -3.87 1.66 

Hollow 3 -4.75 1.08 

 

Figure 2 illustrates the adsorption sites on the Si 
(111) surface in relation to the carbon atoms, as outlined 
in Table 1. In Figure 2a, it can be observed that the C 
atoms are positioned directly above the Si atoms in the 
uppermost layer. The distance between the C atoms and 
the Si atoms is precisely 1.38 Å. In Figure 2b, it can be 
observed that the C atoms are positioned between the Si 
atoms in both the first and second layers. Notably, both 
sets of Si atoms exhibit a slight displacement from their 
initial positions, facilitating contact between the C atoms 
and the surface. In comparison to the adsorption energies 
documented for alternative adsorption sites, this 
phenomenon yields the most minimal adsorption energy 
value. The findings of this study align with prior 
research, which suggests that carbon atoms adsorbed 
onto the Si (111) surface exhibit a preference for bridge 
sites [29]. Figures 2c–d demonstrate that the C atoms 
adsorbed onto the hollow 2 and hollow 3 sites undergo a 
subtle displacement towards a Si atom positioned in the 
top layer. This displacement leads to the establishment 
of chemical bonds between them. 

Fig. 1. (a) Top and (b) side views of the initial 
configuration of the Si (111) substrate. The Si atoms are 
represented by yellow spheres. 

 

Fig. 1. (a) Top and (b) side views of the initial 
configuration of the Si (111) substrate. The Si atoms are 
represented by yellow spheres.
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trajectory was conducted using the Ovito software 
[28]. Furthermore, a coordination analysis was 
conducted on the C atoms in graphene on the Si 
(111) surface at various simulation temperatures.

3. RESULTS AND DISCUSSION

The stability of graphene was evaluated through the 
calculation of adsorption energies for C atoms and 
hexagonal carbon rings on the Si (111) substrate. 
Following that, it underwent evaluation via MD 
simulations, spanning a temperature range from 
300 to 1500 K.

3.1  Adsorption Energies of C Atoms and C 
         Rings on the Si (111) Surface

In Table 1, the adsorption energies and heights 
of the C atoms at different sites on the Si (111) 
surface are presented. The results indicate that the 
C atoms located above the Si atoms in the second 
and third layers occupy the hollow 2 and hollow 3 
sites, respectively. According to the data presented 
in Table 1, it can be observed that the hollow 2 
site exhibits the highest adsorption energy (-3.87 
eV), while the bridge site demonstrates the lowest 
adsorption energy (-5.74 eV). The h (Å) data pertains 
to the vertical distance between the C atoms and 
the Si (111) surface. The C atoms situated at the 
bridge site exhibit a vertical displacement of 0.12 
Å from the Si (111) surface. Conversely, the C 
atoms positioned at the hollow 2 site show a greater 
vertical displacement of 1.66 Å from the substrate. 

Table 1. Adsorption energies (Eads) and heights (h) of C 
atoms at various sites on the Si (111) surface.

Site Eads (eV) h (Å)
Top -4.14 1.38

Bridge -5.74 0.12
Hollow 2 -3.87 1.66
Hollow 3 -4.75 1.08

Figure 2 illustrates the adsorption sites on the Si 
(111) surface in relation to the C atoms, as outlined 
in Table 1. In Figure 2a, it can be observed that the 
C atoms are positioned directly above the Si atoms 
in the uppermost layer. The distance between the 
C atoms and the Si atoms is precisely 1.38 Å. In 
Figure 2b, it can be observed that the C atoms are 
positioned between the Si atoms in both the first 
and second layers. Notably, both sets of Si atoms 
exhibit a slight displacement from their initial 
positions, facilitating contact between the C atoms 

and the surface. In comparison to the adsorption 
energies documented for alternative adsorption 
sites, this phenomenon yields the most minimal 
adsorption energy value. The findings of this 
study align with prior research, which suggests 
that C atoms adsorbed onto the Si (111) surface 
exhibit a preference for bridge sites [29]. Figures 
2c–d demonstrate that the C atoms adsorbed onto 
the hollow 2 and hollow 3 sites undergo a subtle 
displacement towards a Si atom positioned in the top 
layer. This displacement leads to the establishment 
of chemical bonds between them.

Table 2 presents the adsorption energies 
of hexagonal C rings on the Si (111) surface, 
considering different locations. Sites 1, 2, and 3 
correspond to the positions located above the Si 
atoms in the first, second, and third layers of the 
substrate, respectively. The adsorption energy 
of the C ring at site 1 exhibits a positive value, 
suggesting the presence of a repulsive interaction 
between the C ring and Si atoms on the substrate 
surface. This is supported by the observation of a 
Si atom displacement in the uppermost region of 
the substrate, resulting in the penetration of the C 
ring into the substrate (refer to atom 1 in Figure 3a). 
The adsorption energies of the C rings situated at 
sites 2 and 3 exhibit negative values, suggesting the 
presence of attractive interactions between the C 
and Si atoms on the surface of the Si (111) substrate. 
The site with the lowest adsorption energy is 
designated as site 3. At this location, each C atom in 
the C ring establishes a binding interaction with the 
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Table 2 presents the adsorption energies of 
hexagonal carbon rings on the Si (111) surface, 
considering different locations. Sites 1, 2, and 3 
correspond to the positions located above the Si atoms 
in the first, second, and third layers of the substrate, 
respectively. The adsorption energy of the C ring at site 
1 exhibits a positive value, suggesting the presence of a 
repulsive interaction between the C ring and Si atoms on 
the substrate surface. This is supported by the 
observation of a Si atom displacement in the uppermost 
region of the substrate, resulting in the penetration of the 
C ring into the substrate (refer to atom 1 in Figure 3a). 
The adsorption energies of the C rings situated at sites 2 
and 3 exhibit negative values, suggesting the presence of 
attractive interactions between the C and Si atoms on the 
surface of the Si (111) substrate. The site with the lowest 
adsorption energy is designated as site 3. At this 
location, each carbon atom in the carbon ring establishes 
a binding interaction with the silicon atoms found in both 
the first and second layers (refer to Figure 3c). The 
hexagonal shape of the C ring is preserved in this 
scenario. At location 3, it is evident that specific carbon 
atoms are unable to form bonds with silicon atoms in the 
third layer due to the considerable distance separating 
them. Only the carbon atoms that are in close proximity 
to the silicon atoms in the first layer have the capability 
to establish chemical bonds. This phenomenon is 

accountable for the distortion of the C ring. Based on the 
results obtained, it can be concluded that the adsorption 
of the C ring is more favorable at site 3 on the Si (111) 
surface. 

 

 

 

 

 

Table 2. Adsorption energies (Eads) of C rings at various sites 
on the Si (111) surface. The positions above the Si atoms in 
the first, second, and third layers of the substrate are 
represented by sites 1, 2, and 3, respectively. 

Adsorption Site Eads (eV) 

Site 1 1.94 

Site 2 -3.88 

Site 3 -4.00 

3.2     Effect of Temperature on Graphene Stability 
on Si (111) Surface  

The graph in Figure 4 illustrates the variation in the 
maximum height of a carbon atom in graphene in 
relation to the Si (111) surface at different temperatures. 
The maximum height exhibits slight variations within 
the temperature range of 300 to 1200 K, but undergoes a 
notable increase between 1300 and 1500 K. Figure 5 
illustrates the dome-shaped morphology of graphene 

Fig. 2. Optimized arrangement of C atoms on the Si (111) 
surface at four distinct locations: (a) top site, (b) bridge site, 
(c) hollow site situated above the second layer of Si atoms, 
and (d) hollow site situated above the third layer of Si 
atoms. The Si and C atoms are represented by the yellow 
and gray spheres, respectively. 

 
Fig. 3. Optimized arrangement of C rings on the Si (111) 
surface at three distinct locations: the sites situated above 
the (a) first, (b) second, and (c) third layers of Si atoms. 
The Si and C atoms are represented as yellow and gray 
spheres, respectively. The spheres denoted by indices 1, 2, 
and 3 correspond to the Si atoms located in the first, 
second, and third layers, respectively. 

 

Fig. 2. Optimized arrangement of C atoms on the Si (111) 
surface at four distinct locations: (a) top site, (b) bridge 
site, (c) hollow site situated above the second layer of Si 
atoms, and (d) hollow site situated above the third layer 
of Si atoms. The Si and C atoms are represented by the 
yellow and gray spheres, respectively.
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Si atoms found in both the first and second layers 
(refer to Figure 3c). The hexagonal shape of the C 
ring is preserved in this scenario. At location 3, it 
is evident that specific C atoms are unable to form 
bonds with Si atoms in the third layer due to the 
considerable distance separating them. Only the C 
atoms that are in close proximity to the Si atoms 
in the first layer have the capability to establish 
chemical bonds. This phenomenon is accountable 
for the distortion of the C ring. Based on the results 
obtained, it can be concluded that the adsorption of 
the C ring is more favorable at site 3 on the Si (111) 
surface.
 
Table 2. Adsorption energies (Eads) of C rings at various 
sites on the Si (111) surface. The positions above the Si 
atoms in the first, second, and third layers of the substrate 
are represented by sites 1, 2, and 3, respectively.

Adsorption Site Eads (eV)
Site 1 1.94
Site 2 -3.88
Site 3 -4.00

3.2 Effect of Temperature on Graphene
         Stability on Si (111) Surface 

The graph in Figure 4 illustrates the variation in the 
maximum height of a C atom in graphene in relation 
to the Si (111) surface at different temperatures. 

The maximum height exhibits slight variations 
within the temperature range of 300 to 1200 K, 
but undergoes a notable increase between 1300 
and 1500 K. Figure 5 illustrates the dome-shaped 
morphology of graphene observed on the Si (111) 
surface. It is worth mentioning that the C atoms 
located at the periphery of the graphene structure 
establish chemical bonds with the Si atoms present 
on the surface of the substrate. Conversely, the C 
atoms situated in the central region of the graphene 
structure exhibit a tendency to distance themselves 
from the Si (111) surface. Figures 5a–b depict the 
similarity observed in the graphene domes on the 
Si (111) surface at temperatures of 300 and 900 K, 
respectively. Additionally, Figure 5c illustrates the 
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the interactions between the C atoms in graphene 
and the Si atoms on the substrate surface are found 
to be minimal, thus playing a significant role in this 
aspect. The results obtained are consistent with the 
findings of previous studies conducted by Zhang et 
al. [20] and suggest that a vertical upward velocity 
of 4.3 Å/ps is necessary for the exfoliation of 
monolayer graphene from the Si surface.

4. CONCLUSION 

The stability of graphene on a Si (111) surface was 
investigated through the utilization of reactive MD 
simulations. The Si (111) bridge site demonstrated 
a higher affinity for the adsorption of C atoms 
compared to other potential sites, such as the top 
and hollow sites. Additionally, it was observed that 
the C ring predominantly occupies the surface site 
positioned directly above the Si atoms in the third 
layer. Furthermore, the findings of this investigation 
suggest that graphene demonstrates remarkable 
stability on the Si (111) surface at temperatures 
up to 1500 K. This stability can be attributed to 
the limited interactions between the C atoms in 
graphene and the Si atoms in the substrate.
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Abstract: The Urban Heat Island (UHI) is a micro-climatic phenomenon that influences the urban areas by elevating its 
temperature. UHI not only causes the thermal discomfort but also exert serious health issues along with aggravation of 
urban microclimate. Although a lot of research has been done on this phenomenon but UHI effect on micro scale is still 
less explored. This paper attempts to make a contribution in UHI studies of micro-climate.  It consists of examination 
of UHI impact on microclimate of Aligarh city areas using mobile traverse method. This study determined the presence 
and extent of UHI’s microclimate variation within urban communities of different environmental layout and functional 
uses. The UHI effect started to appear from early afternoon and continue to rise with maximum UHI intensity recorded 
at early night. The highest recorded UHI intensity was 3.1 °C (at 21:00 hrs.), and the lowest was 0.6 °C (at 09:00 hrs.). 
A comparison of two districts of the same city located at a distance of 3 km and differing in population density, the 
number of buildings and landscaping showed that in the L1 area with more dense population and low landscaping, the 
temperature was consistently higher during the daily period; also the L1 region had less humidity, which combined 
with the already high temperature, makes it difficult to breathe and control the microclimate. These findings can 
be used for consideration for the future sustainable development of the affected area in regard of thermal comfort, 
environmental health and urban planning.

Keywords: Urban Heat Island, Urbanization, Temperature Increase, Mobile Traverse Method, Thermal Comfort, 
Environmental Layout, Urban Planning.

1. INTRODUCTION 

Rapid urban grain change has an impact on a city’s 
local energy balance and, consequently, its thermal 
and climatic characteristics [1, 2]. It is predicted 
that with the growth of cities, the negative impacts 
on the environment will increase [3]. Urban Heat 
Island effect is one of the environmental issues that 
are being caused by such scenarios [4]. The first 
account of the urban heat phenomenon dates back 
to 1818 [5] therefore numerous additional research 
were carried out in numerous places worldwide to 

better understand the phenomenon [6, 7]. Each city 
is found to have a unique microclimate that differs 
from the regional climate pattern and is impacted by 
the urban form, weather, topography, water features, 
and greenery [8, 9]. Urban heat island impact is 
defined by the difference between the temperature 
of an urban region and that of its surroundings. This 
difference is often referred to as urban heat island 
intensity (UHII) or strength [10]. The well-known 
Intergovernmental Panel on Climate Change 
[11] report acknowledges the occurrence of UHI 
brought on by urbanization, loss of plant cover, and 



an increase in anthropogenic heat and discusses the 
essential mitigation measures. The sixth assessment 
report [12] acknowledged the significant changes 
in the climate caused by humans’ excessive 
interventions in their environment.

UHI phenomena generally comes in two flavors. 
The severity of surface urban heat island (SUHI) 
varies with the strength of the sun, the weather, 
and the amount of ground cover. It is often highest 
during the daytime and can reach temperatures of 10 
to 15 °C [13]. Usually, there is a close relationship 
between the temperatures of near surface air and the 
ground surface [14]. Warmer air in urban areas than 
in their surroundings characterizes atmospheric 
municipal heat island (AUHI), which is divided 
into two categories based on height as stated: (i) 
Urban heat island canopy. The air expanse that is 
below the buildings and trees tops, but above the 
ground is called the canopy layer. Due to the fact 
that the majority of activities only take place in the 
canopy layer, the UHI in this layer immediately 
influences person functionality [9, 15, 16]. (ii) 
Heat island in the urban boundary layer. This UHI 
spreads from rooftops and treetops all the way 
down to the point where urban environments have 
no more influence to the atmospheric air. Typically, 
this vertical spacing from the zone’s surface is 
less than 1.5 km (or one mile) [7] (Figure 1). 

Cities have been known to have the UHI effect, 
preferably in areas that are more populated or 
densely built up than the surrounding countryside 
[17]. Solar radiation exposure is influenced by the 
buildings location orientation and the occupied 
volume of these buildings, and the aspect ratio of 

the space between them [18]. The heat produced by 
human activity and solar radiation congregates as 
long-wave radiation, which diminishes as a result 
of the intricate heat transfer betwixt buildings and is 
trapped betwixt them [19], raising the temperature 
of the region. Buildings that are close together not 
only trap heat but also hinder airflow and ventilation, 
which furthers the phenomenon’s intensification 
[20]. Many studies have demonstrated that air 
temperature in cities is influenced by surface 
temperature of municipal superficies materials [14, 
21, 22]. The sun frequently heats urban surfaces 
like pavements and roofs between 27 and 50°C, 
making them hotter than the air [10, 23]. This heat 
is progressively released into the environment after 
being absorbed during the day, which contributes 
to the UHI effect [24]. All of this occurs because 
materials’ thermal and radiative qualities affect how 
heat is exchanged in urban environments [9, 18]. 
Dark-colored materials have a low albedo while 
white, bright, and reflecting materials have a high 
albedo [25]. 80 % of the sunlight is absorbed by 
the pavement and roofs that cover 60 % of urban 
areas [9]. By evapotranspiration, CO2 absorption, 
and giving shade to surfaces exposed to the sun, 
trees and plants are known to keep the environment 
cool [10]. Greenery’s high albedo contributes to its 
ability to reflect heat back onto itself. The efficiency 
of this natural cooling drastically decreases with 
the loss of green space, causing municipal warming 
[13, 18, 26]. The UHI impact is more pronounced 
in clear, calm conditions than in cloudy, windy 
conditions [27]. When the temperature rises, the 
relative humidity decreases, resulting in drier air, 
but when the temperature drops, the air gets wet, 
resulting in a rise in relative humidity [28].

Fig. 1.  Two-layer representation of atmospheric air thermal alteration in an 
municipal setting

Source: Redrawn from (Oke, 1976)
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atmospheric municipal heat island (AUHI), which is 

divided into two categories based on height as stated: (i) 
Urban heat island canopy. The air expanse that is below 
the buildings and trees tops, but above the ground is 
called the canopy layer. Due to the fact that the majority 
of activities only take place in the canopy layer, the UHI 
in this layer immediately influences person functionality 
[9, 15, 16]. (ii) Heat island in the urban boundary layer. 
This UHI spreads from rooftops and treetops all the way 
down to the point where urban environments have no 
more influence to the atmospheric air. Typically, this 
vertical spacing from the zone's surface is less than 1.5 
km (or one mile) [7] (Figure 1).

 
 

Cities have been known to have the UHI effect, 
preferably in areas that are more populated or densely 
built up than the surrounding countryside [17]. Solar 
radiation exposure is influenced by the buildings 
location orientation and the occupied volume of these 
buildings, and the aspect ratio of the space between them 
[18]. The heat produced by human activity and solar 
radiation congregates as long-wave radiation, which 
diminishes as a result of the intricate heat transfer 
betwixt buildings and is trapped betwixt them [19], 
raising the temperature of the region. Buildings that are 
close together not only trap heat but also hinder airflow 
and ventilation, which furthers the phenomenon's 
intensification [20]. Many studies have demonstrated 
that air temperature in cities is influenced by surface 
temperature of municipal superficies materials [14, 21, 
22]. The sun frequently heats urban surfaces like 
pavements and roofs between 27 and 50°C, making them 
hotter than the air [10, 23]. This heat is progressively 
released into the environment after being absorbed 
during the day, which contributes to the UHI effect [24]. 
All of this occurs because materials' thermal and 

radiative qualities affect how heat is exchanged in urban 
environments [9, 18]. Dark-colored materials have a low 
albedo while white, bright, and reflecting materials have 
a high albedo [25]. 80 % of the sunlight is absorbed by 
the pavement and roofs that cover 60 % of urban areas 
[9]. By evapotranspiration, CO2 absorption, and giving 
shade to surfaces exposed to the sun, trees and plants are 
known to keep the environment cool [10]. Greenery's 
high albedo contributes to its ability to reflect heat back 
onto itself. The efficiency of this natural cooling 
drastically decreases with the loss of green space, 
causing municipal warming [13, 18, 26]. The UHI 
impact is more pronounced in clear, calm conditions 
than in cloudy, windy conditions [27]. When the 
temperature rises, the relative humidity decreases, 
resulting in drier air, but when the temperature drops, the 
air gets wet, resulting in a rise in relative humidity [28]. 

In addition to deteriorating the environment, UHI 
also affects air quality, human comfort, and the demand 
for cooling energy, which exacerbates problems like 
global warming. If the air temperature rises even by 1 

Fig. 1.  Two-layer representation of atmospheric air thermal alteration in an municipal setting 

Source: Redrawn from (Oke, 1976) 
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In addition to deteriorating the environment, 
UHI also affects air quality, human comfort, 
and the demand for cooling energy, which 
exacerbates problems like global warming. If the 
air temperature rises even by 1 °C, then in cities 
electricity consumption increases on average by 
2 to 4 %, according to Akbari et al. [29], which 
creates the need to search for alternative energy 
sources [30, 31, 32]. The study also showed that, 
in order to make up for the increase between 0.5 
and 3.0 °C in municipal temperature, 5–10 % of the 
power used in cities is used to cool buildings. When 
the temperature rises, so do the needs for water for 
cooling, watering plants, and human consumption 
[33, 34], as well as for power. Those with low 
thermal tolerance are susceptible to significant 
illnesses such cardiovascular stress, cardio 
respiratory diseases, heat cramps, blood clots, and, 
in some circumstances, death due to the extreme heat 
[35, 36]. With each degree of temperature increase, 
those who live in such unfavourable conditions 
have less sleep, which can amount to up to two 
weeks of insufficient sleep annually and directly 
contribute to an increase in health morbidities [37, 
38]. Thus, the urban heat island effect has been 
explored to varying degrees in many scientific 
papers demonstrating the impact of land use/land 
cover (LU/LC) and green cover on the air quality 
index [39]; it is shown that the lack of green spaces 
is the main problem, and this problem will only be 
exacerbated due to overpopulation associated with 
the rapid growth of cities [40]; analyzed the law 
of spatio-temporal evolution and determined the 
differences between urban heat islands in winter 
and summer [41]; impact of urban heat islands 
on heat-related cardiovascular morbidity [42]; 
explored nighttime urban heat island intensities 
during Covid-19 lockdown and ecological habitat 
[43, 44]; investigated the difference between urban 
and rural heat [45]. However, the authors did not 
reveal studies of the comparative nature of two 
districts of the same city located close to each other, 
but having different characteristics, such as social 
activity, population density in the area, the degree 
of development and landscaping of the territory, 
etc.

The present study is conducted to investigate 
and assess the effects of UHI on carefully chosen 
places, namely: Center Point Chauraha and Staff 

Club Chauraha, based on local climates for two 
districts of the city of Aligarh, located close to 
each other, but have different characteristics. The 
city of Aligarh is part of the northern Indian state 
of Uttar Pradesh, around 132 km southeast of New 
Delhi, and located between the Ganga and Yamuna 
rivers, in the middle of the doab. Furthermore, to 
investigate the impact of UHI, this study solely 
evaluates the relative humidity (%) and ambient 
dry bulb air temperature in the canopy layer at two 
specifically chosen locations in Aligarh.

2. MATERIALS AND METHODS

For the purpose of gathering data, two places 
in Aligarh city were carefully chosen. The 
microclimatic environmental conditions at these 
two areas are in contrast to one another. Center 
Point Chauraha is the first location, designated as 
L1, while Staff Club Chauraha, on the campus of 
Aligarh Muslim University, is the second location, 
designated as L2. The two areas are roughly 3 
kilometers apart. Since L1 is a Central Business 
District (CBD), it receives the majority of the city’s 
foot traffic. The area, which is characterized by 
both commercial and residential land use, is located 
in the heart of Aligarh City’s high density sector. 
Due to the paucity of urban vegetation relative to 
the built-up region, the urban grain of the area is 
poorly preserved. On the spine route of the A.M.U. 
campus, L2 sees a fair volume of traffic flow. 
Compared to other locations, the area around has 
a high level of vegetation and greenery. In close 
proximity to the place is a public park.

The information is gathered five times a day, 
from 9:00 to 12:00, 15:00 to 18:00, and 21:00 to 
21:00, for a period of 23 days, from April 22 to 
May 15, 2022. Due to the unfavorable weather, one 
day from the survey period – May 4, 2022 – was 
excluded. To capture and comprehend the urban 
configuration of the research regions, radial buffer 
zones of 500m were taken into consideration at both 
locations. To prevent changes in the microclimate, 
each survey was finished within 30 minutes. Based 
on the past research procedures, all the precautions 
and techniques were used [10, 16, 18, 46]. The 
UHI intensity across the study period, which varied 
from morning to night and affected micro-climatic 
factors depending on distinct urban settings, was 
then depicted in tables and graphs and compared 
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using the temperature and humidity measurements 
from the two locations.

In order to gain information about the causes of 
thermal discomfort and evidence of microclimatic 
variation, data are collected utilizing mobile traverse 
method-portable equipment. During measurements, 
the apparatus was fixed to a tripod stand that was 
1.3 meters above the ground. The sensor was 
effectively protected from direct sunlight while 
still ensuring airflow by having a hard cardboard 
covering it. Before taking readings, the equipment 
was left in place for a sufficient amount of time to 
come into balance with its environment.

3. RESULTS AND DISCUSSION

According to analysis of field measurement data, 
L1 experienced a greater temperature than L2, 
as indicated in Table 1. The mean temperature 
difference ranged from 0.87 °C in the morning to 
2.23 °C at night (Table 1). As a result, the L1 region 
exhibits urban warmth, where heat stored during the 
day is later released into the atmosphere, delaying 
the cooling of urban space. Given that most past 
studies have used the same pattern, this UHI pattern 
justifies the term «urban heat island» [10,  18, 47].
By daybreak, the considerable UHI effect began 

to show evident, and urban buildings continued 
to warm up until late in the day. After that, the 
temperature lowers significantly while the UHII 
rises, peaking at night. The highest recorded UHI 
intensity was 3.1 °C when it was seen at 21:00 
hours, and the lowest was 0.6 °C when it was 
seen at 09:00 hrs (Table 2). This is taking place as 
a result of Location 1’s UHI phenomenon, which 
causes heat to be absorbed during the day and then 
slowly released after nightfall. The occurrence at 
L1 may have existed due to human heat, exposed 
pavement areas, increased traffic volume, decreased 
vegetation, and strong traffic influx. Several causes 
of UHI production have been verified in earlier 
research [10].

This study indicates that microclimatic 
variables can have a big impact on temperature and 
humidity over short distances, as the 3 km used in 
this study. L1’s temperature was consistently higher 
than L2’s (Table 1, Table 2). This is taking place 
as a result of L1, which is a high-density area with 
artificial surfaces and little vegetation (Figure 2). 
Due to large asphalt roadways, exposed dense mass, 
and few pockets of shade, the sun-exposed surfaces 
are more prevalent in the L1 area. As a result, L1 
urban settings absorb more heat throughout the 
day and have less long wave cooling afterwards, 

Table 1.  The difference between the L1 and L2 mean temperatures (°C) at specific three hours’ time intervals 
between 09:00 to 21:00 hrs. during the survey period of 23 days

Mean Temperature Difference (oC)
Time Mean Humidity Center Point 

Chauraha (L1)
Mean Humidity Staffclub Chauraha 

(L2)
Mean Difference

09:00 36.63 35.76 0.87
12:00 41.80 40.43 1.37
15:00 42.78 41.13 1.65
18:00 37.64 35.80 1.83
21:00 34.00 31.77 2.23

Average = 1.59

Table 2.  Maximum and minimum UHI Intensity (UHII) at selected three hours’ time interval between 09:00 to 
21:00 hrs. during the survey period of 23 days at L1 and L2

Analysis of UHI Intensity (UHII)
Time Maximum UHI Minimum UHI
09:00 1.4 0.6
12:00 1.8 1.1
15:00 2 1.2
18:00 2.4 1.4
21:00 3.1 1.6
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21:00 3.1 1.6 

 

 

 Fig 2.  Picture depicting the built-up and greenery within the considered 500 meters of the research area 
Fig 2.  Picture depicting the built-up and greenery within the considered 500 meters of the 
research area
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which increases the intensity of UHI. Because it 
has been proven that asphalt absorbs heat during 
the day and surface temperatures can reach 67 
°C [48] and releases heat at night. However, by 
adding various color pigments, the temperature of 
the asphalt pavement can be reduced by 5.4 °C per 
day [49]. As a result of reduced density and high 
green cover, L2 temperature increased less than 
L1 temperature throughout the diurnal period and 
decreased significantly after sunset (Figure 2). The 
building density of buildings and the used facing 
materials significantly increase the air temperature 
of the urban environment [50, 51]. In other 
words, depending on the spatial composition and 
urban features, the urban heat island effect and its 
amplitude might change at lower scales [15, 52].

As shown in Table 3, the mean relative 
humidity was seen to be rising starting in the 
evening and was thought to be the case until early 
in the morning. It was recorded at its lowest point 
in the late afternoon, typically about 15:30 when 
the temperature was at its highest. This explains 
why temperature and relative humidity have an 
inversely proportional relationship, meaning that 
as temperature rises, relative humidity decreases, 
making the air drier [28]. Because L1 had less 
humidity than L2 (Table 3), paired with an already 
high temperature, L1’s micro-climate is difficult for 
urban residents to control. This may be taking place 
because there are more urban materials at L1 than 
L2, which are less permeable to water.

4. CONCLUSION 

The empirical evidence from this study supports 
the assertion that UHI impact is common in densely 
populated metropolitan regions. In contrast to L1, 

which has a high concentration of greenery and is 
less densely populated, L2 has a lower temperature 
rise and higher cooling than L1. Furthermore, this 
study proves that diurnal temperature variations 
in built environments occur over relatively small 
distances and are influenced by urban spatial 
design. The findings of this study indicate that 
UHII was found to be more severe after sunset. 
Understanding the relationship between the specified 
microclimatic measures, such as ambient dry bulb 
temperature and relative humidity fluctuations, 
and microclimatic conditions was made easier by 
the spatial study of urban fabric at selected places. 
L1 had lower humidity and a higher temperature 
pattern than L2 because of the location’s weak 
green cover and water-impermeable surfaces (Table 
1, Table 3). Similar findings have been drawn by 
other researchers who have shown how many 
environmental factors in urban environments can 
cause 2 °C microclimatic changes that may indicate 
serious problems with UHI; who substantiated 
that temperature fluctuations even by 0.69 °C can 
be considered significant. According to this study, 
urban dwellers at L1 can experience significant 
unfavourable microclimatic conditions due to 
measured mean temperature differences of 1.37 °C 
at noon and 1.65 °C at 15:00 hours.

A deeper understanding of microclimatic 
UHI can be produced by such study endeavors. 
The important component of healthy and 
energetic public spaces is a microclimate that is 
thermally comfortable. Good understanding of 
daily fluctuations in urban temperature can aid 
authorities and planners in understanding for better 
existing and future development. This can be done 
by transforming existing metropolitan areas in a 
clever and small-scale manner.

Table 3.  Mean relative humidity (%) at L1 and L2, as well as the difference between them at a certain moment 
throughout the survey period of 23 days

Mean Humidity Data (%)

Time Mean Humidity Center Point 
Chauraha (L1)

Mean Humidity Staffclub Chaura-
ha (L2)

Mean Difference

09:00 33.01 34.96 1.95

12:00 25.73 27.21 1.49

15:00 23.58 26.43 2.85

18:00 29.80 32.61 2.82

21:00 36.08 40.70 4.63
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5. RECOMMENDATIONS

5.1  Altering Roofing Materials – Cool Roofs

Create the idea of cool roofing by replacing 
heated roof materials with cool materials (high 
albedo value). According to a National Centre 
for Atmospheric Research (NCAR) study from 
2010, white painted roofs can minimize the UHI 
effect by 33 %, and if cool roofs can be achieved 
by changing colour, the cost of the roof is not 
increased. Engineers at Prude University created 
a “ultra white” paint in 2021 that can reflect 98.1 
% of sunlight, aid in energy conservation, and 
counteract climate change. This paint can save 10 
K.W. of cooling power when applied to a 93 sq.m. 
roof area.

5.2   Bringing Down Anthropogenic Heat 

Human activity produces anthropogenic heat, with 
sources including illumination, building cooling 
and heating systems, and moving automobiles [53], 
which creates the need to search for alternative 
energy sources [30, 31] in the conditions of the 
energy crisis. The temperature in metropolitan 
areas may rise by 2 to 3 °C as a result of this 
heat [54]. Thus, we can observe a vicious circle, 
since the earlier manuscript emphasized that 
the consequences of a one degree increase in air 
temperature is an increase in energy consumption 
[29], in addition, building-integrated photovoltaic 
system panels can potentially increase UHI 
intensity [30]. Encouraging public transit, limiting 
the use of private motor vehicles, and switching 
to cleaner fuels can all help reduce the impact of 
UHI. It may be more energy efficient to switch 
to an efficient cooling/heating system like VRF 
(Variant Refrigerant Flow). They operate quietly, 
consistently give comfort, take up less room, and 
offer superior control [55].

5.3   Increasing the Amount of Greenery

Increasing vegetation cover is one of the most 
effective ways to reduce the effects of heat on 
the urban environment [56, 57]. Shade, thermal 
insulation, and noise and air pollution control are all 
provided by vegetation [58]. Vegetation is observed 
to reduce the near-surface air temperature by 1-4.7 
%, especially when UHII is significant [59, 60]. 

Another crucial factor to take into account is the 
selective planting of trees. For cooling, shade, and 
evapotranspiration, their healthy growth and type 
of tree must be taken into consideration. Plantations 
might benefit from shade trees. They have a large 
canopy and can shade homes and pedestrians while 
reducing the amount of direct sunlight that hits 
urban surfaces, keeping the microclimate cool [61]. 
A mature tree may evapotranspire up to 450 liters of 
water per day, which is equal to 20 hours of use of 
a five-star air conditioner [62]. In their simulation 
study conducted in Canadian cities, Akbari and 
Taha [61] found that planting 30 % more trees 
might result in 10 % energy savings from heating 
and air conditioning. According to Theeuwes et al. 
[63], temperature typically drops by 0.6 K for every 
10 % increase in vegetation.
5.4   More Porous and Permeable Surfaces
Water can percolate through pavement or plant 
and reach a substrate layer through permeable 
surfaces, which encourages deep infiltration [64]. 
These characteristics should reduce temperature to 
a respectable degree [17]. Turf pavers can be used 
in place of the typical tiles found on sidewalks, 
outdoor areas, and parking lots. Further to the 
water permeability quality, they contribute to the 
“feel good” quality of green space. Porous concrete 
paving stones, which not only allow water to get 
absorbed but also aid trees in consuming nearby 
water, can be utilized in places where turf tiles 
are impractical. For pedestrian walkways, porous 
concrete is advised since it requires less washing 
for cleaning and maintenance [62].
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Abstract: The present study examines how adjusting vegetation patches in a rectangular open channel with two 
impermeable spur dikes alters the displacement of the recirculation region. The Reynolds stress turbulence model 
is implemented via the 3D numerical code FLUENT (ANSYS). Mean stream-wise velocity profiles were drawn at 
selected positions and at mid of flow depth i.e., 3.5 cm, a horizontal plane is cut through the open channel for analyzing 
velocity contours and streamline flow. The findings indicate that the stream-wise velocity profiles showed fluctuations 
in the presence of different shapes and arrangement of cylindrical patch discussed and the maximum velocity within 
the field of spur dike is of the order of 0.018 m/s due to the prism shape. By changing the position of the cylindrical 
patch, the location of the recirculation region displaces within the field of impermeable spur dike.

Keywords: Recirculation Region, Vegetation Patches, Impermeable Spur Dikes, Rectangular Open Channel, Flow 
Control in Open Channels.

1. INTRODUCTION

The essential sources of water are rivers as well 
as channels for a long period. To make water 
accessible, the human beings used to live near 
rivers and channels which served the purpose of 
transferring water to far areas. The previous reason 
makes it essential to protect the channels and rivers 
from erosion as well as their deterioration due to 
flowing water. Researchers from diverse scientific 
disciplines such as Hydraulics, Hydrology, Geology, 
and Sedimentology have collectively worked to 
demonstrate that comprehensively analyzing river 
channels and their historical behaviors, along with 
foundational scientific and technical investigations, 
is distinctly separate when aiming to optimize the 
utilization of these crucial water resources. Spur 
dikes are the hydraulic structures used for river 
training and bank protection works. The use of 
spur dikes from long ago shows that this kind of 
structure has wide benefits. By constructing the 
spur dike, the flow path contracts, and resultantly 

the flow velocity near the structure increases which 
leads to increased average velocity in the contracted 
section. This is why using spur dikes is a good 
solution for managing how rivers flow, controlling 
the movement of water and passage of water under 
bridges, and preventing the erosion of river banks 
and edges [1].

Spur dikes are commonly used in channels to 
prevent the erosion of channel beds and banks by 
fixing them at the right angle to the direction of 
flow in order to reduce the velocity of flow. These 
are considered among the best structures of hydro 
engineering for prevention and diversion of water. 
The Spur Dikes are of two types: Pervious Spur 
Dikes and Impervious Spur Dikes, based on the 
fact that the structure is pervious or not. Generally, 
construction material used for spur dikes are 
bamboo, steel, timber, RCC piles etc. Permeable 
Spur dikes are considered economical and found 
their application in temporary works. Construction 
materials for impervious spur dikes are stones, soils 



(local), gravels, rocks, and local materials (easily 
available). An approaching flow is prevented or 
diverted through impervious spur dikes. Although 
water can pass through pervious spur dike, but it 
reduces the water speed. Either the spur dikes are 
covered by water or not, these are classified as 
submerged and non-submerged type. If the spur 
dike is covered by water, then this is referred as 
submerged spur dike. If the spur dike is not fully 
covered by water, it is known as non-submerged 
spur dikes. Based on the shape, spur dikes may 
have shape like hocky shape, T-shape, mole-head 
as well as L-shape. Again based on function of 
spur dikes against water, the dikes are classified as 
diverting type, repelling type and attracting type. 
A downstream-facing (Attractive) spur dike exerts 
an attractive force, causing the flow to be diverted 
from its original path. In this way, it makes the flow 
of water towards the center of channel. A deflection 
spur dike is strategically positioned with its upstream 
end facing the flow of the river. Its purpose is to 
redirect the water away from the riverbank in order 
to mitigate erosion by redirecting the water flow. 
Consequently, the repelling spur dike is anchored 
perpendicular to the flow’s direction [2]..

Variations in the water bodies (i.e., river) beds 
and banks results due to different features such as 
shape of channel (width, depth), the material from 
which river bed is made-up, amount of sediment 
carried by water bodies. In the past, researchers 
simulated actual flow conditions in open channels 
with different flow conditions so that properties of 
flow under different conditions can be determined. 
In this regard, Koken et al. [3] employed an 
impermeable spur dike within a horizontal plane, 
utilizing two-dimensional velocity vectors, to 
examine flow mechanisms downstream. Exploring 
flow patterns around both individual and arrays of 
water-resistant spur dikes, Kafle et al. [4] employed 
different turbulent closure models. Teraguchi 
et al. [5] analyzed the impact on flow velocity 
distribution around pervious and impervious spur 
dikes, as well as bandal-like structures, under two 
conditions: one where these were non-submerged, 
and the other where the submerged state prevailed. 
At downstream, the vortex zone formed around 
one impervious spur dike was investigated using 
RNG (Re-Normalization Group model) turbulence 
method by Giglou et. al [1]. When water passed 

through impervious spur dike, it resulted into 
vortex zone formed around impervious spur dike 
of four times the length of spur dike. This caused 
decrease in flow velocity of silt which caused 
deposition of silt. With passage of time, due to 
silt deposition the spur dike field would be filled 
with silt. This becomes the reason of reduction in 
flood carrying capacity of rivers. RSM (Reynold’s 
Stress Model) was used by many researchers in 
the past to study the velocity flow characteristics 
in open channels [6-8]. Around two impervious 
spur dikes, the distribution of momentum as well as 
mass horizontally and vertically was done by using 
LES model (Large Eddy Simulation) [9].  Vaghefi 
et al. [10] used computational fluid dynamic (CFD) 
model to simulate that how water flows around a 
T-shaped barrier in a river bend, while considering 
nearby structures that either attract or repel the 
water. The simulation accurately predicted the 
average water velocities near the barrier, indicating 
its reliability for studying flow patterns around river 
bends with similar barriers. The results showed that 
the maximum shear stress on the barriers increased 
by 23.5 % for attractive structures and 17.6 % for 
repelling structures compared to vertical ones [10]. 
Karami et al. [11] worked on reduction of the erosion 
depth around a series of existing barriers in a river. 
They conducted experiments with an additional 
barrier placed upstream of the first one. They 
tested different designs by varying the size, length, 
angle, and spacing of the protective barriers under 
different water conditions. The results showed that 
a well-designed protective barrier can effectively 
reduce the maximum erosion depth around the 
main barriers, and specific design recommendations 
were provided based on the experiment’s findings. 
[11]. Ning et al. [12] examined how the spacing 
between spur dikes affects the depth of erosion 
and flow characteristics. They found that the 
greatest erosion occurs near the first spur dike, and 
increasing spacing reduces its protective effect. The 
bed shear stress significantly influences the erosion 
process, as evidenced by correlation analysis. This 
factor also helps establish the optimal spacing 
for spur dikes, given that within the primary flow 
area, the maximum flow velocity is twice that of 
the incoming velocity. [12]. Esmaeli et al. [13] 
conducted a study to explore how modifying 
flow patterns through the use of spur dikes can 
help control erosion and protect river banks. The 
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study encompassed the creation of a laboratory 
meandering channel with the incorporation of five 
spur dikes, aiming to explore how erosion control 
is influenced by variations in both permeability 
and length [13]. Bora and Kalita [14] formulated 
a simulation-optimization framework aimed at 
identifying the most effective arrangement of 
groynes concerning their quantity, dimensions, 
and placements. This approach was designed to 
manage riverbank erosion successfully. The model 
minimizes construction costs while ensuring low 
flow speed in a specific zone to prevent erosion. 
The model utilizes the shallow water equations and 
a genetic algorithm for optimization, producing 
logical results and demonstrating its potential for 
real-world applications [14] lengths and positions 
for controlling bank erosion. The vulnerable bank 
is considered to be protected if a very small value 
of water flow speed is achieved on the near bank 
area. A linked simulation–optimization model 
is developed in this regard which minimizes the 
total construction cost of the groyne project. At 
the same time, a constraint in terms of low flow 
speed in a predefined zone is incorporated, which 
helps in bank erosion prevention. In the simulation 
model, the depth-averaged shallow water equations 
are solved using a finite difference scheme. The 
optimization problem is formulated in three different 
approaches to tackle different types of in situ field 
problems. Genetic algorithm (GA. Nayyer et al. 
[15] examined the flow characteristics around spur 
dikes of different shapes (I, L, T) arranged in series, 
both through experimental and numerical methods. 
It was determined that when employing a mix of 
(LTT) spur dikes, the most notable outcome was the 
reduction in velocity, shear stress, and turbulence 
intensity. This implies that the incorporation of 
different geometries in combination can effectively 
mitigate erosion and increase sedimentation 
amidst spur dikes [15]. Shamloo and Pirzadeh [16] 
investigated the behavior of subcritical flow around 
an indirect groyne by altering its installation angles. 
The objective was to analyze how these adjustments 
influence the extent of the separation zone that forms 
behind the groyne.  By employing 3D simulations 
within the Fluent software, researchers observed 
a substantial influence of the angle of groyne 
installation on separation length. These findings 
exhibited a strong agreement with experimental 
data. The observed separation length was roughly 
12 times that of a 0.3 m long impermeable 

groyne. The angle that yielded optimal results was 
approximately 5 degrees, as indicated by Shamloo 
and Pirzadeh [16].  Zhang et al. [17] performed a 
series of experiments to explore the effects of single 
spur dikes, both permeable and impermeable, on 
beds prone to erosion. Their results indicated that 
the impermeable spur dike caused a maximum scour 
depth around it that was 50 % greater in comparison 
to the permeable spur dike [17]. Yang et al. [18] 
explored how the arrangement of permeable spur 
dikes within a river bend influences the highest 
water depth upstream. Their research indicated that 
placing the spur dikes at the midpoint of the bend, 
oriented at a 75° angle, specifically where the dike 
met the outer bank of the bend, caused formation of 
the greatest maximum depth of water [18].

The previous studies have dealt only with 
changes in river’s morphology, pattern of mean 
velocity and resistance of flow  [19-20]. With 
bridge pier and single impervious spur dike, 
the characteristics of flow as well as changes in 
morphology can be examined [21 In mountainous 
regions, the impervious spur dike has the advantage 
of non-formation of recirculation region around it 
but a slow flow field on the downstream side. Other 
models i.e., k –ɛ (epsilon model) and LES model 
were utilized to determine the maximum turbulent 
kinetic energy and scour hole at and around an 
impervious spur dike  [9,17]. The reason of failure 
of impervious spur dike in alluvial rivers is scour 
hole of larger depth. It can be seen in Sangha 
Bridge Taunsa, Pakistan. All these models provide 
flow characteristics under specific conditions and 
do not provide information about recirculation 
zones behavior. In order to cope up with this, the 
present studies examine a model through we get 
complete information about the behavior of flow 
i.e., flow characteristics and recirculation zones 
behavior, by using different patches of dissimilar 
shapes at different positions within two impervious 
spur dikes.

2. METHODOLOGY

2.1 Equations for Numerical Simulation

The flow of water for the numerical simulation 
is assumed to be steady and incompressible. The 
Reynolds governing equations for numerical simu-
lation are given below:
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2.2 Open Channel Specifications

To simulate the water flow for the analysis, the 
geometry of rectangular open channel is shown in 
Figure 1. The length of the open channel is 56 cm 
and the width is 96 cm. The maximum flow height 
is 7 cm. The spur dikes of specifications (4 x 24 x 7) 
cm were placed perpendicular to the mainstream as 
shown in Figure 1. The rectangular spur dikes are of 
impermeable nature which means that flow cannot 
pass through them. Within the field of impermeable 
spur dikes, vegetation patches (24 x 12 x 7) cm 
were placed at three positions bottom, middle and 
top. At each position, the arrangement and shapes 
were changed to investigate the displacement of 
recirculation region. The specifications for different 
shapes i.e., circular, prism, rectangular and different 
arrangements are shown in Figures 2-4.

The model was investigated such that each shape 
was placed at every position with both arrangements. 
So, for a total of 18 cases, the displacement of 
recirculation region was investigated through 
Reynold’s stress turbulence model developed by 
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successfully. The model minimizes construction costs 
while ensuring low flow speed in a specific zone to 
prevent erosion. The model utilizes the shallow water 
equations and a genetic algorithm for optimization, 
producing logical results and demonstrating its 
potential for real-world applications [14]. Nayyer et 
al. [15] examined the flow characteristics around spur 
dikes of different shapes (I, L, T) arranged in series, 
both through experimental and numerical methods. It 
was determined that when employing a mix of (LTT) 
spur dikes, the most notable outcome was the 
reduction in velocity, shear stress, and turbulence 
intensity. This implies that the incorporation of 
different geometries in combination can effectively 
mitigate erosion and increase sedimentation amidst 
spur dikes [15]. Shamloo and Pirzadeh [16] 
investigated the behavior of subcritical flow around 
an indirect groyne by altering its installation angles. 
The objective was to analyze how these adjustments 
influence the extent of the separation zone that forms 
behind the groyne.  By employing 3D simulations 
within the Fluent software, researchers observed a 
substantial influence of the angle of groyne 
installation on separation length. These findings 
exhibited a strong agreement with experimental data. 
The observed separation length was roughly 12 times 
that of a 0.3 m long impermeable groyne. The angle 
that yielded optimal results was approximately 5 
degrees, as indicated by Shamloo and Pirzadeh [16].  
Zhang et al. [17] performed a series of experiments to 
explore the effects of single spur dikes, both 
permeable and impermeable, on beds prone to 
erosion. Their results indicated that the impermeable 
spur dike caused a maximum scour depth around it 
that was 50 % greater in comparison to the permeable 
spur dike [17]. Yang et al. [18] explored how the 
arrangement of permeable spur dikes within a river 
bend influences the highest water depth upstream. 
Their research indicated that placing the spur dikes at 
the midpoint of the bend, oriented at a 75° angle, 
specifically where the dike met the outer bank of the 
bend, caused formation of the greatest maximum 
depth of water [18]. 

The previous studies have dealt only with 
changes in river’s morphology, pattern of mean 
velocity and resistance of flow  [19-20]. With bridge 
pier and single impervious spur dike, the 
characteristics of flow as well as changes in 
morphology can be examined [21]. In mountainous 
regions, the impervious spur dike has the advantage 

of non-formation of recirculation region around it but 
a slow flow field on the downstream side. Other 
models i.e., k –ɛ (epsilon model) and LES model were 
utilized to determine the maximum turbulent kinetic 
energy and scour hole at and around of an impervious 
spur dike  [9,17]. The reason of failure of impervious 
spur dike in alluvial rivers is scour hole of larger 
depth. It can be seen in Sangha Bridge Taunsa, 
Pakistan. All these models provide flow 
characteristics under specific conditions and do not 
provide information about recirculation zones 
behavior. In order to cope up with this, the present 
studies examine a model through we get complete 
information about the behavior of flow i.e., flow 
characteristics and recirculation zones behavior, by 
using different patches of dissimilar shapes at 
different positions within two impervious spur dikes. 

2. METHODOLOGY 

2.1 Equations for Numerical Simulation 

The flow of water for the numerical simulation is 
assumed to be steady and incompressible. The 
Reynolds governing equations for numerical 
simulation are given below: 

The Continuity equation is: 

𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 

The Momentum equation is: 

𝑈𝑈𝑗𝑗
𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
(𝑈𝑈𝑖𝑖) = 𝑣𝑣

𝜌𝜌
𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
(𝜕𝜕𝑈𝑈𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗
+

𝜕𝜕𝑈𝑈𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

) − 1
𝜌𝜌

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

+ (−𝜌𝜌𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗) 

where 𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕  is the rate of change of Reynolds 

stresses, 𝐶𝐶𝑖𝑖𝑗𝑗 represents the convective transport, 𝜕𝜕𝑖𝑖𝑗𝑗 
signifies the generation rate of Reynolds 
stresses, 𝐷𝐷𝑖𝑖𝑗𝑗 accounts for stress transport due to 
diffusion, 𝜀𝜀𝑖𝑖𝑗𝑗 reflects the rate at which stresses 
dissipate, Π𝑖𝑖𝑗𝑗 characterizes the distribution of stresses 
resulting from interactions between turbulent pressure 
and strain and Ω𝑖𝑖𝑗𝑗 denotes the distribution of stresses 
due to rotational effects. where Ui and Uj stands for 
the time-averaged velocity component along the xi 
and xy direction, v and ρ are the kinematic viscosity 
and density of the water respectively, P corresponds 
to pressure, and −ρuiuj corresponds to the Reynolds 
stresses. The convective term is as follows: 
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𝐶𝐶𝑖𝑖𝑖𝑖 =
𝜕𝜕(𝜌𝜌𝑈𝑈𝑘𝑘�́�𝑢𝑖𝑖�́�𝑢𝑖𝑖 )

𝜕𝜕𝑥𝑥𝑘𝑘
 

The production term is: 

𝑃𝑃𝑖𝑖𝑖𝑖 = −(𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

) 

The representation of the diffusion term is structured 
as follows: 

𝐷𝐷𝑖𝑖𝑖𝑖 = 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝑣𝑣𝑡𝑡
𝜎𝜎𝑘𝑘

𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

) 

where, 𝑣𝑣𝑡𝑡 = 𝐶𝐶𝜇𝜇
𝑘𝑘2
𝜀𝜀  , 𝐶𝐶𝜇𝜇 = 0.09 and 𝜎𝜎𝑘𝑘 = 1.0. 

The representation of the dissipation rate is 
structured as follows: 

𝜀𝜀𝑖𝑖𝑖𝑖 = 2
3 𝜀𝜀𝛿𝛿𝑖𝑖𝑖𝑖 

where 𝜀𝜀 symbolizes the rate of dissipation of turbulent 
kinetic energy and 𝛿𝛿𝑖𝑖𝑖𝑖 corresponds to the Kronecker 
delta. This delta 𝛿𝛿𝑖𝑖𝑖𝑖  is equal to 1 when i equals j, and 
it is 0 when i is not equal to j. 

∏ =
𝑖𝑖𝑖𝑖

− 𝐶𝐶1
𝜀𝜀
𝑘𝑘 (𝑅𝑅𝑖𝑖𝑖𝑖 − 2

3 𝑘𝑘𝑆𝑆𝑖𝑖𝑖𝑖) − 𝐶𝐶2(𝑃𝑃𝑖𝑖𝑖𝑖 − 2
3 𝑃𝑃𝛿𝛿𝑖𝑖𝑖𝑖) 

where 𝐶𝐶1 and 𝐶𝐶2 are 1.8 and 0.6, respectively. The 
turbulent kinetic energy k can be represented through 
the summation of three normal stresses: 

𝑘𝑘 = 1
2 (𝑢𝑢ˊ𝑖𝑖

2 + 𝑢𝑢 �́�𝑖
2 + 𝑢𝑢ˊ𝑘𝑘

2 ) 

The term of the rotation is given by: 

Ω𝑖𝑖𝑖𝑖 = −2𝜔𝜔𝑘𝑘(�́�𝑢𝑖𝑖�́�𝑢𝑖𝑖𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖 + �́�𝑢𝑖𝑖�́�𝑢𝑖𝑖𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖) 

The symbol 𝜔𝜔𝑘𝑘  represents the rotational vector, 
while 𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘is known as the alternating symbol. This 
symbol 𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘 takes on a value of +1 when the indices i, 
j, and k follow a cyclic order and are distinct from 
each other. Conversely, when the indices i, j, and k 
are distinct but follow an anti-cyclic order, the 
alternating symbol 𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘 equals to -1. When any two 
indices among i, j, and k are identical, the alternating 
symbol takes on a value of 0.  

2.2 Open Channel Specifications 

To simulate the water flow for the analysis, the 
geometry of rectangular open channel is shown in 

Figure 1. The length of the open channel is 56 cm and 
the width is 96 cm. The maximum flow height is 7 
cm. The spur dikes of specifications (4 x 24 x 7) cm 
were placed perpendicular to the mainstream as 
shown in Figure 1. The rectangular spur dikes are of 
impermeable nature which means that flow cannot 
pass through them. Within the field of impermeable 
spur dikes, vegetation patches (24 x 12 x 7) cm were 
placed at three positions bottom, middle and top. At 
each position, the arrangement and shapes were 
changed to investigate the displacement of 
recirculation region. The specifications for different 
shapes i.e., circular, prism, rectangular and different 
arrangements are shown in Figures 2-4. 

The model was investigated such that each shape 
was placed at every position with both arrangements. 
So, for a total of 18 cases, the displacement of 
recirculation region was investigated through 
Reynold’s stress turbulence model developed by three 
dimensional (3-D) numerical code FLUENT 
(ANSYS). At positions L1 (top), L2 (middle) and L3 
(bottom) shown in Figures 2-4, the mean stream wise 

velocity profiles were drawn and at mid of flow depth 
i.e., 3.5 cm, a horizontal plane is made cut through the 
open channel for analyzing velocity contours and 
streamline flow.  
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Fig. 1. Arrangement for numerical simulation 
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𝐶𝐶𝑖𝑖𝑖𝑖 =
𝜕𝜕(𝜌𝜌𝑈𝑈𝑘𝑘�́�𝑢𝑖𝑖�́�𝑢𝑖𝑖 )

𝜕𝜕𝑥𝑥𝑘𝑘
 

The production term is: 

𝑃𝑃𝑖𝑖𝑖𝑖 = −(𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

) 

The representation of the diffusion term is structured 
as follows: 

𝐷𝐷𝑖𝑖𝑖𝑖 = 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝑣𝑣𝑡𝑡
𝜎𝜎𝑘𝑘

𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

) 

where, 𝑣𝑣𝑡𝑡 = 𝐶𝐶𝜇𝜇
𝑘𝑘2
𝜀𝜀  , 𝐶𝐶𝜇𝜇 = 0.09 and 𝜎𝜎𝑘𝑘 = 1.0. 

The representation of the dissipation rate is 
structured as follows: 

𝜀𝜀𝑖𝑖𝑖𝑖 = 2
3 𝜀𝜀𝛿𝛿𝑖𝑖𝑖𝑖 

where 𝜀𝜀 symbolizes the rate of dissipation of turbulent 
kinetic energy and 𝛿𝛿𝑖𝑖𝑖𝑖 corresponds to the Kronecker 
delta. This delta 𝛿𝛿𝑖𝑖𝑖𝑖  is equal to 1 when i equals j, and 
it is 0 when i is not equal to j. 

∏ =
𝑖𝑖𝑖𝑖

− 𝐶𝐶1
𝜀𝜀
𝑘𝑘 (𝑅𝑅𝑖𝑖𝑖𝑖 − 2

3 𝑘𝑘𝑆𝑆𝑖𝑖𝑖𝑖) − 𝐶𝐶2(𝑃𝑃𝑖𝑖𝑖𝑖 − 2
3 𝑃𝑃𝛿𝛿𝑖𝑖𝑖𝑖) 

where 𝐶𝐶1 and 𝐶𝐶2 are 1.8 and 0.6, respectively. The 
turbulent kinetic energy k can be represented through 
the summation of three normal stresses: 

𝑘𝑘 = 1
2 (𝑢𝑢ˊ𝑖𝑖

2 + 𝑢𝑢 �́�𝑖
2 + 𝑢𝑢ˊ𝑘𝑘

2 ) 

The term of the rotation is given by: 

Ω𝑖𝑖𝑖𝑖 = −2𝜔𝜔𝑘𝑘(�́�𝑢𝑖𝑖�́�𝑢𝑖𝑖𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖 + �́�𝑢𝑖𝑖�́�𝑢𝑖𝑖𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖) 

The symbol 𝜔𝜔𝑘𝑘  represents the rotational vector, 
while 𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘is known as the alternating symbol. This 
symbol 𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘 takes on a value of +1 when the indices i, 
j, and k follow a cyclic order and are distinct from 
each other. Conversely, when the indices i, j, and k 
are distinct but follow an anti-cyclic order, the 
alternating symbol 𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘 equals to -1. When any two 
indices among i, j, and k are identical, the alternating 
symbol takes on a value of 0.  

2.2 Open Channel Specifications 

To simulate the water flow for the analysis, the 
geometry of rectangular open channel is shown in 

Figure 1. The length of the open channel is 56 cm and 
the width is 96 cm. The maximum flow height is 7 
cm. The spur dikes of specifications (4 x 24 x 7) cm 
were placed perpendicular to the mainstream as 
shown in Figure 1. The rectangular spur dikes are of 
impermeable nature which means that flow cannot 
pass through them. Within the field of impermeable 
spur dikes, vegetation patches (24 x 12 x 7) cm were 
placed at three positions bottom, middle and top. At 
each position, the arrangement and shapes were 
changed to investigate the displacement of 
recirculation region. The specifications for different 
shapes i.e., circular, prism, rectangular and different 
arrangements are shown in Figures 2-4. 

The model was investigated such that each shape 
was placed at every position with both arrangements. 
So, for a total of 18 cases, the displacement of 
recirculation region was investigated through 
Reynold’s stress turbulence model developed by three 
dimensional (3-D) numerical code FLUENT 
(ANSYS). At positions L1 (top), L2 (middle) and L3 
(bottom) shown in Figures 2-4, the mean stream wise 

velocity profiles were drawn and at mid of flow depth 
i.e., 3.5 cm, a horizontal plane is made cut through the 
open channel for analyzing velocity contours and 
streamline flow.  
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Fig. 3. Prism middle patch with 
staggered arrangement

Fig. 2. Rectangular top patch with linear 
arrangement

Fig. 1. Arrangement for numerical simulation
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𝜀𝜀  , 𝐶𝐶𝜇𝜇 = 0.09 and 𝜎𝜎𝑘𝑘 = 1.0. 

The representation of the dissipation rate is 
structured as follows: 

𝜀𝜀𝑖𝑖𝑖𝑖 = 2
3 𝜀𝜀𝛿𝛿𝑖𝑖𝑖𝑖 

where 𝜀𝜀 symbolizes the rate of dissipation of turbulent 
kinetic energy and 𝛿𝛿𝑖𝑖𝑖𝑖 corresponds to the Kronecker 
delta. This delta 𝛿𝛿𝑖𝑖𝑖𝑖  is equal to 1 when i equals j, and 
it is 0 when i is not equal to j. 
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where 𝐶𝐶1 and 𝐶𝐶2 are 1.8 and 0.6, respectively. The 
turbulent kinetic energy k can be represented through 
the summation of three normal stresses: 

𝑘𝑘 = 1
2 (𝑢𝑢ˊ𝑖𝑖

2 + 𝑢𝑢 �́�𝑖
2 + 𝑢𝑢ˊ𝑘𝑘
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The term of the rotation is given by: 
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The symbol 𝜔𝜔𝑘𝑘  represents the rotational vector, 
while 𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘is known as the alternating symbol. This 
symbol 𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘 takes on a value of +1 when the indices i, 
j, and k follow a cyclic order and are distinct from 
each other. Conversely, when the indices i, j, and k 
are distinct but follow an anti-cyclic order, the 
alternating symbol 𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘 equals to -1. When any two 
indices among i, j, and k are identical, the alternating 
symbol takes on a value of 0.  

2.2 Open Channel Specifications 

To simulate the water flow for the analysis, the 
geometry of rectangular open channel is shown in 

Figure 1. The length of the open channel is 56 cm and 
the width is 96 cm. The maximum flow height is 7 
cm. The spur dikes of specifications (4 x 24 x 7) cm 
were placed perpendicular to the mainstream as 
shown in Figure 1. The rectangular spur dikes are of 
impermeable nature which means that flow cannot 
pass through them. Within the field of impermeable 
spur dikes, vegetation patches (24 x 12 x 7) cm were 
placed at three positions bottom, middle and top. At 
each position, the arrangement and shapes were 
changed to investigate the displacement of 
recirculation region. The specifications for different 
shapes i.e., circular, prism, rectangular and different 
arrangements are shown in Figures 2-4. 

The model was investigated such that each shape 
was placed at every position with both arrangements. 
So, for a total of 18 cases, the displacement of 
recirculation region was investigated through 
Reynold’s stress turbulence model developed by three 
dimensional (3-D) numerical code FLUENT 
(ANSYS). At positions L1 (top), L2 (middle) and L3 
(bottom) shown in Figures 2-4, the mean stream wise 

velocity profiles were drawn and at mid of flow depth 
i.e., 3.5 cm, a horizontal plane is made cut through the 
open channel for analyzing velocity contours and 
streamline flow.  
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3. RESULTS AND DISCUSSION 

3.1 Mean Flow Characteristics 

The mean stream wise velocity profiles for the total 
of 18 cases at the selected positions L1 (top), L2 
(middle) and L3 (bottom) shown in Figures 2-4 are 
presented in Figure 5. From Figure 5, it can be clearly 
seen that at a certain position irrespective of the shape 
and arrangement of vegetation patch, the velocity 
profiles are somewhat similar. In other words, the 
shape and arrangement of the vegetation patch does 
not have significant influence on the velocity profile 
at a certain position. However, by changing the 
position of the vegetation patch, all three shapes and 
their respective arrangements show a change in the 
velocity profile. In Figure 5 (a-i) i.e., at the bottom 
position of the patch, all three shapes follow a similar 
velocity profile. The velocity at the upstream side is 
quite high than the downstream side, also within the 
field of impermeable spur dikes, the velocities are 
quite low. In Figure 5 (a-ii) for the staggered 
arrangement there is little variation in all three 
velocity profiles against each other with the prism 
shape showing the highest velocity profile. Also, 
within the field of impermeable spur dikes, the 
fluctuations are more than with the linear arrangement 
with the prism shape showing more fluctuations than 
circular and rectangular shapes. In Figure 5 (b-i) i.e., 
at the middle position of the patch, the velocity 
profiles start at quite low values, then rapidly achieve 
peak velocities in comparison to the bottom position 
with the circular shape having the most peak velocity 
profile at both upstream and downstream side. In 
Figure 5 (b-ii), in case of staggered arrangement, all 
shapes follow the same trend for velocity profile 
similar to figure 5 (a-ii) but with the difference of 
having more peakedness added to the velocity 
profiles. In Figure 5 (c-i) i.e., at the top position, all 
three shapes show significant variation in velocity 
profiles at both upstream, downstream and within the 
field of impermeable spur dikes with the prism shape 
showing the most fluctuations throughout the stream 
flow and higher velocity than circular and rectangular 
shapes. In Figure 5 (c-ii), there is similar variation in 
the velocity profiles to that shown in 5 (c-i) but here, 
it can be concluded that out of all the 18 cases, this 
case where there is maximum velocity at both 
upstream and downstream side of the spur dikes and 
this highest velocity profile is shown by circular 
shape. Throughout all the cases the maximum 
velocity within the field of spur dike is of the order of 

Fig. 2. Rectangular top patch with linear arrangement 

Fig. 3. Prism middle patch with staggered arrangement 

Fig. 4. Circular bottom patch with linear arrangement 
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3. RESULTS AND DISCUSSION 

3.1 Mean Flow Characteristics 

The mean stream wise velocity profiles for the total 
of 18 cases at the selected positions L1 (top), L2 
(middle) and L3 (bottom) shown in Figures 2-4 are 
presented in Figure 5. From Figure 5, it can be clearly 
seen that at a certain position irrespective of the shape 
and arrangement of vegetation patch, the velocity 
profiles are somewhat similar. In other words, the 
shape and arrangement of the vegetation patch does 
not have significant influence on the velocity profile 
at a certain position. However, by changing the 
position of the vegetation patch, all three shapes and 
their respective arrangements show a change in the 
velocity profile. In Figure 5 (a-i) i.e., at the bottom 
position of the patch, all three shapes follow a similar 
velocity profile. The velocity at the upstream side is 
quite high than the downstream side, also within the 
field of impermeable spur dikes, the velocities are 
quite low. In Figure 5 (a-ii) for the staggered 
arrangement there is little variation in all three 
velocity profiles against each other with the prism 
shape showing the highest velocity profile. Also, 
within the field of impermeable spur dikes, the 
fluctuations are more than with the linear arrangement 
with the prism shape showing more fluctuations than 
circular and rectangular shapes. In Figure 5 (b-i) i.e., 
at the middle position of the patch, the velocity 
profiles start at quite low values, then rapidly achieve 
peak velocities in comparison to the bottom position 
with the circular shape having the most peak velocity 
profile at both upstream and downstream side. In 
Figure 5 (b-ii), in case of staggered arrangement, all 
shapes follow the same trend for velocity profile 
similar to figure 5 (a-ii) but with the difference of 
having more peakedness added to the velocity 
profiles. In Figure 5 (c-i) i.e., at the top position, all 
three shapes show significant variation in velocity 
profiles at both upstream, downstream and within the 
field of impermeable spur dikes with the prism shape 
showing the most fluctuations throughout the stream 
flow and higher velocity than circular and rectangular 
shapes. In Figure 5 (c-ii), there is similar variation in 
the velocity profiles to that shown in 5 (c-i) but here, 
it can be concluded that out of all the 18 cases, this 
case where there is maximum velocity at both 
upstream and downstream side of the spur dikes and 
this highest velocity profile is shown by circular 
shape. Throughout all the cases the maximum 
velocity within the field of spur dike is of the order of 

Fig. 2. Rectangular top patch with linear arrangement 

Fig. 3. Prism middle patch with staggered arrangement 

Fig. 4. Circular bottom patch with linear arrangement 

 

Fig. 4. Circular bottom patch with 
linear arrangement
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3. RESULTS AND DISCUSSION 

3.1 Mean Flow Characteristics 

The mean stream wise velocity profiles for the total 
of 18 cases at the selected positions L1 (top), L2 
(middle) and L3 (bottom) shown in Figures 2-4 are 
presented in Figure 5. From Figure 5, it can be clearly 
seen that at a certain position irrespective of the shape 
and arrangement of vegetation patch, the velocity 
profiles are somewhat similar. In other words, the 
shape and arrangement of the vegetation patch does 
not have significant influence on the velocity profile 
at a certain position. However, by changing the 
position of the vegetation patch, all three shapes and 
their respective arrangements show a change in the 
velocity profile. In Figure 5 (a-i) i.e., at the bottom 
position of the patch, all three shapes follow a similar 
velocity profile. The velocity at the upstream side is 
quite high than the downstream side, also within the 
field of impermeable spur dikes, the velocities are 
quite low. In Figure 5 (a-ii) for the staggered 
arrangement there is little variation in all three 
velocity profiles against each other with the prism 
shape showing the highest velocity profile. Also, 
within the field of impermeable spur dikes, the 
fluctuations are more than with the linear arrangement 
with the prism shape showing more fluctuations than 
circular and rectangular shapes. In Figure 5 (b-i) i.e., 
at the middle position of the patch, the velocity 
profiles start at quite low values, then rapidly achieve 
peak velocities in comparison to the bottom position 
with the circular shape having the most peak velocity 
profile at both upstream and downstream side. In 
Figure 5 (b-ii), in case of staggered arrangement, all 
shapes follow the same trend for velocity profile 
similar to figure 5 (a-ii) but with the difference of 
having more peakedness added to the velocity 
profiles. In Figure 5 (c-i) i.e., at the top position, all 
three shapes show significant variation in velocity 
profiles at both upstream, downstream and within the 
field of impermeable spur dikes with the prism shape 
showing the most fluctuations throughout the stream 
flow and higher velocity than circular and rectangular 
shapes. In Figure 5 (c-ii), there is similar variation in 
the velocity profiles to that shown in 5 (c-i) but here, 
it can be concluded that out of all the 18 cases, this 
case where there is maximum velocity at both 
upstream and downstream side of the spur dikes and 
this highest velocity profile is shown by circular 
shape. Throughout all the cases the maximum 
velocity within the field of spur dike is of the order of 

Fig. 2. Rectangular top patch with linear arrangement 

Fig. 3. Prism middle patch with staggered arrangement 

Fig. 4. Circular bottom patch with linear arrangement 

 

three dimensional (3-D) numerical code FLUENT 
(ANSYS). At positions L1 (top), L2 (middle) and 
L3 (bottom) shown in Figures 2-4, the mean stream 
wise velocity profiles were drawn and at mid of 
flow depth i.e., 3.5 cm, a horizontal plane is made 
cut through the open channel for analyzing velocity 
contours and streamline flow. 

3. RESULTS AND DISCUSSION

3.1 Mean Flow Characteristics

The mean stream wise velocity profiles for the total 
of 18 cases at the selected positions L1 (top), L2 
(middle) and L3 (bottom) shown in Figures 2-4 
are presented in Figure 5. From Figure 5, it can be 
clearly seen that at a certain position irrespective 
of the shape and arrangement of vegetation patch, 
the velocity profiles are somewhat similar. In other 
words, the shape and arrangement of the vegetation 
patch does not have significant influence on the 
velocity profile at a certain position. However, by 
changing the position of the vegetation patch, all 
three shapes and their respective arrangements 
show a change in the velocity profile. In Figure 
5 (a-i) i.e., at the bottom position of the patch, 
all three shapes follow a similar velocity profile. 
The velocity at the upstream side is quite high 
than the downstream side, also within the field of 
impermeable spur dikes, the velocities are quite 
low. In Figure 5 (a-ii) for the staggered arrangement 
there is little variation in all three velocity profiles 
against each other with the prism shape showing 
the highest velocity profile. Also, within the field of 
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impermeable spur dikes, the fluctuations are more 
than with the linear arrangement with the prism 
shape showing more fluctuations than circular and 
rectangular shapes. In Figure 5 (b-i) i.e., at the 
middle position of the patch, the velocity profiles 
start at quite low values, then rapidly achieve peak 
velocities in comparison to the bottom position with 
the circular shape having the most peak velocity 

profile at both upstream and downstream side. In 
Figure 5 (b-ii), in case of staggered arrangement, 
all shapes follow the same trend for velocity profile 
similar to figure 5 (a-ii) but with the difference 
of having more peakedness added to the velocity 
profiles. In Figure 5 (c-i) i.e., at the top position, all 
three shapes show significant variation in velocity 
profiles at both upstream, downstream and within 
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0.018 m/s which is quite low and can be the cause of 
recirculation regions formed within the field of 
impermeable spur dike.  
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Fig. 5. Mean stream-wise velocity profiles i.e., across channel width 56 cm, (a) Patch position bottom (b) Patch position 
middle (c) Patch position top, (i) Linear arrangement (ii) Staggered arrangement 

Fig. 5. Mean stream-wise velocity profiles i.e., across channel width 56 cm, (a) Patch position bottom 
(b) Patch position middle (c) Patch position top, (i) Linear arrangement (ii) Staggered arrangement
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the field of impermeable spur dikes with the prism 
shape showing the most fluctuations throughout the 
stream flow and higher velocity than circular and 
rectangular shapes. In Figure 5 (c-ii), there is similar 
variation in the velocity profiles to that shown in 5 
(c-i) but here, it can be concluded that out of all 
the 18 cases, this case where there is maximum 
velocity at both upstream and downstream side of 
the spur dikes and this highest velocity profile is 
shown by circular shape. Throughout all the cases 
the maximum velocity within the field of spur dike 
is of the order of 0.018 m/s which is quite low and 
can be the cause of recirculation regions formed 
within the field of impermeable spur dike. 

3.2 Velocity Streamlines Characteristics

Next the recirculation regions are shown with the 
help of streamlines drawn on a horizontal plane 

at 3.5 cm of the maximum flow depth of 7 cm. 
At 3.5 cm that is the mid of flow depth (7 cm) a 
horizontal plane is cut through the entire open 
channel to visualize and observe the velocity 
streamlines around the spur dikes and vegetation 
patches as shown in Figure 6.  The streamlines are 
shown for each shape at every position but only for 
linear arrangement as it is evident from the above 
discussion that the arrangement does not play 
significant role in altering the flow properties. The 
same streamlines can be assumed for the staggered 
arrangement. In Figure 6a, for the top patch position 
the recirculation region displaces as the shape of 
the vegetation patch is changed. In case of circular 
position, the recirculation region is somewhat in 
the middle of the field of impermeable spur dikes. 
As for rectangular shape, the recirculation is 
exactly at center and slightly above the middle of 
the field. While in the third case that is for prism Gillani et al 

 

           Fig. 6a. Patch position top with linear arrangement, Left (Circular), Middle (Rectangular), Right (Prism) 

Fig. 6b. Patch position middle with linear arrangement, Left (Circular), Middle (Rectangular), Right 
(Prism) 

Fig. 6c. Patch position bottom with linear arrangement, Left (Circular), Middle (Rectangular), Right  
(Prism) 
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           Fig. 6a. Patch position top with linear arrangement, Left (Circular), Middle (Rectangular), Right (Prism) 

Fig. 6b. Patch position middle with linear arrangement, Left (Circular), Middle (Rectangular), Right 
(Prism) 

Fig. 6c. Patch position bottom with linear arrangement, Left (Circular), Middle (Rectangular), Right  
(Prism) 

shape, there is a lot of turbulence, and more than 
one recirculation regions can be observed within 
the field of spur dikes. In Figure 6b, the position 
of recirculation region is same irrespective of the 
shape of vegetation patch for all three shapes the 
recirculation region is located in the middle of 
the field of impermeable spur dikes. However, the 
shape of recirculation region is not so prominent 
in case of the circular shape. In Figure 6c, for the 
bottom patch position, the location of recirculation 
region is identical for all three shapes i.e., top right 
corner of the field of two spur dikes. However, it 
can be noticed that for rectangular shape the shape 
of recirculation is bigger than for prism shape and 
that is in turn bigger than that for the circular shape.

4. CONCLUSION

The present investigation relates to study of 
the flow behavior in an open channel within 
impermeable spur dikes with vegetation patches of 
different shapes (circular, rectangular, prism) and 
arrangements (Linear and Staggered) laid in the 
field of the spur dikes at three different positions 
top, middle, and bottom. The main conclusions 
drawn out of this study are as following:

i. At a certain position irrespective of the shape 
and arrangement of vegetation patch, the ve-
locity profiles are somewhat similar. In other 
words, the shape and arrangement of the vege-
tation patch does not have significant influence 
on the velocity profile at a certain position. By 
altering the vegetation patch position, the cir-
cular, rectangular, and prism shapes, along with 

their respective arrangements, exhibit changes 
in velocity profiles.

ii. Throughout all the 18 cases discussed, the max-
imum velocity within the field of spur dike is of 
the order of 0.018 m/s due to the prism shape. 
This is quite low and can be the cause of recir-
culation zones within the region of spur dikes 
causing siltation.

iii. By changing the position of the vegetation 
patch, the location of recirculation region dis-
places within the field of impermeable spur 
dike. However, at a certain position, by chang-
ing the shapes and arrangement of vegetation 
patch, the location and shape of recirculation 
region is almost identical.
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Abstract:  Minimal neighbor designs minimize the bias raised due to the neighbor effects using the minimum number 
of experimental units. Minimal circular balanced and strongly balanced neighbour designs can be constructed only for 
odd v (number of treatments to be compared). For v even, minimal Quasi Rees and nearly strongly balanced neighbor 
designs are constructed. In this article, the construction procedures of these four classes are described. Catalogues 
of these designs in blocks of three different sizes are also presented which provide the readymade solution to the 
experimenters and researchers.
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1. INTRODUCTION 

Minimal balanced neighbor designs (BNDs) and 
minimal strongly BNDs (SBNDs) are considered 
to be economical designs to control the neighbor 
effects. The bias raised due to neighbor effects 
can be minimized with the use of BNDs [1-4]. 
Following are some important definitions. 

 ● If each treatment appears once as neighbor with 
all other treatments exactly once but does not 
appear as neighbor with itself, then the design 
is called minimal BND. 

 ● If each treatment appears once as neighbor with 
all other treatments including itself exactly 
once, then the design is called minimal SBND. 
Method of cyclic shifts (Rule I) produces 
minimal circular BNDs (MCBNDs) and 
minimal circular SBNDs (MCSBNDs) for v 
odd. 

 ● Design is called Quasi Rees neighbor design 
(QRND) if each treatment appears once as 
neighbor with other (v-2) treatments exactly 
once and (i) appear twice with only one 
treatment, (ii) does not appear as neighbor with 
itself. 

 ● Design is called minimal nearly SBND if each 

treatment appears once as neighbor with other 
(v-2) treatments exactly once and (i) appear 
twice with only one treatment, (ii) appear once 
as neighbor with itself except the treatment 
labeled as (v-1) which does not appear as its 
own neighbor. Method of cyclic shifts (Rule 
II) produces circular QRNDs (CQRNDs) and 
minimal circular nearly SBNDs (MCNSBNDs) 
for v even.

Rees [5] introduced MCBNDs in serology for v 
odd. Misra et al. [6] introduced generalized neighbor 
designs (GNDs). Azais et al. [2] constructed some 
circular BNDs (CBNDs) using border plots. Preece 
[7] constructed CQRNDs for some cases. Chaure and 
Misra [8] constructed some classes of GNDs. Jaggi 
et al. [9] constructed some partially BNDs. Nutan 
[10] constructed some families of GNDs. Kedia 
and Misra [11] constructed some series of circular 
GNDs (CGNDs). Ahmed et al. [12] constructed 
economical CGNDs. Iqbal et al. [13] constructed 
some classes of CBNDs using cyclic shifts. Akhtar 
et al. [14] constructed CBNDs for block of size five. 
Meitei [15] constructed new series of (i) CNBDs 
and (ii) one-sided CBNDs. Ahmed and Akhtar [16] 
constructed CBNDs for block of size six. Shehzad 
et al. [17] constructed CBNDs for some cases. 



Iqbal et al. [18] generated CGNDs for blocks of 
sizes three. Hamad and Hanif [19] developed two 
new procedures to construct non-directional two-
dimensional BNDs and partially BNDs. Jaggi et al. 
[20] described some methods to construct CBNDs 
and circular partially BNDs to estimate direct and 
neighbor effects of the treatments in blocks of equal 
and unequal block sizes. Singh [21] developed new 
series of universally optimal one-sided CBNDs. 
Meitei [22] presented a new series of universally 
optimal one-sided CBND with block size 5. Salam 
et al. [23] introduced MCNSBNDs in equal and 
two different block sizes. 
 

MCNSBNDs are important classes of neighbor 
designs to estimate the treatment effects and 
neighbor effects independently. Construction of 
these four important classes of neighbor designs 
will be an innovational work. In the present study, 
the construction procedures of these useful classes 
of neighbor designs are described. Catalogues of 
these designs in blocks of three different sizes are 
also presented for v ≤ 100.

2. METHOD OF CYCLIC SHIFTS

Iqbal [24] introduced a method of cyclic shifts 
which is simplified here for the construction of 
minimal CBNDs, minimal CSBNDs, minimal 
CQRNDs and minimal CNSBNDs.

2.1. Construction of MCBNDs and MCSBNDs

In this section, method of cyclic shifts (Rule I) is 
explained for the construction of MCBNDs and 
MCSBNDs.

In this section, method of cyclic shifts (Rule I) 
is explained for the construction of MCBNDs and 
MCSBNDs.

Rule I: Let Sj = [, ,…, ] be i sets of shifts, j = 1,
 2,…, i, w = 1, 2,…, ku -1.  

 ● If 1 ≤ ≤ v-1 and S* contains each of 1, 2, …, v-1 
exactly once, designs is MCBND.

 ● If 0 ≤ ≤ v-1 and S* contains each of 0, 1, 2, …, 
v-1 exactly once, designs is MCSBND.

Where S* contains:
i. Each element of sets Sj.
Sum (mod v) of all elements in each set Sj.
Complements of all elements in (i) & (ii), here 
complement of ‘a’ is ‘v-a’.

Example 2.1.1. S1 = [5,6,13,23], S2 = [7,8,9], S3 = 
[10,11] produce MCBND for v = 25, k1 = 5, k2 = 4, 
k3 = 3.

Use v (= 25) blocks for S1. Write 0, 1, …, v-1 
in first row. Complete 2nd row by adding 5 (mod 
25) to the 1st row elements respectively. Similarly 
add 6, 13, 23 (mod 25). Use 25 more blocks for S2 

Blocks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4
11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10
24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6
15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9
21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Table 1. MCBND generated from S1 = [5,6,13,23], S2 = [7,8,9], S3 = [10,11] for v = 25
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and 25 blocks for S3. Required MCBND is obtained 
through 75 blocks, see Table 1.

Example 2.1.2. S1 = [2,3,7,11], S2 = [4,5,6],S3 = 
[1,9] produce MCSBND for v = 23, k1 = 5, k2 = 4 
& k3 = 3.

2.2. Construction of CQRNDs and MCNSBNDs

In this section, method of cyclic shifts (Rule II) 
is explained for the construction of CQRNDs and 
MCNSBNDs. In Rule II, there will be at least one 
special set of shifts denoted by S = [q1, q2, …, q(k-2)]
t and contains (k-2) elements.  

Rule II: Let Sj = [, ,…, ] and Si+1 = [q(i+1)1, q(i+1)2, …, 
q(i+1)(kh-2)]t be (i+1) sets of shifts, j = 1, 2,…, i, w = 
1, 2,…, ku -1. 

 ● If 1 ≤ ≤ v-2 and S* contains each of 1, 2, …, v-2 
exactly once, designs is CQRND.

 ● If 0 ≤ ≤ v-2 and S* contains each of 0, 1, 2, …, 
v-2 exactly once, designs is MCNSBND.

Where S* contains:
i. Each element of sets Sj and Si+1.
ii. Sum mod(v-1) of all elements in each set Sj.
iii. Complements of all elements in (a) and (b), 

here complement of ‘a’ is ‘v-1-a’.

Example 2.2.2. S1 = [8,9,10,11,12], S2 = [4,5,6,7], 
S3 = [1,2]t produce MCNSBND for v = 26, k1 = 6, 
k2 = 5 & k3 = 4.

Use v-1 (= 25) blocks for S1. Write 0, 1, …, v-2 
in first row. Complete 2nd row by adding 8 (mod 25) 
to the 1st row elements respectively. Similarly add 
9, 10, 11, 12 (mod 25). Use 25 more blocks for S2 
and 25 blocks for S3. Required MCBND is obtained 
through 75 blocks, see Table 2.

Example 2.2.2. S1 = [3,4,5,6,7], S2 = [8,10,11,13], 
S3 = [1,9]t produce CQRND for v = 28, k1 = 6, k2 = 
5 & k3 = 4.

3. CATALOGUE OF MCBNDS

MCBNDs can be constructed for v = 2ik1+2k2+2k3+1; 
i integer, through method of cyclic shifts (Rule I) 
using i sets of shifts for k1, one each for k2 and k3. 
These (i+2) sets of shifts will be generated as:

 ● Consider S = [1, 2,…, m-1, m], where 
 ● Replace one or two values by their complements 

to make the sum of resultant S divisible by v, 
here complement of ‘a’ is ‘v-a’.

Divide the resultant S in i groups of k1 values and 
one group each of size k2 and k3 such that the sum 

Table 2. MCNSBND generated from S1 = [8,9,10,11,12], S2 = [4,5,6,7], S3 = [1,2]t for v = 26
Blocks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7
17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1
13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8
15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

Short running title 
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2.2. Construction of CQRNDs and MCNSBNDs 
 
In this section, method of cyclic shifts (Rule II) is 
explained for the construction of CQRNDs and 
MCNSBNDs. In Rule II, there will be at least one special 
set of shifts denoted by S = [q1, q2, …, q(k-2)]t and contains 
(k-2) elements.   
 
Rule II: Let Sj = [𝑞𝑞𝑗𝑗1, 𝑞𝑞𝑗𝑗2,…, 𝑞𝑞𝑗𝑗(k𝑢𝑢−1)] and Si+1 = [q(i+1)1, 

q(i+1)2, …, q(i+1)(kh-2)]t be (i+1) sets of shifts, j = 
1, 2,…, i, w = 1, 2,…, ku -1.  

• If 1 ≤ 𝑞𝑞𝑗𝑗𝑗𝑗 ≤ v-2 and S* contains each of 1, 2, …, v-
2 exactly once, designs is CQRND. 

• If 0 ≤ 𝑞𝑞𝑗𝑗𝑗𝑗 ≤ v-2 and S* contains each of 0, 1, 2, …, 
v-2 exactly once, designs is MCNSBND. 

 
Where S* contains: 

(a) Each element of sets Sj and Si+1. 
(b) Sum mod(v-1) of all elements in each set Sj. 
(c) Complements of all elements in (a) and (b), here 

complement of ‘a’ is ‘v-1-a’. 
 
Example 2.2.2. S1 = [8,9,10,11,12], S2 = [4,5,6,7], S3 = 
[1,2]t produce MCNSBND for v = 26, k1 = 6, k2 = 5 & 
k3 = 4. 
 
 

 

 

 

Use v-1 (= 25) blocks for S1. Write 0, 1, …, v-2 in first 
row. Complete 2nd row by adding 8 (mod 25) to the 1st 
row elements respectively. Similarly add 9, 10, 11, 12 
(mod 25). Use 25 more blocks for S2 and 25 blocks for 
S3. Required MCBND is obtained through 75 blocks, see 
Table 2. 

 
Example 2.2.2. S1 = [3,4,5,6,7], S2 = [8,10,11,13], S3 = 
[1,9]t produce CQRND for v = 28, k1 = 6, k2 = 5 & k3 = 
4. 
 
3. CATALOGUE OF MCBNDs 
 
MCBNDs can be constructed for v = 2ik1+2k2+2k3+1; i 
integer, through method of cyclic shifts (Rule I) using i 
sets of shifts for k1, one each for k2 and k3. These (i+2) 
sets of shifts will be generated as: 
• Consider S = [1, 2,…, m-1, m], where 𝑚𝑚 = 𝑣𝑣 − 1

2 . 

• Replace one or two values by their complements to 
make the sum of resultant S divisible by v, here 
complement of ‘a’ is ‘v-a’. 

Divide the resultant S in i groups of k1 values and one 
group each of size k2 and k3 such that the sum of every 
group is divisible by v. Then delete one (any) element 
from every group, the resultant will be (i+2) sets to 
generate required designs. 

 

 

 

 

 

 

 

 

 

 

Table 2. MCNSBND generated from S1 = [8,9,10,11,12], S2 = [4,5,6,7], S3 = [1,2]t for v = 26 
Blocks 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 
17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 
13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 
15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 
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of every group is divisible by v. Then delete one 
(any) element from every group, the resultant will 
be (i+2) sets to generate required designs.

Catalogue of MCBNDs in blocks of three different 
sizes for v = 2ik1+2k2+2k3+1, v ≤ 60, 5 ≤ k1 ≤ 10, 4 ≤ k2 
≤ 7, 3 ≤ k3 ≤ 6, where k3 < k2 < k1. 
v k1 k2 k3 Sets of Shifts
25 5 4 3 [5,6,13,23]+[7,8,9]+[10,11]
35 5 4 3 [2,6,8,18]+[12,13,14,28]+[9,10,11]

+[15,16]
45 5 4 3 [5,9,10,18]+[6,7,8,22]+[13,15,19,3

1]+
[11,16,17]+[20,21]

55 5 4 3 [3,14,16,20]+[7,9,10,23]+[8,12,13,
17]+
[18,19,27,31]+[11,21,22]+[25,26]

27 6 4 3 [3,6,8,13,22]+[7,9,10]+[11,12]
39 6 4 3 [4,5,7,8,12]+[9,10,15,16,22]+[11,1

3,14]+[18,19]
51 6 4 3 [3,5,7,12,22]+[8,9,17,21,41]+[14,1

5,16,18,26]+
[11,19,20]+[23,24]

29 7 4 3 [3,5,6,8,14,20]+[7,10,11]+[12,13]
43 7 4 3 [6,7,14,17,18,21]+[5,9,10,12,13,35

]+
[11,15,16]+[19,20]

57 7 4 3 [5,6,7,13,27,53]+[10,12,14,20,24,2
5]+
[15,16,17,18,19,21]+[11,22,23]+
[26,29]

31 8 4 3 [4,5,6,7,9,12,16]+[8,10,11]+[13,17]
47 8 4 3 [5,6,8,9,16,20,26]+[7,11,12,13,14,1

5,19]+
[10,17,18]+[22,24]

33 9 4 3 [5,6,7,8,10,13,16,31]+[9,11,12]+[1
4,15]

51 9 4 3 [5,6,7,8,9,16,22,26]+[12,13,14,15,1
7,18,21,41]+
[11,19,20]+[23,24]

35 10 4 3 [3,5,6,8,9,12,14,18,28]+[10,11,13]
+[15,16]

55 10 4 3 [3,5,6,7,8,9,12,27,31]+
[13,14,15,16,17,18,19,20,23]+
[11,21,22]+[25,26]

29 6 5 3 [5,6,11,14,20]+[3,7,8,10]+[12,13]
41 6 5 3 [11,12,16,17,21]+[7,8,10,13,38]+[2

,9,14,15]+
[18,19]

53 6 5 3 [5,6,7,9,23]+[12,16,21,22,27]+
[13,14,15,18,36]+[2,11,19,20]+[24
,25]

31 7 5 3 [5,6,7,11,12,17]+[3,8,9,10]+[13,16]
45 7 5 3 [6,7,13,18,19,22]+[8,9,10,12,17,31

]+
[2,11,15,16]+[20,21]

59 7 5 3 [2,3,5,6,13,29]+[8,9,10,14,22,48]+
[15,16,17,18,19,21]+[23,24,25,26]
+
[27,28]

33 8 5 3 [6,7,9,12,13,16,31]+[3,8,10,11]+[1
4,15]

49 8 5 3 [2,5,6,7,10,21,46]+[9,11,12,13,14,1
5,16]+
[18,19,20,24]+[22,23]

35 9 5 3 [5,6,8,10,13,14,18,28]+[2,9,11,12]
+[15,16]

53 9 5 3 [5,6,7,8,9,18,23,27]+[12,13,14,15,
16,21,22,36]+[2,11,19,20]+[24,25]

37 10 5 3 [2,3,5,6,7,8,9,14,19]+[11,13,15,25]
+[16,17]

57 10 5 3 [3,5,6,7,8,9,10,12,53]+ [13,14,15,1
6,17,18,19,21,27]+[22,23,24,25]+
[26,29]

33 7 6 3 [3,5,6,7,13,31]+[9,10,11,12,16]+[1
4,15]

47 7 6 3 [3,4,5,6,7,20]+[10,11,12,13,14,26]
+ [15,16,17,18,19]+[22,24]

35 8 6 3 [6,9,12,13,14,18,28]+[2,3,8,10,11]
+[15,16]

51 8 6 3 [3,5,6,8,15,22,41]+[9,11,12,13,14,1
6,26]+ [17,18,19,20,21]+[23,24]

37 9 6 3 [3,5,6,7,8,9,15,19]+[10,11,13,14,25
]+[16,17]

55 9 6 3 [3,6,7,8,9,17,27,31]+[10,11,12,13,
14,15,16,18]+[19,20,21,22,23]+[2
5,26]

39 10 6 3 [3,4,5,6,7,8,9,13,22]+[11,12,14,15,
16]+[18,19]

59 10 6 3 [5,6,7,8,9,10,16,26,29]+ [12,13,14,
15,17,18,19,20,48]+[21,22,23,24,2
5]+
[27,28]

37 8 7 3 [3,5,6,7,8,19,25]+[9,10,11,13,14,15
]+[16,17]

53 8 7 3 [2,3,5,6,7,8,21]+[10,11,12,13,14,15
,22]+ [18,19,20,23,27,36]+[24,25]

39 9 7 3 [4,5,6,7,8,9,14,22]+[10,11,12,13,15
,16]+[18,19]
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57 9 7 3 [6,7,9,10,11,15,24,27]+ [12,13,14,
16,17,18,25,53]+[8,19,20,21,22,23
]+
[26,29]

41 10 7 3 [5,6,7,8,9,10,17,21,38]+[11,12,13,1
4,15,16]+ [18,19]

31 6 5 4 [6,9,11,16,17]+[4,7,8,10]+[5,12,13]
43 6 5 4 [9,14,16,20,21]+[7,11,12,17,35]+[3

,10,13,15]+ [5,18,19]
55 6 5 4 [5,8,9,12,17]+[13,14,22,23,27]+ [1

5,16,18,20,31]+[6,7,19,21]+[3,25,
26]

33 7 5 4 [4,6,10,12,15,16]+[8,9,11,31]+[5,1
3,14]

47 7 5 4 [3,5,6,7,10,14]+[9,11,12,13,17,24]
+ [16,18,19,26]+[4,20,22]

35 8 5 4 [3,4,6,8,13,16,18]+[10,11,12,28]+[
5,14,15]

51 8 5 4 [6,7,11,15,16,17,26]+[3,8,9,12,13,1
4,41]+ [19,20,21,24]+[5,22,23]

37 9 5 4 [3,4,6,7,8,9,10,25]+[13,14,17,19]+
[5,15,16]

55 9 5 4 [5,6,7,8,9,18,22,31]+[10,11,12,13,
14,15,16,17]+[20,21,23,27]+[3,25,
26]

39 10 5 4 [3,5,6,7,8,9,10,13,15]+[12,14,19,22
]+[4,16,18]

59 10 5 4 [4,6,7,8,9,10,17,25,29]+ [12,13,14,
15,16,18,19,20,48]+[22,23,24,28]+
[5,26,27]

35 7 6 4 [3,4,6,9,18,28]+[10,11,12,13,16]+[
5,14,15]

49 7 6 4 [4,6,7,10,23,46]+[9,11,12,14,20,24
]+ [15,16,17,18,19]+[5,21,22]

37 8 6 4 [3,4,7,8,14,17,19]+[9,10,11,13,25]
+[5,15,16]

53 8 6 4 [4,6,7,12,22,25,27]+[9,10,13,14,15,
16,21]+ [11,18,19,20,36]+[5,23,24]

39 9 6 4 [3,5,6,7,8,10,15,22]+[11,12,13,14,1
9]+[4,16,18]

57 9 6 4 [6,7,8,14,24,27,29,53]+ [10,11,12,
13,15,16,17,18]+[19,20,21,22,23]+
[5,25,26]

41 10 6 4 [4,6,7,8,9,12,16,21,38]+[11,13,14,1
5,19]+ [5,17,18]

39 8 7 4 [3,5,6,7,14,19,22]+[9,10,11,12,13,1
5]+[4,16,18]

55 8 7 4 [ 4 , 5 , 7 , 1 2 , 2 2 , 2 7 , 3 1 ] + [ 1
0 , 1 1 , 1 3 , 1 4 , 1 5 , 1 6 , 2 3 ] + 
[9,17,18,19,20,21]+[3,25,26]

41 9 7 4 [6,7,8,9,11,19,21,38]+[10,12,13,14,
15,16]+ [5,17,18]

59 9 7 4 [4,6,7,8,9,24,28,29]+[13,14,15,16,
17,19,25,48]+[12,18,20,21,22,23]+
[5,26,27]

43 10 7 4 [4,6,7,9,10,14,20,21,35]+[11,12,13,
15,16,17]+ [5,18,19]

37 7 6 5 [4,6,9,16,17,19]+[8,10,11,13,25]+[
2,5,14,15]

51 7 6 5 [6,7,12,23,24,26]+[8,9,11,13,17,41
]+ [15,16,18,19,20]+[2,5,21,22]

39 8 6 5 [11,12,13,14,18,19,22]+[4,6,7,9,10
]+[2,5,15,16]

55 8 6 5 [ 5 , 6 , 7 , 9 , 2 2 , 2 7 , 3 1 ] + [ 1
0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 6 , 2 6 ] + 
[17,18,19,20,21]+[2,4,23,25]

41 9 6 5 [6,7,8,9,14,18,19,38]+[11,12,13,15,
21]+ [2,5,16,17]

59 9 6 5 [4,6,7,8,9,24,28,29]+[12,14,15,16,1
7,18,27,48]+[19,20,21,22,23]+
[2,5,25,26]

43 10 6 5 [4,6,7,9,10,16,19,20,35]+[12,13,14,
15,21]+ [2,5,17,18]

41 8 7 5 [6,7,10,18,19,21,38]+[9,11,12,13,1
4,15]+ [2,5,16,17]

57 8 7 5 [ 6 , 7 , 9 , 1 1 , 2 2 , 2 7 , 2 9 ] + [ 1
0 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 2 6 ] + 
[18,19,20,21,23,53]+[2,5,24,25]

43 9 7 5 [4,6,7,14,19,20,21,35]+[10,11,12,1
3,15,16]+ [2,5,17,18]

45 10 7 5 [4,7,8,9,10,20,21,22,31]+[11,12,13,
15,16,17]+ [2,5,18,19]

43 8 7 6 [3,4,5,6,10,21,35]+[9,11,12,13,14,2
0]+ [15,16,17,18,19]

59 8 7 6 [6,7,8,12,23,28,29]+[4,9,10,13,14,1
7,48]+ [16,18,19,20,21,22]+[15,24
,25,26,27]

45 9 7 6 [3,4,5,6,8,9,22,31]+[10,11,12,13,16
,21]+ [15,17,18,19,20]

47 10 7 6 [3,4,5,6,7,8,13,22,24]+[11,12,14,15
,16,17]+ [10,18,19,20,26]

4. CATALOGUE OF CQRNDS

CQRNDs can be constructed for v = 2ik1+2k2+2k3-2; 
i integer, through method of cyclic shifts (Rule II) 
using i sets of shifts for k1, one each for k2 and k3. 
These (i+2) sets of shifts will be generated as:

 ● Consider S = [1, 2,…, m-1, m], where
 ● Divide S into i groups of k1 values and one 

Short running title 
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39 8 6 5 [11,12,13,14,18,19,22]+[4,6,7,9,10]+[2,5,15,16] 
55 8 6 5 [5,6,7,9,22,27,31]+[10,11,12,13,14,16,26]+ 

[17,18,19,20,21]+[2,4,23,25] 
41 9 6 5 [6,7,8,9,14,18,19,38]+[11,12,13,15,21]+ 

[2,5,16,17] 
59 9 6 5 [4,6,7,8,9,24,28,29]+[12,14,15,16,17,18,27,48]+

[19,20,21,22,23]+ 
[2,5,25,26] 

43 10 6 5 [4,6,7,9,10,16,19,20,35]+[12,13,14,15,21]+ 
[2,5,17,18] 

41 8 7 5 [6,7,10,18,19,21,38]+[9,11,12,13,14,15]+ 
[2,5,16,17] 

57 8 7 5 [6,7,9,11,22,27,29]+[10,12,13,14,15,16,26]+ 
[18,19,20,21,23,53]+[2,5,24,25] 

43 9 7 5 [4,6,7,14,19,20,21,35]+[10,11,12,13,15,16]+ 
[2,5,17,18] 

45 10 7 5 [4,7,8,9,10,20,21,22,31]+[11,12,13,15,16,17]+ 
[2,5,18,19] 

43 8 7 6 [3,4,5,6,10,21,35]+[9,11,12,13,14,20]+ 
[15,16,17,18,19] 

59 8 7 6 [6,7,8,12,23,28,29]+[4,9,10,13,14,17,48]+ 
[16,18,19,20,21,22]+[15,24,25,26,27] 

45 9 7 6 [3,4,5,6,8,9,22,31]+[10,11,12,13,16,21]+ 
[15,17,18,19,20] 

47 10 7 6 [3,4,5,6,7,8,13,22,24]+[11,12,14,15,16,17]+ 
[10,18,19,20,26] 

 
4. CATALOGUE OF CQRNDs 
 
CQRNDs can be constructed for v = 2ik1+2k2+2k3-2; i 
integer, through method of cyclic shifts (Rule II) using i 
sets of shifts for k1, one each for k2 and k3. These (i+2) 
sets of shifts will be generated as: 
• Consider S = [1, 2,…, m-1, m], where 𝑚𝑚 = 𝑣𝑣 − 2

2 . 

• Divide S into i groups of k1 values and one group of 
k2 values such that the sum of every group is 
divisible by v-1. Then delete one (any) element from 
every group, the resultant will be (i+1) sets.  

Catalogue of CQRNDs in blocks of sizes three for v = 
2ik1+2k2+2k3-2, v ≤ 60, 6 ≤ k1 ≤ 10, 5 ≤ k2 ≤ 7, 4 ≤ k3 ≤ 
6, where k3 < k2 < k1. 

v k1 k2 k3 Sets of Shifts 
28 6 5 4 [3,4,5,6,7]+[8,10,11,13]+[1,9]t 
40 6 5 4 [4,5,6,9,12]+[2,7,8,10,11]+[14,16,17,18]+ 

[15,19]t 
52 6 5 4 [4,5,6,9,24]+[7,8,10,11,13]+[14,15,17,19,25]+ 

[20,21,22,23]+[1,18]t 
30 7 5 4 [5,6,8,11,12,13]+[2,7,9,10]+[4,14]t 
44 7 5 4 [3,4,5,6,10,13]+[8,9,11,12,19,20]+ 

[16,17,18,21]+[1,15]t 
58 7 5 4 [3,4,5,7,9,27]+[11,12,13,19,21,28]+ 

[14,15,16,17,18,26]+[22,23,24,25]+ 
[1,6]t 

32 8 5 4 [4,5,6,7,10,13,14]+[2,8,9,11]+[12,15]t 

48 8 5 4 [2,3,5,6,7,8,15]+[9,10,11,12,13,14,21]+ 
[17,19,20,22]+[18,23]t 

34 9 5 4 [4,5,6,7,8,9,10,15]+[12,13,14,16]+[1,3]t 
52 9 5 4 [5,6,7,8,9,14,24,25]+[3,10,11,12,13,15,17,19]+ 

[20,21,22,23]+[1,18]t 
36 10 5 4 [3,4,5,6,7,8,9,10,16]+[13,14,15,17]+[1,12]t 
56 10 5 4 [2,3,4,5,6,7,8,9,10]+ 

[12,13,14,15,17,18,19,20,26]+ 
[22,23,24,25]+[21,27]t 

32 7 6 4 [1,2,3,5,6,10]+[7,9,11,13,14]+[12,15]t 
46 7 6 4 [1,2,4,7,8,20]+[9,11,12,13,14,21]+ 

[5,16,17,18,19]+[6,22]t 
60 7 6 4 [4,5,6,8,10,14]+[3,11,13,27,28,29]+ 

[9,16,17,19,20,22]+[2,23,24,25,26]+ 
[1,21]t 

34 8 6 4 [2,5,6,7,11,15,16]+[8,10,12,13,14]+[1,3]t 
50 8 6 4 [2,4,6,10,22,23,24]+[9,11,12,13,14,15,16]+ 

[3,18,19,20,21]+[1,5]t 
36 9 6 4 [2,4,5,7,8,9,13,16]+[3,11,14,15,17]+[1,12]t 
54 9 6 4 [3,4,6,8,13,18,24,25]+[2,10,11,12,14,15,16,17]+

[1,20,21,22,23]+[7,26]t 
38 10 6 4 [1,2,4,6,7,8,10,16,17]+[9,12,13,14,15]+[5,18]t 
58 10 6 4 [3,4,5,7,8,9,13,27,28]+ 

[11,14,15,16,17,18,19,23,26]+[2,21,22,24,25]+ 
[1,6]t 

36 8 7 4 [3,4,5,8,11,16,17]+[2,7,10,13,14,15]+[1,12]t 
52 8 7 4 [4,5,6,7,22,23,24]+[8,9,13,14,15,16,17]+ 

[2,3,19,20,21,25]+[1,18]t 
38 9 7 4 [2,3,4,7,8,11,16,17]+[1,10,12,13,14,15]+[5,18]t 
56 9 7 4 [4,5,6,7,10,19,25,26]+[3,11,12,13,14,15,16,17]+

[1,2,20,22,23,24]+ [21,27]t 
40 10 7 4 [2,3,4,6,7,8,9,16,18]+[1,10,12,13,14,17]+ 

[15,19]t 
60 10 7 4 [4,5,6,7,8,9,12,28,29]+ 

[11,13,15,16,17,18,20,26,27]+ 
[2,3,22,23,24,25]+ 
[1,21]t 

48 7 6 5 [2,3,5,6,10,14]+[8,9,11,13,20,21]+ 
[4,15,18,19,22]+[1,17,23]t 

36 8 6 5 [4,5,6,8,9,15,16]+[3,11,13,14,17]+[1,2,10]t 
52 8 6 5 [3,4,5,6,15,22,24]+[8,10,11,12,13,14,25]+ 

[7,17,19,20,21]+[1,2,16]t 
38 9 6 5 [2,3,5,6,7,8,16,17]+[9,11,13,14,15]+[1,4,18]t 
56 9 6 5 [4,5,6,7,8,10,25,26]+[3,9,12,13,14,15,16,17]+ 

[2,21,22,23,24]+[1,20,27]t 
40 10 6 5 [2,3,4,5,6,7,8,16,17]+[9,11,13,15,18]+[1,14,19]t 
60 10 6 5 [4,5,6,7,8,9,10,27,28]+ 

[11,12,13,16,17,18,20,26,29]+[3,21,23,24,25]+ 
[1,2,19]t 

38 8 7 5 [3,5,6,7,8,16,17]+[2,9,10,13,14,15]+[1,4,18]t 
54 8 7 5 [4,5,7,8,10,24,25]+[3,11,12,14,15,16,22]+ 

[2,9,17,19,20,21]+[1,6,26]t 
40 9 7 5 [3,4,5,6,7,8,17,18]+[2,11,12,13,15,16]+ 

[1,14,19]t 
58 9 7 5 [7,8,9,17,24,25,27,28]+ 

[5,10,12,13,14,15,16,18]+[3,6,19,21,22,23]+ 
[1,2,4]t 

40 8 7 6 [4,5,6,7,8,16,17]+[3,9,10,13,14,18]+[1,2,12,19]t 

56 8 7 6 [5,6,7,8,12,24,25]+[9,10,11,13,15,16,22]+ 
[3,4,17,19,21,26]+[1,2,18,27]t 
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group of k2 values such that the sum of every 
group is divisible by v-1. Then delete one (any) 
element from every group, the resultant will be 
(i+1) sets. 

Catalogue of CQRNDs in blocks of sizes three for 
v = 2ik1+2k2+2k3-2, v ≤ 60, 6 ≤ k1 ≤ 10, 5 ≤ k2 ≤ 7, 
4 ≤ k3 ≤ 6, where k3 < k2 < k1.

v k1 k2 k3 Sets of Shifts
28 6 5 4 [3,4,5,6,7]+[8,10,11,13]+[1,9]t
40 6 5 4 [4,5,6,9,12]+[2,7,8,10,11]+[14,16,

17,18]+ [15,19]t
52 6 5 4 [4,5,6,9,24]+[7,8,10,11,13]+[14,1

5,17,19,25]+ [20,21,22,23]+[1,18]
t

30 7 5 4 [5,6,8,11,12,13]+[2,7,9,10]+[4,1
4]t

44 7 5 4 [3,4,5,6,10,13]+[8,9,11,12,19,20]+ 
[16,17,18,21]+[1,15]t

58 7 5 4 [3,4,5,7,9,27]+[11,12,13,19,21,28
]+ [14,15,16,17,18,26]+[22,23,24
,25]+
[1,6]t

32 8 5 4 [4,5,6,7,10,13,14]+[2,8,9,11]+[12
,15]t

48 8 5 4 [2,3,5,6,7,8,15]+[9,10,11,12,13,14
,21]+ [17,19,20,22]+[18,23]t

34 9 5 4 [4,5,6,7,8,9,10,15]+[12,13,14,16]
+[1,3]t

52 9 5 4 [5,6,7,8,9,14,24,25]+[3,10,11,12,1
3,15,17,19]+ [20,21,22,23]+[1,18]
t

36 10 5 4 [3,4,5,6,7,8,9,10,16]+[13,14,15,17
]+[1,12]t

56 10 5 4 [ 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 ] + 
[12,13,14,15,17,18,19,20,26]+ 
[22,23,24,25]+[21,27]t

32 7 6 4 [1,2,3,5,6,10]+[7,9,11,13,14]+[12
,15]t

46 7 6 4 [1,2,4,7,8,20]+[9,11,12,13,14,21]+ 
[5,16,17,18,19]+[6,22]t

60 7 6 4 [4,5,6,8,10,14]+[3,11,13,27,28,29
]+ [9,16,17,19,20,22]+[2,23,24,25
,26]+
[1,21]t

34 8 6 4 [2,5,6,7,11,15,16]+[8,10,12,13,14
]+[1,3]t

50 8 6 4 [2,4,6,10,22,23,24]+[9,11,12,13,1
4,15,16]+ [3,18,19,20,21]+[1,5]t

36 9 6 4 [2,4,5,7,8,9,13,16]+[3,11,14,15,17
]+[1,12]t

54 9 6 4 [3,4,6,8,13,18,24,25]+[2,10,11,12
,14,15,16,17]+[1,20,21,22,23]+[7
,26]t

38 10 6 4 [1,2,4,6,7,8,10,16,17]+[9,12,13,14
,15]+[5,18]t

58 10 6 4 [3,4,5,7,8,9,13,27,28]+ [11,14,15,
16,17,18,19,23,26]+[2,21,22,24,2
5]+
[1,6]t

36 8 7 4 [3,4,5,8,11,16,17]+[2,7,10,13,14,1
5]+[1,12]t

52 8 7 4 [4,5,6,7,22,23,24]+[8,9,13,14,15,
16,17]+ [2,3,19,20,21,25]+[1,18]t

38 9 7 4 [2,3,4,7,8,11,16,17]+[1,10,12,13,1
4,15]+[5,18]t

56 9 7 4 [4,5,6,7,10,19,25,26]+[3,11,12,13
,14,15,16,17]+[1,2,20,22,23,24]+ 
[21,27]t

40 10 7 4 [2,3,4,6,7,8,9,16,18]+[1,10,12,13,
14,17]+ [15,19]t

60 10 7 4 [ 4 , 5 , 6 , 7 , 8 , 9 , 1 2 , 2 8 , 2 9 ] + 
[11,13,15,16,17,18,20,26,27]+ 
[2,3,22,23,24,25]+
[1,21]t

48 7 6 5 [2,3,5,6,10,14]+[8,9,11,13,20,21]+ 
[4,15,18,19,22]+[1,17,23]t

36 8 6 5 [4,5,6,8,9,15,16]+[3,11,13,14,17]+
[1,2,10]t

52 8 6 5 [3,4,5,6,15,22,24]+[8,10,11,12,13,
14,25]+ [7,17,19,20,21]+[1,2,16]t

38 9 6 5 [2,3,5,6,7,8,16,17]+[9,11,13,14,15
]+[1,4,18]t

56 9 6 5 [ 4 , 5 , 6 , 7 , 8 , 1 0 , 2 5 , 2 6 ] + [ 3
, 9 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 ] + 
[2,21,22,23,24]+[1,20,27]t

40 10 6 5 [2,3,4,5,6,7,8,16,17]+[9,11,13,15,
18]+[1,14,19]t

60 10 6 5 [4,5,6,7,8,9,10,27,28]+ [11,12,13,
16,17,18,20,26,29]+[3,21,23,24,2
5]+
[1,2,19]t

38 8 7 5 [3,5,6,7,8,16,17]+[2,9,10,13,14,15
]+[1,4,18]t

54 8 7 5 [4,5,7,8,10,24,25]+[3,11,12,14,15,
16,22]+ [2,9,17,19,20,21]+[1,6,26]
t

40 9 7 5 [3,4,5,6,7,8,17,18]+[2,11,12,13,15
,16]+ [1,14,19]t

32 Fardos et al



58 9 7 5 [7,8,9,17,24,25,27,28]+ [5,10,12,1
3,14,15,16,18]+[3,6,19,21,22,23]+
[1,2,4]t

40 8 7 6 [4,5,6,7,8,16,17]+[3,9,10,13,14,18
]+[1,2,12,19]t

56 8 7 6 [ 5 , 6 , 7 , 8 , 1 2 , 2 4 , 2 5 ] + [ 9
, 1 0 , 1 1 , 1 3 , 1 5 , 1 6 , 2 2 ] + 
[3,4,17,19,21,26]+[1,2,18,27]t

60 9 7 6 [5,6,8,9,10,18,25,26]+ [12,13,14,1
5,17,22,28,29]+[4,7,19,21,23,24]+
[1,2,3,16]t

44 10 7 6 [5,6,7,8,9,18,19,20,21]+[4,11,12,1
4,15,17]+ [1,2,3,10]t

5. CATALOGUE OF MCSBNDS

MCSBNDs can be constructed for v = 
2ik1+2k2+2k3-1; i integer, through method of cyclic 
shifts (Rule I) using i sets of shifts for k1, one each 
for k2 and k3. These (i+2) sets of shifts are generated 
as: 

 ● Consider S = [0, 1, 2,…, m-1, m], where
 ● Replace one or two values with their 

complements to make the sum of resultant S 
divisible by v, here complement of ‘a’ is ‘v-a’.

 ● Divide resultant S in i groups of k1 values and 
one group each of size k2 and k3 such that the 
sum of every group is divisible of v. Then delete 
one (any) value from each group, the resultant 
will be (i+2) sets to generate MCSBNDs in 
blocks of three different sizes.

Catalogue of MCSBNDs in blocks of sizes three 
for v = 2ik1+2k2+2k3-1, v ≤ 60, 5 ≤ k1 ≤ 10, 4 ≤ k2 
≤ 7, 3 ≤ k3 ≤ 6, where k3 < k2 < k1. 
v k1 k2 k3 Sets of Shifts
23 5 4 3 [2,3,7,11]+[5,6,8]+[1,9]
33 5 4 3 [6, 13,16,31]+[5,7,8,10]+[9,11,12

]+[4,14]
43 5 4 3 [2,3,17,21]+[7,12,14,18]+[5,6,9,1

0]+
[11,15,16,]+[4,19]

53 5 4 3 [2,9,15,27]+[3,6,8,13]+[5,7,10,12
]+
[14,16,18,22]+[1,11,20]+[4,24]

25 6 4 3 [3,5,6,13,23]+[7,8,9]+[4,10]
37 6 4 3 [2,3,5,8,19]+[6,9,10,11,13]+[7,14,

15]+[4,16]
49 6 4 3 [2,8,10,11,18]+[5,6,9,13,19]+ [12,

14,15,16,17]+[7,20,21]+[4,22]

27 7 4 3 [1,2,6,10,13,22]+[7,8,9]+[11,12]                     
41 7 4 3 [2,5,6,10,21,38]+[8,9,12,13,16,17

]+ [11,14,15,]+[18,19]
55 7 4 3 [2,3,5,6,8,31]+[7,9,12,13,19,23]+ 

[10,14,15,16,17,18]+[11,21,22]+[
4,25]

29 8 4 3 [2,3,5,6,8,14,20]+[1,7,10]+[4,12]
45 8 4 3 [3,5,12,15,16,17,22]+[2,6,8,9,10,1

1,13]+ [1,7,18]+[4,20]
31 9 4 3 [3,4,5,6,7,812,17]+[9,10,11]+[13,

16]
49 9 4 3 [5,6,7,8,13,17,21,24]+ [2,9,10,12

,14,15,16,20]+[11,18,19]+[22,23]
33 10 4 3 [3,5,6,8,9,10,11,16,31]+[7,12,13]

+[14,15]
53 10 4 3 [2,3,5,6,8,14,20,21,27]+ [9,10,1

1,12,13,15,16,18,19]+[7,22,23]+ 
[4,24]

27 6 5 3 [1,2,3,8,13]+[6,7,9,10]+[11,12]
39 6 5 3 [1,4,5,7,22]+[11,12,14,15,16]+[3,

6,8,9]+ [18,19]
51 6 5 3 [1,2,14,15,19]+[7,8,11,13,22]+ [1

2,17,18,20,26]+[3,5,6,16]+[23,24]
29 7 5 3 [1,2,3,5,7,11]+[6,8,10,14]+[4,12]
43 7 5 3 [1,2,5,9,11,15]+[3,6,7,10,12,13]+ 

[14,16,17,18]+[4,19]
57 7 5 3 [1,3,6,7,13,27]+[5,9,10,11,12,14]

+ [8,15,16,17,18,19]+[22,23,24,2
5]+[2,26]

31 8 5 3 [4,5,6,7,11,12,17]+[3,8,9,10]+[2,
13]

47 8 5 3 [2,3,4,5,6,7,20]+[8,9,10,11,12,13,
14]+ [15,16,18,19]+[1,22]

33 9 5 3 [1,5,6,7,8,10,13,16]+[3,9,11,12]+
[4,14]

51 9 5 3 [2,5,6,7,8,11,22,41]+[1,3,9,12,13
,14,15,16]+ [17,18,20,21]+[4,23]

35 10 5 3 [1,2,3,5,6,8,13,14,18]+[9,10,11,12
]+[4,15]

55 10 5 3 [ 1 , 2 , 3 , 5 , 6 , 7 , 8 , 9 , 1 4 ] + 
[10,11,12,13,15,17,18,19,23]+ 
[16,20,21,22]+[4,25]

31 7 6 3 [2,3,4,5,6,16]+[7,8,9,10,12]+[1,1
3]

45 7 6 3 [1,2,3,6,11,22]+[7,8,9,10,12,13]+ 
[15,16,17,18,19]+[4,20]

59 7 6 3 [1,2,5,6,19,26]+[7,8,10,12,13,20]
+ [9,14,15,16,17,18]+[21,22,23,2
4,25]+
[27,28]

Author et al 

60 9 7 6 [5,6,8,9,10,18,25,26]+ 
[12,13,14,15,17,22,28,29]+[4,7,19,21,23,24]+ 
[1,2,3,16]t 

44 10 7 6 [5,6,7,8,9,18,19,20,21]+[4,11,12,14,15,17]+ 
[1,2,3,10]t 

 
5. CATALOGUE OF MCSBNDs 
 
MCSBNDs can be constructed for v = 2ik1+2k2+2k3-1; i 
integer, through method of cyclic shifts (Rule I) using i 
sets of shifts for k1, one each for k2 and k3. These (i+2) 
sets of shifts are generated as:  

• Consider S = [0, 1, 2,…, m-1, m], where 𝑚𝑚 = 𝑣𝑣 − 1
2 . 

• Replace one or two values with their complements 
to make the sum of resultant S divisible by v, here 
complement of ‘a’ is ‘v-a’. 

• Divide resultant S in i groups of k1 values and one 
group each of size k2 and k3 such that the sum of 
every group is divisible of v. Then delete one (any) 
value from each group, the resultant will be (i+2) 
sets to generate MCSBNDs in blocks of three 
different sizes. 

 
Catalogue of MCSBNDs in blocks of sizes three for v 
= 2ik1+2k2+2k3-1, v ≤ 60, 5 ≤ k1 ≤ 10, 4 ≤ k2 ≤ 7, 3 ≤ k3 
≤ 6, where k3 < k2 < k1.  

v k1 k2 k3 Sets of Shifts 

23 5 4 3 [2,3,7,11]+[5,6,8]+[1,9] 

33 5 4 3 [6, 13,16,31]+[5,7,8,10]+[9,11,12]+[4,14] 

43 5 4 3 [2,3,17,21]+[7,12,14,18]+[5,6,9,10]+ 
[11,15,16,]+[4,19] 

53 5 4 3 [2,9,15,27]+[3,6,8,13]+[5,7,10,12]+ 
[14,16,18,22]+[1,11,20]+[4,24] 

25 6 4 3 [3,5,6,13,23]+[7,8,9]+[4,10] 

37 6 4 3 [2,3,5,8,19]+[6,9,10,11,13]+[7,14,15]+[4,16] 

49 6 4 3 [2,8,10,11,18]+[5,6,9,13,19]+ 
[12,14,15,16,17]+[7,20,21]+[4,22] 

27 7 4 3 [1,2,6,10,13,22]+[7,8,9]+[11,12]                      

41 7 4 3 [2,5,6,10,21,38]+[8,9,12,13,16,17]+ 
[11,14,15,]+[18,19] 

55 7 4 3 [2,3,5,6,8,31]+[7,9,12,13,19,23]+ 
[10,14,15,16,17,18]+[11,21,22]+[4,25] 

29 8 4 3 [2,3,5,6,8,14,20]+[1,7,10]+[4,12] 

45 8 4 3 [3,5,12,15,16,17,22]+[2,6,8,9,10,11,13]+ 
[1,7,18]+[4,20] 

31 9 4 3 [3,4,5,6,7,812,17]+[9,10,11]+[13,16] 

49 9 4 3 [5,6,7,8,13,17,21,24]+ 
[2,9,10,12,14,15,16,20]+[11,18,19]+[22,23] 

33 10 4 3 [3,5,6,8,9,10,11,16,31]+[7,12,13]+[14,15] 

53 10 4 3 [2,3,5,6,8,14,20,21,27]+ 
[9,10,11,12,13,15,16,18,19]+[7,22,23]+ [4,24] 

27 6 5 3 [1,2,3,8,13]+[6,7,9,10]+[11,12] 

39 6 5 3 [1,4,5,7,22]+[11,12,14,15,16]+[3,6,8,9]+ 
[18,19] 

51 6 5 3 [1,2,14,15,19]+[7,8,11,13,22]+ 
[12,17,18,20,26]+[3,5,6,16]+[23,24] 

29 7 5 3 [1,2,3,5,7,11]+[6,8,10,14]+[4,12] 

43 7 5 3 [1,2,5,9,11,15]+[3,6,7,10,12,13]+ 
[14,16,17,18]+[4,19] 

57 7 5 3 [1,3,6,7,13,27]+[5,9,10,11,12,14]+ 
[8,15,16,17,18,19]+[22,23,24,25]+[2,26] 

31 8 5 3 [4,5,6,7,11,12,17]+[3,8,9,10]+[2,13] 

47 8 5 3 [2,3,4,5,6,7,20]+[8,9,10,11,12,13,14]+ 
[15,16,18,19]+[1,22] 

33 9 5 3 [1,5,6,7,8,10,13,16]+[3,9,11,12]+[4,14] 

51 9 5 3 [2,5,6,7,8,11,22,41]+[1,3,9,12,13,14,15,16]+ 
[17,18,20,21]+[4,23] 

35 10 5 3 [1,2,3,5,6,8,13,14,18]+[9,10,11,12]+[4,15] 

55 10 5 3 [1,2,3,5,6,7,8,9,14]+ 
[10,11,12,13,15,17,18,19,23]+ 
[16,20,21,22]+[4,25] 

31 7 6 3 [2,3,4,5,6,16]+[7,8,9,10,12]+[1,13] 

45 7 6 3 [1,2,3,6,11,22]+[7,8,9,10,12,13]+ 
[15,16,17,18,19]+[4,20] 

59 7 6 3 [1,2,5,6,19,26]+[7,8,10,12,13,20]+ 
[9,14,15,16,17,18]+[21,22,23,24,25]+ 
[27,28] 

35 9 6 3 [1,3,5,6,8,9,10,28]+[11,12,13,14,18]+[4,15] 

53 9 6 3 [1,2,3,5,7,9,10,16]+ [8,11,12,13,14,15,23,27]+ 
[6,18,19,20,21]+[4,24] 

29 6 5 4 [2,3,4,7,13]+[6,8,10,14]+[5,11,12] 

41 6 5 4 [2,4,7,12,16]+[6,8,9,10,11]+[13,14,15,19]+ 
[5,17,18] 

53 6 5 4 [2,3,4,19,25]+[6,7,8,9,10]+ 
[11,12,14,15,18]+[16,20,21,22]+[1,5,23] 

31 7 5 4 [2,3,4,6,7,9]+[8,10,11,16]+[5,12,13] 

45 7 5 4 [2,3,4,6,8,22]+[7,9,10,12,13,18]+ 
[11,15,16,17]+[5,19,20] 

59 7 5 4 [2,3,4,7,14,29]+[6,8,9,10,12,25]+ 
[13,15,16,17,18,19]+[21,22,23,24]+ 
[5,26,27] 

33 8 5 4 [3,4,6,10,12,15,16]+[7,8,9,11]+[5,13,14] 

49 8 5 4 [2,4,6,7,10,23,46]+[8,9,11,12,13,14,15]+ 
[18,19,20,24]+[5,21,22] 

35 9 5 4 [0,2,3,4,6,8,13,16,18]+[9,10,11,12,28]+ 
[1,5,14,15] 

53 9 5 4 [0,2,3,4,7,8,21,25,36]+  
[6,9,10,11,12,,13,14,15,16]+ 
[18,19,20,22,27]+[1,5,23,24] 

37 10 5 4 [2,4,6,7,8,9,10,11,17]+[3,13,14,19]+[1,5,15] 

57 10 5 4 [2,3,6,7,8,9,10,16,53]+ 
[11,12,13,14,15,17,18,19,23]+ 
[20,21,22,24]+[5,25,26] 

33 7 6 4 [3,4,6,7,15,31]+[8,9,10,11,12]+[5,13,14] 
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35 9 6 3 [1,3,5,6,8,9,10,28]+[11,12,13,14,1
8]+[4,15]

53 9 6 3 [ 1 , 2 , 3 , 5 , 7 , 9 , 1 0 , 1 6 ] + 
[ 8 , 11 , 1 2 , 1 3 , 1 4 , 1 5 , 2 3 , 2 7 ] + 
[6,18,19,20,21]+[4,24]

29 6 5 4 [2,3,4,7,13]+[6,8,10,14]+[5,11,12]
41 6 5 4 [2,4,7,12,16]+[6,8,9,10,11]+[13,1

4,15,19]+ [5,17,18]
53 6 5 4 [2,3,4,19,25]+[6,7,8,9,10]+ [11,12

,14,15,18]+[16,20,21,22]+[1,5,23]
31 7 5 4 [2,3,4,6,7,9]+[8,10,11,16]+[5,12,

13]
45 7 5 4 [2,3,4,6,8,22]+[7,9,10,12,13,18]+ 

[11,15,16,17]+[5,19,20]
59 7 5 4 [2,3,4,7,14,29]+[6,8,9,10,12,25]

+ [13,15,16,17,18,19]+[21,22,23,
24]+
[5,26,27]

33 8 5 4 [3,4,6,10,12,15,16]+[7,8,9,11]+[5
,13,14]

49 8 5 4 [2,4,6,7,10,23,46]+[8,9,11,12,13,1
4,15]+ [18,19,20,24]+[5,21,22]

35 9 5 4 [0,2,3,4,6,8,13,16,18]+[9,10,11,12
,28]+ [1,5,14,15]

53 9 5 4 [ 0 , 2 , 3 , 4 , 7 , 8 , 2 1 , 2 5 , 3 6 ] +  
[6,9,10,11,12,,13,14,15,16]+ 
[18,19,20,22,27]+[1,5,23,24]

37 10 5 4 [2,4,6,7,8,9,10,11,17]+[3,13,14,19
]+[1,5,15]

57 10 5 4 [ 2 , 3 , 6 , 7 , 8 , 9 , 1 0 , 1 6 , 5 3 ] + 
[11,12,13,14,15,17,18,19,23]+ 
[20,21,22,24]+[5,25,26]

33 7 6 4 [3,4,6,7,15,31]+[8,9,10,11,12]+[5
,13,14]

47 7 6 4 [1,4,5,6,7,24]+[8,10,11,12,13,14]
+ [15,16,17,18,19]+[2,3,20]

35 8 6 4 [2,3,4,6,9,18,28]+[8,10,11,12,13]
+[1,5,14]

51 8 6 4 [4,6,7,14,21,24,26]+[2,3,8,9,11,1
3,15]+ [16,17,18,19,20]+[1,5,22]

37 9 6 4 [2,3,4,7,8,14,17,19]+[6,9,10,11,13
]+[1,5,15]

55 9 6 4 [2,4,5,6,7,8,11,12]+ [9,13,14,15,
16,17,23,27]+[18,19,20,21,22]+ 
[1,3,25]

39 10 6 4 [2,3,5,6,7,8,10,15,22]+[11,12,13,1
4,19]+ [4,16,18]

59 10 6 4 [ 2 , 3 , 4 , 6 , 9 , 1 2 , 2 5 , 2 8 , 2 9 ] + 
[7,10,13,14,15,16,17,18,19]+ 
[20,21,22,23,24]+[5,26,27]

35 7 6 5 [2,3,4,5,9,12]+[6,8,11,16,28]+[10,
13,14,15]

49 7 6 5 [1,4,5,6,9,24]+[2,7,8,10,11,14]+ 
[13,15,16,17,18]+[20,21,22,23]

37 8 6 5 [1,2,3,5,6,7,13]+[4,8,9,11,17]+[10
,14,15,16]

53 8 6 5 [1,3,4,5,6,16,18]+[7,9,10,11,13,14
,15]+ [2,8,19,20,21]+[12,22,23,24]

39 9 6 5 [4,5,6,7,8,10,16,22]+[9,11,12,13,1
4]+ [1,2,3,15]

57 9 6 5 [ 1 , 2 , 3 , 5 , 6 , 7 , 8 , 2 9 , 5 3 ] + 
[[0,9,10,11,13,15,16,17,23]+
[14,18,19,20,21,22]+[12,24,25,26
,27]

41 10 6 5 [1,2,4,5,6,7,8,11,38]+[9,10,13,14,
15]+ [12,16,17,18]

41 8 7 6 [1,2,4,5,6,7,16]+[8,9,11,12,13,14]
+ [10,17,18,19,21]

57 8 7 6 [2,5,6,7,12,29,53]+[8,9,10,13,14,1
5,22]+ [16,17,18,19,20,21]+[11,2
4,25,26,27]

43 9 7 6 [2,3,4,5,6,10,21,35]+[7,9,12,13,14
,15]+ [11,17,18,19,20]

45 10 7 6 [1,2,3,4,5,6,7,8,9]+[13,15,16,17,2
1,22]+ [10,11,12,18,19]

6. CATALOGUE OF MCNSBNDS

MCNSBNDs can be constructed for v = 
2ik1+2k2+2k3-4; i integer, through method of cyclic 
shifts (Rule II) using i sets of shifts for k1, one each 
for k2 and k3. These (i+2) sets of shifts are generated 
as: 

 ● Consider S = [0, 1, 2,…, m-1, m], where
 ● Divide S in i groups of k1 values and one group 

of k2 values such that the sum of each group is 
divisible by v-1. Then delete one (any) value 
from each group, the resultant will be (i+1) sets. 
Consider the last group as (i+2)th set of shifts 
which will consist of remaining k3-2 elements, 
and sum of these remaining elements should not 
be necessarily divisible of v-1. Hence required 
MCNSBNDs will be constructed in blocks of 
three different sizes using these (i+2) sets.

Short running title 

 7  
 

47 7 6 4 [1,4,5,6,7,24]+[8,10,11,12,13,14]+ 
[15,16,17,18,19]+[2,3,20] 

35 8 6 4 [2,3,4,6,9,18,28]+[8,10,11,12,13]+[1,5,14] 

51 8 6 4 [4,6,7,14,21,24,26]+[2,3,8,9,11,13,15]+ 
[16,17,18,19,20]+[1,5,22] 

37 9 6 4 [2,3,4,7,8,14,17,19]+[6,9,10,11,13]+[1,5,15] 

55 9 6 4 [2,4,5,6,7,8,11,12]+ 
[9,13,14,15,16,17,23,27]+[18,19,20,21,22]+ 
[1,3,25] 

39 10 6 4 [2,3,5,6,7,8,10,15,22]+[11,12,13,14,19]+ 
[4,16,18] 

59 10 6 4 [2,3,4,6,9,12,25,28,29]+ 
[7,10,13,14,15,16,17,18,19]+ 
[20,21,22,23,24]+[5,26,27] 

35 7 6 5 [2,3,4,5,9,12]+[6,8,11,16,28]+[10,13,14,15] 

49 7 6 5 [1,4,5,6,9,24]+[2,7,8,10,11,14]+ 
[13,15,16,17,18]+[20,21,22,23] 

37 8 6 5 [1,2,3,5,6,7,13]+[4,8,9,11,17]+[10,14,15,16] 

53 8 6 5 [1,3,4,5,6,16,18]+[7,9,10,11,13,14,15]+ 
[2,8,19,20,21]+[12,22,23,24] 

39 9 6 5 [4,5,6,7,8,10,16,22]+[9,11,12,13,14]+ [1,2,3,15] 

57 9 6 5 [1,2,3,5,6,7,8,29,53]+ 
[[0,9,10,11,13,15,16,17,23]+ 
[14,18,19,20,21,22]+[12,24,25,26,27] 

41 10 6 5 [1,2,4,5,6,7,8,11,38]+[9,10,13,14,15]+ 
[12,16,17,18] 

41 8 7 6 [1,2,4,5,6,7,16]+[8,9,11,12,13,14]+ 
[10,17,18,19,21] 

57 8 7 6 [2,5,6,7,12,29,53]+[8,9,10,13,14,15,22]+ 
[16,17,18,19,20,21]+[11,24,25,26,27] 

43 9 7 6 [2,3,4,5,6,10,21,35]+[7,9,12,13,14,15]+ 
[11,17,18,19,20] 

45 10 7 6 [1,2,3,4,5,6,7,8,9]+[13,15,16,17,21,22]+ 
[10,11,12,18,19] 

 
6. CATALOGUE OF MCNSBNDs 
 
MCNSBNDs can be constructed for v = 2ik1+2k2+2k3-4; 
i integer, through method of cyclic shifts (Rule II) using 
i sets of shifts for k1, one each for k2 and k3. These (i+2) 
sets of shifts are generated as:  

• Consider S = [0, 1, 2,…, m-1, m], where 𝑚𝑚 = 𝑣𝑣 − 2
2 . 

• Divide S in i groups of k1 values and one group of k2 

values such that the sum of each group is divisible 
by v-1. Then delete one (any) value from each group, 
the resultant will be (i+1) sets. Consider the last 
group as (i+2)th set of shifts which will consist of 
remaining k3-2 elements, and sum of these 
remaining elements should not be necessarily 
divisible of v-1. Hence required MCNSBNDs will 

be constructed in blocks of three different sizes 
using these (i+2) sets. 

Catalogue of MCNSBNDs in blocks of sizes three for 
v = 2ik1+2k2+2k3-4, v ≤ 60, 6 ≤ k1 ≤ 10, 5 ≤ k2 ≤ 7, 4 ≤ 
k3 ≤ 6, where k3 < k2 < k1. 

v k1 k2 k3 Sets of Shifts 
26 6 5 4 [8,9,10,11,12]+[4,5,6,7]+[1,2]t 
38 6 5 4 [3,4,5,7,16]+[9,10,14,15,18]+[1,6,13,17]+ 

[11,12]t 
50 6 5 4 [2,3,6,15,23]+[7,8,9,10,11]+[13,14,17,18,24]+ 

[19,20,21,22]+[1,25]t 
28 7 5 4 [4,6,8,11,12,13]+[3,5,7,10]+[1,9]t 
42 7 5 4 [2,3,5,6,7,18]+[9,10,11,12,13,19]+ 

[15,16,17,20]+[1,4]t 
56 7 5 4 [3,4,5,6,10,27]+[2,7,9,11,12,13]+ 

[14,15,16,18,19,20]+[21,22,24,26]+[23,25]t 
30 8 5 4 [3,5,6,8,11,12,13]+[2,7,9,10]+[4,14]t 
46 8 5 4 [1,2,3,4,5,9,21]+[8,10,11,12,13,14,15]+ 

[17,18,19,20]+[6,22]t 
32 9 5 4 [3,4,5,6,7,10,12,15]+[2,8,9,11]+[13,14]t 
50 9 5 4 [3,4,7,8,11,18,23,24]+[6,9,10,12,13,14,15,17]+ 

[19,20,21,22]+[1,5]t 
34 10 5 4 [2,4,5,6,7,8,9,10,15]+[12,13,14,16]+[1,3]t 
54 10 5 4 [1,2,3,4,5,6,8,9,15]+ 

[10,11,12,13,14,18,23,25,26]+[20,21,22,24]+ 
[16,17]t 

32 7 6 5 [5,8,10,12,13,14]+[3,4,6,7,9]+[1,11,15]t 
46 7 6 5 [2,3,4,6,9,21]+[8,11,12,13,19,20]+ 

[14,15,16,17,18]+[1,5,22]t 
60 7 6 5 [2,4,5,7,14,27]+[8,9,12,26,28,29]+ 

[15,16,17,18,19,20]+[21,22,23,24,25]+ 
[1,10,11]t 

34 8 6 5 [4,5,6,7,13,14,15]+[9,10,11,12,16]+[0,1,3]t 
50 8 6 5 [5,6,7,11,22,23,24]+[9,10,12,13,14,15,21]+ 

[16,17,18,19,20]+[1,2,3]t 
36 9 6 5 [3,4,5,6,7,14,15,16]+[9,11,12,13,17]+[1,2,10]t 
54 9 6 5 [3,4,7,8,13,22,24,25]+[9,10,11,12,14,15,16,17]+

[18,19,20,21,23]+[1,6,26]t 
38 10 6 5 [2,3,5,6,7,8,10,16,17]+[11,12,13,14,15]+ 

[1,4,18]t 
58 10 6 5 [5,6,7,8,9,10,19,24,26] 

+[12,13,14,15,16,17,18,27,28]+ 
[20,21,22,23,25]+[1,2,4]t 

38 8 7 6 [4,5,6,10,15,16,18]+[8,9,11,12,13,14]+ 
[1,2,3,17]t 

54 8 7 6 [3,4,6,20,23,24,26]+[10,11,12,13,14,15,22]+ 
[8,16,17,18,19,21]+[1,2,5,25]t 

40 9 7 6 [4,5,6,7,8,15,16,17]+[9,10,11,13,14,18]+ 
[1,2,12,19]t 

58 9 7 6 [7,9,20,24,25,26,27,28]+ 
[10,11,12,13,14,15,16,17]+[8,18,19,21,22,23]+ 
[0,1,2,4]t 
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Catalogue of MCNSBNDs in blocks of sizes 
three for v = 2ik1+2k2+2k3-4, v ≤ 60, 6 ≤ k1 ≤ 10, 5 
≤ k2 ≤ 7, 4 ≤ k3 ≤ 6, where k3 < k2 < k1.

v k1 k2 k3 Sets of Shifts
26 6 5 4 [8,9,10,11,12]+[4,5,6,7]+[1,2]t
38 6 5 4 [3,4,5,7,16]+[9,10,14,15,18]+[1,6

,13,17]+ [11,12]t
50 6 5 4 [ 2 , 3 , 6 , 1 5 , 2 3 ] + [ 7 , 8 , 9 , 1 0

, 1 1 ] + [ 1 3 , 1 4 , 1 7 , 1 8 , 2 4 ] + 
[19,20,21,22]+[1,25]t

28 7 5 4 [4,6,8,11,12,13]+[3,5,7,10]+[1,9]t
42 7 5 4 [2,3,5,6,7,18]+[9,10,11,12,13,19]

+ [15,16,17,20]+[1,4]t
56 7 5 4 [3,4,5,6,10,27]+[2,7,9,11,12,13]+ 

[14,15,16,18,19,20]+[21,22,24,26
]+[23,25]t

30 8 5 4 [3,5,6,8,11,12,13]+[2,7,9,10]+[4,
14]t

46 8 5 4 [1,2,3,4,5,9,21]+[8,10,11,12,13,1
4,15]+ [17,18,19,20]+[6,22]t

32 9 5 4 [3,4,5,6,7,10,12,15]+[2,8,9,11]+[
13,14]t

50 9 5 4 [ 3 , 4 , 7 , 8 , 1 1 , 1 8 , 2 3 , 2 4 ] + [
6 , 9 , 1 0 , 1 2 , 1 3 , 1 4 , 1 5 , 1 7 ] + 
[19,20,21,22]+[1,5]t

34 10 5 4 [2,4,5,6,7,8,9,10,15]+[12,13,14,1
6]+[1,3]t

54 10 5 4 [1,2,3,4,5,6,8,9,15]+ [10,11,12,1
3,14,18,23,25,26]+[20,21,22,24]
+ [16,17]t

32 7 6 5 [5,8,10,12,13,14]+[3,4,6,7,9]+[1,
11,15]t

46 7 6 5 [2,3,4,6,9,21]+[8,11,12,13,19,20]
+ [14,15,16,17,18]+[1,5,22]t

60 7 6 5 [2,4,5,7,14,27]+[8,9,12,26,28,29]
+ [15,16,17,18,19,20]+[21,22,23,
24,25]+
[1,10,11]t

34 8 6 5 [4,5,6,7,13,14,15]+[9,10,11,12,16
]+[0,1,3]t

50 8 6 5 [ 5 , 6 , 7 , 1 1 , 2 2 , 2 3 , 2 4 ] + [
9 , 1 0 , 1 2 , 1 3 , 1 4 , 1 5 , 2 1 ] + 
[16,17,18,19,20]+[1,2,3]t

36 9 6 5 [3,4,5,6,7,14,15,16]+[9,11,12,13,
17]+[1,2,10]t

54 9 6 5 [3,4,7,8,13,22,24,25]+[9,10,11,12
,14,15,16,17]+[18,19,20,21,23]+[
1,6,26]t

38 10 6 5 [2,3,5,6,7,8,10,16,17]+[11,12,13,
14,15]+ [1,4,18]t

58 10 6 5 [ 5 , 6 , 7 , 8 , 9 , 1 0 , 1 9 , 2 4 , 2 6 ] 
+[12,13,14,15,16,17,18,27,28]+ 
[20,21,22,23,25]+[1,2,4]t

38 8 7 6 [4,5,6,10,15,16,18]+[8,9,11,12,13
,14]+ [1,2,3,17]t

54 8 7 6 [ 3 , 4 , 6 , 2 0 , 2 3 , 2 4 , 2 6 ] + [ 1
0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 2 2 ] + 
[8,16,17,18,19,21]+[1,2,5,25]t

40 9 7 6 [4,5,6,7,8,15,16,17]+[9,10,11,13,
14,18]+ [1,2,12,19]t

58 9 7 6 [7,9,20,24,25,26,27,28]+ [10,11,
12,13,14,15,16,17]+[8,18,19,21,2
2,23]+
[0,1,2,4]t

7. SUMMARY AND CONCLUSION 

Easy methods to generate four important classes of 
neighbor designs namely; MCBNDs, MCSBNDs, 
CQRNDs and MCNSBNDs are developed in this 
article for almost every case of v. The developed 
methods produce these designs in equal as well 
as in unequal block sizes. The proposed designs 
are useful to (i) estimate the treatment effect and 
neighbor effect independently, and (ii) minimize 
the bias due to neighbor effects. The presented 
catalogues are useful for the experimenters because 
these provide them the design of their own choice.
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A Stable Version of the Modified Algorithm for Error Minimization 
in Combined Numerical Integration
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Abstract: The present study derives a stable version of “A Modified Algorithm for Reduction of Error in Combined 
Numerical Integration”. It is discovered that the earlier proposed scheme “A Modified Algorithm for Error Reduction 
in Combined Numerical Integration” exhibits accuracy fluctuations when the number of slits, n, is increased (n ≥ 9). 
.  Starting with the number of slits n = 9 and increasing the count of sub-intervals, the error increases spontaneously. 
This spontaneous spike in error is resolved by considering a better combination of quadrature rules. To this, the 
notable result of this study is the identification of an optimal choice for quadrature formulae that could minimizes error 
fluctuations in combined numerical integration regardless the number of slits (n). With this revised choice, the error 
remains relatively stable and predictable even as the count of sub-intervals is increased.

Keywords: Numerical Integration, Weddle’s Rule, Boole’s Rule, Six-Point Rule, Simpson’s 1/3 Rule.

1. INTRODUCTION

Quadrature is a mathematical technique that 
involves the computation of definite integrals. It has 
a plethora of applications in areas of engineering, 
finance, physics and beyound. In addition to its 
use in numerical integration, quadrature also has 
applications in the differential equations’ solutions, 
such as in the finding solution to boundary value 
problems numerically. It is also used in Monte 
Carlo simulation, which is a statistical method for 
approximating the value of an integral by sampling 
from a probability distribution. Quadrature methods 
aim to approximate definite integrals with a desired 
accuracy. Throughout the past years, various 
quadrature rules and formulas have been devised to 
enhance the accuracy of this approximation.

Among the earliest quadrature rules is the 
trapezoidal rule, which involves estimating the area 
under a curve by summing the areas of trapezoids. 
Though it is simple, this method isn’t always 
accurate, especially for highly curved functions 
that have jagged peeks and valleys. To remedy this 
limitation, new quadrature rules and formulae were 

created. The Newton-Cotes (NC) formula is one 
of the most commonly used quadrature formulae. 
This formula includes splitting the area under a 
curve into smaller subintervals and then using a 
polynomial to approximate the curve inside each 
subinterval. The obtained approximation is then 
utilised to calculate the integral. The accuracy 
of the NC formula depends on the degree of the 
polynomial and the number of subintervals used.

To approximate definite integrals, quadrature 
formulas are used frequently. Definite integrals 
that cannot be integrated analytically can be 
approximated by quadrature formulas [1]. 
Quadrature methods are an effective way of 
approximating integrals when the integrand’s 
discontinuous behaviour is in a bounded range 
rather than the closed-form [2]. Newton–Cotes 
quadrature formulae are based on equally spaced 
points (abscissas) [3]. In mathematics, numerical 
integration (NI) is among the most basic and 
significant practices. It has a wide range of uses, 
including engineering, mechanics and physics. The 
primary purpose is to have an alternative mechanism 
for estimating given definite integrals within finite 



integration limits. Difficulties in NI can be traced 
back to Greek antiquity. They increased the number 
of sides of an inscribed polygon to calculate the 
area of a circle. With the development of calculus 
in the 17th century, new mathematics evolved, 
contributing to elementary rules in NI. Later, NI 
got more practical with the advent of computers, 
and at the day, we have numerous classical and 
modern algorithms providing speedy and more 
accurate results [4]. Many researchers and experts 
have already conducted substantial research on NI. 
A NI rule was proposed by Amanat [5], which is 
based on commonly used Quadrature methods like 
the Trapezoidal, Simpson’s, and Weddle’s rules. 
Natarajan et al. [6] explored the superconvergence 
of the NC rule for Cauchy principal value integrals 
while Liu et al. [7] compared various NI rules 
for approximating these integrals. A mid-point 
integration rule for nonlinear differential equations 
was proposed by Soomro et al. [8], and Shaikh et 
al. [9] proved the quadrature methods outperform 
polynomial collocation in solving second-kind 
Fredholm integral problems.

Bhatti et al. [10] presented a modified approach 
for error reduction in combined numerical 
integration (CNI) by combining lower-order 
rules for decreased error and enhanced accuracy. 
This method outperforms the original quadrature 
rules by two orders of magnitude. In a particular 
quadrature rule, the number of slits is a parameter 
for obtaining higher accuracy. It is supposed that  
number of slits give a better approximation of the 
integral than  number of slits, where . The algorithm 
modified by Bhatti seems to work fine. However, 
the error in the approximation of the integral does 
not always follow a downward trend. It is observed 
that for  number of slits, the error is sometimes 
higher than for  number of slits, where , and this 
happens periodically. This is what we have tried to 
rectify in the present study.

2. METHODOLOGY USED FOR 
QUADRATURE RULES 

2.1 The Newton-Cotes Formulae

The NC formulae represent a set of numerical 
integration techniques widely employed in 
approximating definite integrals of functions. 

These techniques are based on the concept of 
approximating a curve by a series of straight line 
segments These formulae offer a practical approach 
to solving integrals when an analytical solution is 
not easily attainable or simply doesn’t exists. They 
are particularly useful for functions that are difficult 
to integrate analytically.
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order rules for decreased error and enhanced 
accuracy. This method outperforms the original 
quadrature rules by two orders of magnitude. In a 
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supposed that 𝑛𝑛 number of slits give a better 
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Bhatti seems to work fine. However, the error in 
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follow a downward trend. It is observed that for 𝑛𝑛 
number of slits, the error is sometimes higher than 
for 𝑚𝑚 number of slits, where 𝑚𝑚 < 𝑛𝑛, and this 
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rectify in the present study. 

 

2. METHODOLOGY USED FOR 
QUADRATURE RULES  

 
2.1 The Newton-Cotes Formulae 
 
The NC formulae represent a set of numerical 
integration techniques widely employed in 
approximating definite integrals of functions. 
These techniques are based on the concept of 
approximating a curve by a series of straight line 
segments These formulae offer a practical approach 
to solving integrals when an analytical solution is 
not easily attainable or simply doesn’t exists. They 
are particularly useful for functions that are difficult 
to integrate analytically. 
 

The family of NC formulae is a simple yet 
effective set of NI algorithms. Divide a function 
𝑓𝑓(𝑥𝑥) across some interval [𝑎𝑎, 𝑏𝑏] into n equal pieces 
so that 𝑓𝑓𝑛𝑛 = 𝑓𝑓(𝑥𝑥𝑛𝑛) and ℎ ≈ 𝑏𝑏−𝑎𝑎

𝑛𝑛 . Then, identify 
polynomials that resemble the listed function and 
integrate them to get an idea of the area under the 
curve. It would be ok to use Lagrange's 
interpolation to pick the ideal polynomials. In this 
manner, the NC formulae or quadrature formulae 
are derived by Beyer [11]. 

 
NC formulas is considered open, or closed if 

the interval used is [𝑥𝑥2, 𝑥𝑥𝑛𝑛−1] or [𝑥𝑥1, 𝑥𝑥𝑛𝑛] respective. 
When the function is specified explicitly rather than 
tabulated against the values of x, the optimal NI 
approach is known as Gaussian quadrature. This 
approach yields more accurate approximations (but 
is substantially more difficult to execute) by 
selecting the intervals to sample the function by 
Hildebrand [12]. 

 
Following are the most commonly used 

formula. The trapezoidal rule refers to the 2-point 
closed NC formula because it approximates the 
integral by placing trapezoid(s) with a base parallel 
to the x-axis and an inclined top (linking the 
endpoints of the interval). Let  𝑥𝑥1 and 𝑥𝑥2 = 𝑥𝑥1 + ℎ 
be the first the other endpoint then the Lagrange 
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interpolating polynomial through the points (𝑥𝑥1, 𝑓𝑓1) 
and (𝑥𝑥2, 𝑓𝑓2) is: 

 

𝑃𝑃2(𝑥𝑥) = 𝑥𝑥 − 𝑥𝑥2
𝑥𝑥1 − 𝑥𝑥2

𝑓𝑓1 + 𝑥𝑥 − 𝑥𝑥1
𝑥𝑥2 − 𝑥𝑥1

𝑓𝑓2

= 𝑥𝑥 − 𝑥𝑥1 − ℎ
−ℎ 𝑓𝑓1 + 𝑥𝑥 − 𝑥𝑥1

ℎ 𝑓𝑓2

= 𝑥𝑥
ℎ (𝑓𝑓2 − 𝑓𝑓1) + (𝑓𝑓1 + 𝑥𝑥1

ℎ 𝑓𝑓1 − 𝑥𝑥1
ℎ 𝑓𝑓2) 

 
Upon integration throughout the interval, which 
corresponds to the area of the trapezoid, the result 
is:  

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥2

𝑥𝑥1

𝑑𝑑𝑥𝑥 = ∫ 𝑃𝑃2(𝑥𝑥)
𝑥𝑥1+ℎ

𝑥𝑥1

𝑑𝑑𝑥𝑥

= 1
2ℎ (𝑓𝑓2 − 𝑓𝑓1)[𝑥𝑥2]𝑥𝑥2

𝑥𝑥1

+ (𝑓𝑓1 + 𝑥𝑥1
ℎ 𝑓𝑓1 − 𝑥𝑥1

ℎ 𝑓𝑓2) [𝑥𝑥2]𝑥𝑥2
𝑥𝑥1

= 1
2ℎ (𝑓𝑓2 − 𝑓𝑓1)(𝑥𝑥2 + 𝑥𝑥1)(𝑥𝑥2 − 𝑥𝑥1)

+ (𝑥𝑥2 − 𝑥𝑥1)(𝑓𝑓1 + 𝑥𝑥1
ℎ 𝑓𝑓1 − 𝑥𝑥1

ℎ 𝑓𝑓2

= 1
2 (𝑓𝑓2 − 𝑓𝑓1)(2𝑥𝑥1 + ℎ) + 𝑓𝑓1ℎ

+ 𝑥𝑥1(𝑓𝑓1 − 𝑓𝑓2)
= 𝑥𝑥1(𝑓𝑓2 − 𝑓𝑓1) + 1

2 ℎ(𝑓𝑓2 − 𝑓𝑓1) + ℎ𝑓𝑓1

− 𝑥𝑥1(𝑓𝑓2 − 𝑓𝑓1)
= 1

2 ℎ(𝑓𝑓1 + 𝑓𝑓2)

− 1
12 ℎ3𝑓𝑓′′(𝜁𝜁)          (1) 

 
which is the trapezoidal rule. The final term 

indicates the margin of error, which is limited by 
the fact that 𝑥𝑥1 ≤ 𝜁𝜁 ≤ 𝑥𝑥2 cannot exceed the 
maximum value of 𝑓𝑓′′(ζ) within this range. 

The rule with 3 points is known as the 
Simpson's rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥3

𝑥𝑥1

𝑑𝑑𝑥𝑥 = ∫ 𝑃𝑃3(𝑥𝑥)
𝑥𝑥1+2ℎ

𝑥𝑥1

𝑑𝑑𝑥𝑥

= 1
3 ℎ(𝑓𝑓1 + 4𝑓𝑓2 + 𝑓𝑓3)

− 1
90 ℎ5𝑓𝑓(4)(𝜁𝜁)   (2) 

 
The closed rule with 4 points is also a 

Simpson's rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥4

𝑥𝑥1

𝑑𝑑𝑥𝑥

= 3
8 ℎ(𝑓𝑓1 + 3𝑓𝑓2 + 3𝑓𝑓3 + 𝑓𝑓4)

− 3
80 ℎ5𝑓𝑓(4)(𝜁𝜁)                                  (3) 

 
The Boole's rule is a closed 5-point rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥5

𝑥𝑥1

𝑑𝑑𝑥𝑥 = 2
45 ℎ(7𝑓𝑓1 + 32𝑓𝑓2 + 12𝑓𝑓3 + 32𝑓𝑓4

+ 7𝑓𝑓5) 

− 8
945 ℎ7𝑓𝑓(6)(𝜁𝜁)                               (4) 

 
Higher order rules include the 6-point. 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥6

𝑥𝑥1

= 5
288 ℎ (19𝑓𝑓1 + 75𝑓𝑓2 + 50𝑓𝑓3 + 50𝑓𝑓4

+75𝑓𝑓5 + 19𝑓𝑓6
)

− 275
12096 ℎ7𝑓𝑓(6)(𝜁𝜁)                     (5) 

 
And the Weddle’s rule 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥7

𝑥𝑥1

𝑑𝑑𝑥𝑥

= ℎ
140 (41𝑓𝑓1 + 216𝑓𝑓2 + 27𝑓𝑓3 + 272𝑓𝑓4

+27𝑓𝑓5 + 216𝑓𝑓6 + 41𝑓𝑓7
)

− 9
1400 ℎ9𝑓𝑓(8)(𝜁𝜁)                          (6) 

 
Generally, the n-point rule can be expressed 

analytically as: 
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 3  
 

interpolating polynomial through the points (𝑥𝑥1, 𝑓𝑓1) 
and (𝑥𝑥2, 𝑓𝑓2) is: 

 

𝑃𝑃2(𝑥𝑥) = 𝑥𝑥 − 𝑥𝑥2
𝑥𝑥1 − 𝑥𝑥2

𝑓𝑓1 + 𝑥𝑥 − 𝑥𝑥1
𝑥𝑥2 − 𝑥𝑥1

𝑓𝑓2

= 𝑥𝑥 − 𝑥𝑥1 − ℎ
−ℎ 𝑓𝑓1 + 𝑥𝑥 − 𝑥𝑥1

ℎ 𝑓𝑓2

= 𝑥𝑥
ℎ (𝑓𝑓2 − 𝑓𝑓1) + (𝑓𝑓1 + 𝑥𝑥1

ℎ 𝑓𝑓1 − 𝑥𝑥1
ℎ 𝑓𝑓2) 

 
Upon integration throughout the interval, which 
corresponds to the area of the trapezoid, the result 
is:  

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥2

𝑥𝑥1

𝑑𝑑𝑥𝑥 = ∫ 𝑃𝑃2(𝑥𝑥)
𝑥𝑥1+ℎ

𝑥𝑥1

𝑑𝑑𝑥𝑥

= 1
2ℎ (𝑓𝑓2 − 𝑓𝑓1)[𝑥𝑥2]𝑥𝑥2

𝑥𝑥1

+ (𝑓𝑓1 + 𝑥𝑥1
ℎ 𝑓𝑓1 − 𝑥𝑥1

ℎ 𝑓𝑓2) [𝑥𝑥2]𝑥𝑥2
𝑥𝑥1

= 1
2ℎ (𝑓𝑓2 − 𝑓𝑓1)(𝑥𝑥2 + 𝑥𝑥1)(𝑥𝑥2 − 𝑥𝑥1)

+ (𝑥𝑥2 − 𝑥𝑥1)(𝑓𝑓1 + 𝑥𝑥1
ℎ 𝑓𝑓1 − 𝑥𝑥1

ℎ 𝑓𝑓2

= 1
2 (𝑓𝑓2 − 𝑓𝑓1)(2𝑥𝑥1 + ℎ) + 𝑓𝑓1ℎ

+ 𝑥𝑥1(𝑓𝑓1 − 𝑓𝑓2)
= 𝑥𝑥1(𝑓𝑓2 − 𝑓𝑓1) + 1

2 ℎ(𝑓𝑓2 − 𝑓𝑓1) + ℎ𝑓𝑓1

− 𝑥𝑥1(𝑓𝑓2 − 𝑓𝑓1)
= 1

2 ℎ(𝑓𝑓1 + 𝑓𝑓2)

− 1
12 ℎ3𝑓𝑓′′(𝜁𝜁)          (1) 

 
which is the trapezoidal rule. The final term 

indicates the margin of error, which is limited by 
the fact that 𝑥𝑥1 ≤ 𝜁𝜁 ≤ 𝑥𝑥2 cannot exceed the 
maximum value of 𝑓𝑓′′(ζ) within this range. 

The rule with 3 points is known as the 
Simpson's rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥3

𝑥𝑥1

𝑑𝑑𝑥𝑥 = ∫ 𝑃𝑃3(𝑥𝑥)
𝑥𝑥1+2ℎ

𝑥𝑥1

𝑑𝑑𝑥𝑥

= 1
3 ℎ(𝑓𝑓1 + 4𝑓𝑓2 + 𝑓𝑓3)

− 1
90 ℎ5𝑓𝑓(4)(𝜁𝜁)   (2) 

 
The closed rule with 4 points is also a 

Simpson's rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥4

𝑥𝑥1

𝑑𝑑𝑥𝑥

= 3
8 ℎ(𝑓𝑓1 + 3𝑓𝑓2 + 3𝑓𝑓3 + 𝑓𝑓4)

− 3
80 ℎ5𝑓𝑓(4)(𝜁𝜁)                                  (3) 

 
The Boole's rule is a closed 5-point rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥5

𝑥𝑥1

𝑑𝑑𝑥𝑥 = 2
45 ℎ(7𝑓𝑓1 + 32𝑓𝑓2 + 12𝑓𝑓3 + 32𝑓𝑓4

+ 7𝑓𝑓5) 

− 8
945 ℎ7𝑓𝑓(6)(𝜁𝜁)                               (4) 

 
Higher order rules include the 6-point. 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥6

𝑥𝑥1

= 5
288 ℎ (19𝑓𝑓1 + 75𝑓𝑓2 + 50𝑓𝑓3 + 50𝑓𝑓4

+75𝑓𝑓5 + 19𝑓𝑓6
)

− 275
12096 ℎ7𝑓𝑓(6)(𝜁𝜁)                     (5) 

 
And the Weddle’s rule 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥7

𝑥𝑥1

𝑑𝑑𝑥𝑥

= ℎ
140 (41𝑓𝑓1 + 216𝑓𝑓2 + 27𝑓𝑓3 + 272𝑓𝑓4

+27𝑓𝑓5 + 216𝑓𝑓6 + 41𝑓𝑓7
)

− 9
1400 ℎ9𝑓𝑓(8)(𝜁𝜁)                          (6) 

 
Generally, the n-point rule can be expressed 

analytically as: 
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interpolating polynomial through the points (𝑥𝑥1, 𝑓𝑓1) 
and (𝑥𝑥2, 𝑓𝑓2) is: 

 

𝑃𝑃2(𝑥𝑥) = 𝑥𝑥 − 𝑥𝑥2
𝑥𝑥1 − 𝑥𝑥2

𝑓𝑓1 + 𝑥𝑥 − 𝑥𝑥1
𝑥𝑥2 − 𝑥𝑥1

𝑓𝑓2

= 𝑥𝑥 − 𝑥𝑥1 − ℎ
−ℎ 𝑓𝑓1 + 𝑥𝑥 − 𝑥𝑥1

ℎ 𝑓𝑓2

= 𝑥𝑥
ℎ (𝑓𝑓2 − 𝑓𝑓1) + (𝑓𝑓1 + 𝑥𝑥1

ℎ 𝑓𝑓1 − 𝑥𝑥1
ℎ 𝑓𝑓2) 

 
Upon integration throughout the interval, which 
corresponds to the area of the trapezoid, the result 
is:  

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥2

𝑥𝑥1

𝑑𝑑𝑥𝑥 = ∫ 𝑃𝑃2(𝑥𝑥)
𝑥𝑥1+ℎ

𝑥𝑥1

𝑑𝑑𝑥𝑥

= 1
2ℎ (𝑓𝑓2 − 𝑓𝑓1)[𝑥𝑥2]𝑥𝑥2

𝑥𝑥1

+ (𝑓𝑓1 + 𝑥𝑥1
ℎ 𝑓𝑓1 − 𝑥𝑥1

ℎ 𝑓𝑓2) [𝑥𝑥2]𝑥𝑥2
𝑥𝑥1

= 1
2ℎ (𝑓𝑓2 − 𝑓𝑓1)(𝑥𝑥2 + 𝑥𝑥1)(𝑥𝑥2 − 𝑥𝑥1)

+ (𝑥𝑥2 − 𝑥𝑥1)(𝑓𝑓1 + 𝑥𝑥1
ℎ 𝑓𝑓1 − 𝑥𝑥1

ℎ 𝑓𝑓2

= 1
2 (𝑓𝑓2 − 𝑓𝑓1)(2𝑥𝑥1 + ℎ) + 𝑓𝑓1ℎ

+ 𝑥𝑥1(𝑓𝑓1 − 𝑓𝑓2)
= 𝑥𝑥1(𝑓𝑓2 − 𝑓𝑓1) + 1

2 ℎ(𝑓𝑓2 − 𝑓𝑓1) + ℎ𝑓𝑓1

− 𝑥𝑥1(𝑓𝑓2 − 𝑓𝑓1)
= 1

2 ℎ(𝑓𝑓1 + 𝑓𝑓2)

− 1
12 ℎ3𝑓𝑓′′(𝜁𝜁)          (1) 

 
which is the trapezoidal rule. The final term 

indicates the margin of error, which is limited by 
the fact that 𝑥𝑥1 ≤ 𝜁𝜁 ≤ 𝑥𝑥2 cannot exceed the 
maximum value of 𝑓𝑓′′(ζ) within this range. 

The rule with 3 points is known as the 
Simpson's rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥3

𝑥𝑥1

𝑑𝑑𝑥𝑥 = ∫ 𝑃𝑃3(𝑥𝑥)
𝑥𝑥1+2ℎ

𝑥𝑥1

𝑑𝑑𝑥𝑥

= 1
3 ℎ(𝑓𝑓1 + 4𝑓𝑓2 + 𝑓𝑓3)

− 1
90 ℎ5𝑓𝑓(4)(𝜁𝜁)   (2) 

 
The closed rule with 4 points is also a 

Simpson's rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥4

𝑥𝑥1

𝑑𝑑𝑥𝑥

= 3
8 ℎ(𝑓𝑓1 + 3𝑓𝑓2 + 3𝑓𝑓3 + 𝑓𝑓4)

− 3
80 ℎ5𝑓𝑓(4)(𝜁𝜁)                                  (3) 

 
The Boole's rule is a closed 5-point rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥5

𝑥𝑥1

𝑑𝑑𝑥𝑥 = 2
45 ℎ(7𝑓𝑓1 + 32𝑓𝑓2 + 12𝑓𝑓3 + 32𝑓𝑓4

+ 7𝑓𝑓5) 

− 8
945 ℎ7𝑓𝑓(6)(𝜁𝜁)                               (4) 

 
Higher order rules include the 6-point. 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥6

𝑥𝑥1

= 5
288 ℎ (19𝑓𝑓1 + 75𝑓𝑓2 + 50𝑓𝑓3 + 50𝑓𝑓4

+75𝑓𝑓5 + 19𝑓𝑓6
)

− 275
12096 ℎ7𝑓𝑓(6)(𝜁𝜁)                     (5) 

 
And the Weddle’s rule 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥7

𝑥𝑥1

𝑑𝑑𝑥𝑥

= ℎ
140 (41𝑓𝑓1 + 216𝑓𝑓2 + 27𝑓𝑓3 + 272𝑓𝑓4

+27𝑓𝑓5 + 216𝑓𝑓6 + 41𝑓𝑓7
)

− 9
1400 ℎ9𝑓𝑓(8)(𝜁𝜁)                          (6) 

 
Generally, the n-point rule can be expressed 

analytically as: 
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interpolating polynomial through the points (𝑥𝑥1, 𝑓𝑓1) 
and (𝑥𝑥2, 𝑓𝑓2) is: 

 

𝑃𝑃2(𝑥𝑥) = 𝑥𝑥 − 𝑥𝑥2
𝑥𝑥1 − 𝑥𝑥2

𝑓𝑓1 + 𝑥𝑥 − 𝑥𝑥1
𝑥𝑥2 − 𝑥𝑥1

𝑓𝑓2

= 𝑥𝑥 − 𝑥𝑥1 − ℎ
−ℎ 𝑓𝑓1 + 𝑥𝑥 − 𝑥𝑥1

ℎ 𝑓𝑓2

= 𝑥𝑥
ℎ (𝑓𝑓2 − 𝑓𝑓1) + (𝑓𝑓1 + 𝑥𝑥1

ℎ 𝑓𝑓1 − 𝑥𝑥1
ℎ 𝑓𝑓2) 

 
Upon integration throughout the interval, which 
corresponds to the area of the trapezoid, the result 
is:  

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥2

𝑥𝑥1

𝑑𝑑𝑥𝑥 = ∫ 𝑃𝑃2(𝑥𝑥)
𝑥𝑥1+ℎ

𝑥𝑥1

𝑑𝑑𝑥𝑥

= 1
2ℎ (𝑓𝑓2 − 𝑓𝑓1)[𝑥𝑥2]𝑥𝑥2

𝑥𝑥1

+ (𝑓𝑓1 + 𝑥𝑥1
ℎ 𝑓𝑓1 − 𝑥𝑥1

ℎ 𝑓𝑓2) [𝑥𝑥2]𝑥𝑥2
𝑥𝑥1

= 1
2ℎ (𝑓𝑓2 − 𝑓𝑓1)(𝑥𝑥2 + 𝑥𝑥1)(𝑥𝑥2 − 𝑥𝑥1)

+ (𝑥𝑥2 − 𝑥𝑥1)(𝑓𝑓1 + 𝑥𝑥1
ℎ 𝑓𝑓1 − 𝑥𝑥1

ℎ 𝑓𝑓2

= 1
2 (𝑓𝑓2 − 𝑓𝑓1)(2𝑥𝑥1 + ℎ) + 𝑓𝑓1ℎ

+ 𝑥𝑥1(𝑓𝑓1 − 𝑓𝑓2)
= 𝑥𝑥1(𝑓𝑓2 − 𝑓𝑓1) + 1

2 ℎ(𝑓𝑓2 − 𝑓𝑓1) + ℎ𝑓𝑓1

− 𝑥𝑥1(𝑓𝑓2 − 𝑓𝑓1)
= 1

2 ℎ(𝑓𝑓1 + 𝑓𝑓2)

− 1
12 ℎ3𝑓𝑓′′(𝜁𝜁)          (1) 

 
which is the trapezoidal rule. The final term 

indicates the margin of error, which is limited by 
the fact that 𝑥𝑥1 ≤ 𝜁𝜁 ≤ 𝑥𝑥2 cannot exceed the 
maximum value of 𝑓𝑓′′(ζ) within this range. 

The rule with 3 points is known as the 
Simpson's rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥3

𝑥𝑥1

𝑑𝑑𝑥𝑥 = ∫ 𝑃𝑃3(𝑥𝑥)
𝑥𝑥1+2ℎ

𝑥𝑥1

𝑑𝑑𝑥𝑥

= 1
3 ℎ(𝑓𝑓1 + 4𝑓𝑓2 + 𝑓𝑓3)

− 1
90 ℎ5𝑓𝑓(4)(𝜁𝜁)   (2) 

 
The closed rule with 4 points is also a 

Simpson's rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥4

𝑥𝑥1

𝑑𝑑𝑥𝑥

= 3
8 ℎ(𝑓𝑓1 + 3𝑓𝑓2 + 3𝑓𝑓3 + 𝑓𝑓4)

− 3
80 ℎ5𝑓𝑓(4)(𝜁𝜁)                                  (3) 

 
The Boole's rule is a closed 5-point rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥5

𝑥𝑥1

𝑑𝑑𝑥𝑥 = 2
45 ℎ(7𝑓𝑓1 + 32𝑓𝑓2 + 12𝑓𝑓3 + 32𝑓𝑓4

+ 7𝑓𝑓5) 

− 8
945 ℎ7𝑓𝑓(6)(𝜁𝜁)                               (4) 

 
Higher order rules include the 6-point. 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑥𝑥6

𝑥𝑥1
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)
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12096 ℎ7𝑓𝑓(6)(𝜁𝜁)                     (5) 

 
And the Weddle’s rule 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥7
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Generally, the n-point rule can be expressed 

analytically as: 
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𝑥𝑥1

𝑑𝑑𝑥𝑥

= ℎ ∑ 𝐻𝐻𝑛𝑛,𝑖𝑖𝑓𝑓𝑖𝑖 
𝑛𝑛

𝑖𝑖=1
                                      (7) 

 
Where, 

𝐻𝐻𝑛𝑛,𝑟𝑟+1 =
(−1)𝑛𝑛−𝑟𝑟

𝑟𝑟! (𝑛𝑛 − 𝑟𝑟)! ∫ 𝑡𝑡(𝑡𝑡 − 1) … (𝑡𝑡 − 𝑟𝑟 + 1)(𝑡𝑡
𝑛𝑛

0
− 𝑟𝑟 − 1) … (𝑡𝑡
− 𝑛𝑛) 𝑑𝑑𝑡𝑡                           (8) 

 
Note that, 
 

∑ 𝐻𝐻𝑛𝑛,𝑟𝑟+1

𝑛𝑛

𝑟𝑟=0
= 𝑛𝑛                                                           (9) 

 
2.2 Single and Multiple Integration Rules 
 
By dividing intervals into smaller parts and 
applying the technique to each segment, we can 
enhance the accuracy of the mentioned rules. 
These resulting equations are referred to as 
multiple or composite rules, Burden et al. [13]. 

The observed order of accuracy for the quadrature 
formulas is: Simpson’s 𝟑𝟑

𝟖𝟖 formula > Simpson’s 𝟏𝟏
𝟑𝟑 

formula > Boole’s formula > Trapezoidal formula 
> Weddle’s formula by Amjad et al. [14]. 

 
2.3 Modified Algorithm for Combined 

Quadrature 
 
The scheme by Amanat [5] uses the following 
method Trapezoidal, Simpsons 𝟑𝟑/𝟖𝟖, Boole’s and 
Weddle’s rule interchangeably. The number of 
sub-intervals in the methods is suggested to be 
greater than or equal to 9. Out of the total number 
of subintervals, the first 6 subintervals are to be 
approximated using the Weddle’s rule, then the 
Boole’s rule is to be used to approximated as much 
intervals as possible, then the priority is for 
Simpson’s 𝟑𝟑/𝟖𝟖 rule and lastly for any single 
leftover subinterval we can use the trapezoidal 
rule. 

Starting with the number of sub-intervals 𝒏𝒏 =
𝟗𝟗 and increasing the count of sub-intervals, the 
method works fine for 𝒏𝒏 = 𝟗𝟗 and 𝟏𝟏𝟏𝟏, but as we 
reach 𝒏𝒏 = 𝟏𝟏𝟏𝟏, the error increases spontaneously. 
The method regains its momentum at 𝒏𝒏 = 𝟏𝟏𝟏𝟏, 𝟏𝟏𝟑𝟑 
and 𝟏𝟏𝟏𝟏, but again a spontaneous increase in error 
occurs at 𝒏𝒏 = 𝟏𝟏𝟏𝟏. See Table 1. 

  Table 1. Error fashion in the algorithm proposed by Bhatti et al. [10] over different number of subintervals 
Number of subintervals Description of Hybrid Error 

9 6W + 3S Descends 
10 6W + 4B Descends 
11 6W + 4B + 1T Spontaneous rise 
12 6W + 4B + 2T Rises 
13 6W + 4B + 3S Descends 
14 6W + 8B Descends 
15 6W + 8B + 1T Spontaneous rise 
16 6W + 8B + 2T Increase 
17 6W + 8B + 3S Descends 
18 6W + 12B Descends 
19 6W + 12B + 1T Spontaneous rise 
20 6W + 12B + 2T Rises 
21 6W + 12B + 3S Descends 
⋮ ⋮ ⋮ 
T refers to trapezoidal rule, S to Simpsons 1/3, B to Boole’s and W to Weddle’s rule 
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This describes that the error starts to raise only 
where the trapezoidal rule comes into picture. This 
could be resolved if consider any better option 
instead of trapezoidal rule and redefine the 
distribution of sub-intervals for the hybrid.  

 
 
2.4 A Stable Version of the Modified Algorithm 

for Combined Numerical Integration 

The “Modified Algorithm for Error Reduction in 
Combined Numerical Integration” (SMA) exhibits 
accuracy fluctuations when the domain number of 
sub-intervals, 𝒏𝒏, is increased (𝒏𝒏 ≥ 𝟗𝟗).  Starting 
with the number of sub-intervals 𝒏𝒏 = 𝟗𝟗 and 
increasing the count of sub-intervals, the method 
works fine for 𝒏𝒏 = 𝟗𝟗 and 𝟏𝟏𝟏𝟏, but the error increases 
spontaneously at 𝒏𝒏 = 𝟏𝟏𝟏𝟏. The algorithm regains 
momentum for 𝒏𝒏 = 𝟏𝟏𝟏𝟏, 𝟏𝟏𝟏𝟏 and 𝟏𝟏𝟏𝟏, but a 
spontaneous increase in error occurs at 𝒏𝒏 = 𝟏𝟏𝟏𝟏. 
This fashion describes that the error starts to raise 
only where the trapezoidal rule comes into 
combination (due to its poor order of accuracy). 
This could be resolved if consider a better option 
instead of the trapezoidal rule and redefine the 
distribution of sub-intervals for the algorithm. To 
overcome the fore-highlighted issue the choice of 
rules for approximating rules is revised as follows. 

It is meaningful to give priority to rules that 
comes with the highest order of accuracy, Thus, the 
priority is to be given to the Weddle’s rule first, then 
comes the Six-point rule and lastly, the Simpson’s 
rule. Interestingly, this makes the algorithm more 

robust, as it can now handle 𝐧𝐧 ≥ 𝟏𝟏 of sub-intervals. 

2.4.1 The Revised Algorithm 

i. Choose the number of sub-intervals 𝒏𝒏 ≥ 𝟏𝟏 
to divide the interval of integration. 

ii. Let 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) be the reminder when 𝒏𝒏 is 
divided by 𝟔𝟔. The possibilities could be: 
𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, 𝟏𝟏, 𝟏𝟏, 𝟏𝟏, 𝟏𝟏, 𝟏𝟏. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, no sub-intervals are 
left to be integrated. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, we use the Six-
Point rule to approximate the 5-leftover 
sub-intervals. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, we use the 
Simpson’s 𝟏𝟏𝟏𝟏 rule to approximate the 2-
leftover sub-intervals. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, we use the 
composite Simpson’s 𝟏𝟏

𝟏𝟏 rule to 

Table 2. Numerical results from example 1 - EM, PMA and MA in comparison to SMA 
 𝒏𝒏 = 𝟗𝟗 𝒏𝒏 = 𝟏𝟏𝟏𝟏 𝒏𝒏 = 𝟏𝟏𝟏𝟏 
EM 0.774546345 0.776129582 0.777362076 
Abs. Error 1.0851e-2 9.2685e-3 8.0360e-3 
Per. Error 1.3816 % 1.1801 % 1.0231 % 
PMA 0.776456493 0.781754678 0.778798642 
Abs. Error 8.9416e-3 3.6434e-3 6.5995e-3 
Per. Error 1.1384 % 0.4639 % 0.8402 % 
MA 0.780204267 0.782199413 0.778824026 
Abs. Error 5.1938e-3 3.1987e-3 6.5741e-3 
Per. Error 0.6613 % 0.4072 % 0.8370 % 
SMA 0.781128346 0.781754818 0.782341531 
Abs. Error 4.2698e-3 3.6433e-3 3.0566e-3 
Per. Error 0.5436 % 0.4638 % 0.3891 % 
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distribution of sub-intervals for the algorithm. To 
overcome the fore-highlighted issue the choice of 
rules for approximating rules is revised as follows. 

It is meaningful to give priority to rules that 
comes with the highest order of accuracy, Thus, the 
priority is to be given to the Weddle’s rule first, then 
comes the Six-point rule and lastly, the Simpson’s 
rule. Interestingly, this makes the algorithm more 

robust, as it can now handle 𝐧𝐧 ≥ 𝟏𝟏 of sub-intervals. 

2.4.1 The Revised Algorithm 

i. Choose the number of sub-intervals 𝒏𝒏 ≥ 𝟏𝟏 
to divide the interval of integration. 

ii. Let 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) be the reminder when 𝒏𝒏 is 
divided by 𝟔𝟔. The possibilities could be: 
𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, 𝟏𝟏, 𝟏𝟏, 𝟏𝟏, 𝟏𝟏, 𝟏𝟏. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, no sub-intervals are 
left to be integrated. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, we use the Six-
Point rule to approximate the 5-leftover 
sub-intervals. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, we use the 
Simpson’s 𝟏𝟏𝟏𝟏 rule to approximate the 2-
leftover sub-intervals. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, we use the 
composite Simpson’s 𝟏𝟏

𝟏𝟏 rule to 

Table 2. Numerical results from example 1 - EM, PMA and MA in comparison to SMA 
 𝒏𝒏 = 𝟗𝟗 𝒏𝒏 = 𝟏𝟏𝟏𝟏 𝒏𝒏 = 𝟏𝟏𝟏𝟏 
EM 0.774546345 0.776129582 0.777362076 
Abs. Error 1.0851e-2 9.2685e-3 8.0360e-3 
Per. Error 1.3816 % 1.1801 % 1.0231 % 
PMA 0.776456493 0.781754678 0.778798642 
Abs. Error 8.9416e-3 3.6434e-3 6.5995e-3 
Per. Error 1.1384 % 0.4639 % 0.8402 % 
MA 0.780204267 0.782199413 0.778824026 
Abs. Error 5.1938e-3 3.1987e-3 6.5741e-3 
Per. Error 0.6613 % 0.4072 % 0.8370 % 
SMA 0.781128346 0.781754818 0.782341531 
Abs. Error 4.2698e-3 3.6433e-3 3.0566e-3 
Per. Error 0.5436 % 0.4638 % 0.3891 % 
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This describes that the error starts to raise only 
where the trapezoidal rule comes into picture. This 
could be resolved if consider any better option 
instead of trapezoidal rule and redefine the 
distribution of sub-intervals for the hybrid.  

 
 
2.4 A Stable Version of the Modified Algorithm 

for Combined Numerical Integration 
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accuracy fluctuations when the domain number of 
sub-intervals, 𝒏𝒏, is increased (𝒏𝒏 ≥ 𝟗𝟗).  Starting 
with the number of sub-intervals 𝒏𝒏 = 𝟗𝟗 and 
increasing the count of sub-intervals, the method 
works fine for 𝒏𝒏 = 𝟗𝟗 and 𝟏𝟏𝟏𝟏, but the error increases 
spontaneously at 𝒏𝒏 = 𝟏𝟏𝟏𝟏. The algorithm regains 
momentum for 𝒏𝒏 = 𝟏𝟏𝟏𝟏, 𝟏𝟏𝟏𝟏 and 𝟏𝟏𝟏𝟏, but a 
spontaneous increase in error occurs at 𝒏𝒏 = 𝟏𝟏𝟏𝟏. 
This fashion describes that the error starts to raise 
only where the trapezoidal rule comes into 
combination (due to its poor order of accuracy). 
This could be resolved if consider a better option 
instead of the trapezoidal rule and redefine the 
distribution of sub-intervals for the algorithm. To 
overcome the fore-highlighted issue the choice of 
rules for approximating rules is revised as follows. 

It is meaningful to give priority to rules that 
comes with the highest order of accuracy, Thus, the 
priority is to be given to the Weddle’s rule first, then 
comes the Six-point rule and lastly, the Simpson’s 
rule. Interestingly, this makes the algorithm more 

robust, as it can now handle 𝐧𝐧 ≥ 𝟏𝟏 of sub-intervals. 

2.4.1 The Revised Algorithm 

i. Choose the number of sub-intervals 𝒏𝒏 ≥ 𝟏𝟏 
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ii. Let 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) be the reminder when 𝒏𝒏 is 
divided by 𝟔𝟔. The possibilities could be: 
𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, 𝟏𝟏, 𝟏𝟏, 𝟏𝟏, 𝟏𝟏, 𝟏𝟏. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, no sub-intervals are 
left to be integrated. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, we use the Six-
Point rule to approximate the 5-leftover 
sub-intervals. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, we use the 
Simpson’s 𝟏𝟏𝟏𝟏 rule to approximate the 2-
leftover sub-intervals. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, we use the 
composite Simpson’s 𝟏𝟏

𝟏𝟏 rule to 

Table 2. Numerical results from example 1 - EM, PMA and MA in comparison to SMA 
 𝒏𝒏 = 𝟗𝟗 𝒏𝒏 = 𝟏𝟏𝟏𝟏 𝒏𝒏 = 𝟏𝟏𝟏𝟏 
EM 0.774546345 0.776129582 0.777362076 
Abs. Error 1.0851e-2 9.2685e-3 8.0360e-3 
Per. Error 1.3816 % 1.1801 % 1.0231 % 
PMA 0.776456493 0.781754678 0.778798642 
Abs. Error 8.9416e-3 3.6434e-3 6.5995e-3 
Per. Error 1.1384 % 0.4639 % 0.8402 % 
MA 0.780204267 0.782199413 0.778824026 
Abs. Error 5.1938e-3 3.1987e-3 6.5741e-3 
Per. Error 0.6613 % 0.4072 % 0.8370 % 
SMA 0.781128346 0.781754818 0.782341531 
Abs. Error 4.2698e-3 3.6433e-3 3.0566e-3 
Per. Error 0.5436 % 0.4638 % 0.3891 % 
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• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, we use the Six-
Point rule to approximate the 5-leftover 
sub-intervals. 
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Table 2. Numerical results from example 1 - EM, PMA and MA in comparison to SMA 
 𝒏𝒏 = 𝟗𝟗 𝒏𝒏 = 𝟏𝟏𝟏𝟏 𝒏𝒏 = 𝟏𝟏𝟏𝟏 
EM 0.774546345 0.776129582 0.777362076 
Abs. Error 1.0851e-2 9.2685e-3 8.0360e-3 
Per. Error 1.3816 % 1.1801 % 1.0231 % 
PMA 0.776456493 0.781754678 0.778798642 
Abs. Error 8.9416e-3 3.6434e-3 6.5995e-3 
Per. Error 1.1384 % 0.4639 % 0.8402 % 
MA 0.780204267 0.782199413 0.778824026 
Abs. Error 5.1938e-3 3.1987e-3 6.5741e-3 
Per. Error 0.6613 % 0.4072 % 0.8370 % 
SMA 0.781128346 0.781754818 0.782341531 
Abs. Error 4.2698e-3 3.6433e-3 3.0566e-3 
Per. Error 0.5436 % 0.4638 % 0.3891 % 

Bhatti et al 

approximate the 4-leftover sun-
intervals. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟑𝟑, we reserve 6 sub-
interval and approximate the rest 𝒏𝒏 −
𝟔𝟔 sub-intervals with Weddle’s rule. 
This too gives 𝒓𝒓𝒓𝒓𝒓𝒓(𝒏𝒏 − 𝟔𝟔, 𝟔𝟔) = 𝟑𝟑, 
but now with the 6 reserved sub-
intervals, we have a total of 9 sub-
intervals. These 9 sub-intervals can be 
sorted as 𝟓𝟓 + 𝟒𝟒 and used with the Six-
Point and composite Simpson’s 𝟏𝟏

𝟑𝟑  
respectively. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, we again reserve 6 
sub-interval. This gives 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏 −
𝟔𝟔, 𝟔𝟔) = 𝟏𝟏, and with the 6 reserved sub-
intervals, we have a total of 7 sub-
intervals. These 7 sub-intervals can be 
sorted as 𝟓𝟓 + 𝟐𝟐 and used with the Six-
Point and Simpson’s 𝟏𝟏𝟑𝟑  respectively. 

iii. Finally, Sum up the segmented integral 
approximation to get approximate value of 
given definite integral. 

 
Table 3. Numerical results from example 2 - EM, PMA and MA in comparison to SMA 

 𝒏𝒏 = 𝟗𝟗 𝒏𝒏 = 𝟏𝟏𝟏𝟏 𝒏𝒏 = 𝟏𝟏𝟏𝟏 
EM 2.394714891 2.394609023 2.394530692 
Abs. Error 5.5721e-4 4.5134e-4 3.7301e-4 
Per. Error 2.3273e-2 % 1.8852e-2 % 1.5580e-2 % 
PMA 2.394213311 2.39415769 2.394188088 
Abs. Error 5.5635e-5 1.4999e-8 3.0412e-5 
Per. Error 2.3238e-3 % 6.3e-7 % 1.2703e-3 % 
MA 2.394157718  2.394157674  2.39418808  
Abs. Error 4.3000e-8 1.0000e-9  3.0404e-5 
Per. Error 1.7960e-6 % 4.0000e-8 % 1.2699e-3 % 
SMA 2.394157703 2.394157690 2.394157675 
Abs. Error 2.7960e-08 1.5331e-08 1.2720e-10 
Per. Error 1.1670e-6 % 6.4000e-8 % 5.3000e-9 % 
 

Table 4. Numerical results from example 3 - EM, PMA and MA in comparison to SMA 
 𝒏𝒏 = 𝟗𝟗 𝒏𝒏 = 𝟏𝟏𝟏𝟏 𝒏𝒏 = 𝟏𝟏𝟏𝟏 
EM 0.862664226 0.862179431 0.861788193 
Abs. Error 3.5233e-3 3.0385e-3 2.6473e-3 
Per. Error 4.1009e-1 % 3.5367e-1 % 3.0813e-1 % 
PMA 0.860034834 0.859147486 0.859737179 
Abs. Error 8.9392e-4 6.5720e-6 5.9627e-4 
Per. Error 1.0405e-1 % 7.6495e-4 % 6.9402e-2 % 
MA 0.859167420  0.859141382  0.859733843  
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Table 4. Numerical results from example 3 - EM, PMA and MA in comparison to SMA 
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3.   RESULTS AND DISCUSSION

Approximate solutions for the three aforementioned 
examples have been obtained by employing the 
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Abs. Error 2.6505e-5 4.680e-7 5.9293e-4 
Per. Error 3.0851e-3 % 5.4470e-5 % 6.9014e-2 % 
SMA 0.859150653 0.859147358 0.859148341 

Abs. Error 9.739e-6 6.4440e-6 7.4270e-6 
Per. Error 1.1335e-3 % 7.5005e-4 % 8.6446e-4 % 

 

3.   RESULTS AND DISCUSSION 

We have acquired the approximate solutions for 
three aforementioned examples employing the 
proposed SMA. The computed outcomes are then 
tested against those obtained through existing 
methods (EM), like Simpson's 1/3rd or Simpson's 
3/8th, depending on the number of segments. 
Furthermore, we compare the results from the SMA 
with the previously available algorithm (PMA) by 
Amanat [5] and the refined version of the modified 
algorithm (MA) as proposed by Bhatti et al. [10]. 

To evaluate the integrals in the examples, 
numerical tests have been undertaken. These 
computations are carried out using MATLAB® 
R2018b, where the codes are written and executed. 
The outcomes of the these tests are presented in 
Tables 2, 3, and 4, depicting the results achieved in 
figure 1, 2 and 3. Through the computation of both 
absolute and percentage errors, a comparison of the 
results is established. Across all instances, the 
proposed SMA approach consistently showcases its 
robust stability when places against with EM, 
PMA, and MA methods. 

Example 1.  
∫ √𝟏𝟏 − 𝒙𝒙𝟐𝟐𝟏𝟏
𝟎𝟎 𝐝𝐝𝒙𝒙, see Table 2 and Figure 1. 

Example 2. 
∫ 𝒙𝒙√𝟏𝟏 + 𝒙𝒙𝟐𝟐
𝟏𝟏 𝐝𝐝𝒙𝒙, see Table 3 and Figure 2. 

Example 3. 
∫ 𝒙𝒙𝒆𝒆𝒙𝒙𝟐𝟐𝟏𝟏
𝟎𝟎 𝐝𝐝𝒙𝒙, see Table 4 and Figure 3. 

Figures 1, 2, and 3 illustrate graphical 
representations of Tables 2, 3, and 4. On the graphs, 

the 𝒚𝒚-axis displays the percentile error when the 
given integral is computed by EM, PMA, MA, and 
SMA; while the 𝒙𝒙-axis displays the number of 
subintervals. Compared to other methods, the 
proposed approach SMA is observed to have better 
performance. 

Fig. 1. Results from example 1 
 

Fig. 2. Results from example 2 

proposed stable version of the modified algorithm 
for combined numerical integration (SMA). The 
computed outcomes are then tested against those 
obtained through existing methods (EM), like 
Simpson’s 1/3rd or Simpson’s 3/8th, depending on 
the number of segments. Furthermore, we compare 
the results from the SMA with the previously 
available algorithm (PMA) by Amanat [5] and the 
refined version of the modified algorithm (MA) as 
proposed by Bhatti et al. [10].

To evaluate the integrals in the examples, 
numerical tests have been undertaken. These 
computations are carried out using MATLAB® 
R2018b, where the codes are written and executed. 
The outcomes of the these tests are presented in 
Tables 2, 3, and 4, depicting the results achieved in 
figure 1, 2 and 3. Through the computation of both 
absolute and percentage errors, a comparison of 
the results is established. Across all instances, the 
proposed SMA approach consistently showcases 
its robust stability when places against with EM, 
PMA, and MA methods.

4.   CONCLUSION 

The introduced SMA method is an improved 
version of the rule proposed by Bhatti et al. [10], 
incorporating a better the selection of quadrature 
rule combinations. The research reveals that as the 
number of subintervals increases, the SMA exhibits 
significantly greater stability in comparison to 
the existing composite rules by Amanat [5] and 
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the 𝒚𝒚-axis displays the percentile error when the 
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SMA; while the 𝒙𝒙-axis displays the number of 
subintervals. Compared to other methods, the 
proposed approach SMA is observed to have better 
performance. 
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Table 2. Numerical results from example 1 - EM, PMA and MA in comparison to SMA
 n = 9 n = 10 n = 11

EM 0.774546345 0.776129582 0.777362076
Abs. Error 1.0851e-2 9.2685e-3 8.0360e-3
Per. Error 1.3816 % 1.1801 % 1.0231 %
PMA 0.776456493 0.781754678 0.778798642
Abs. Error 8.9416e-3 3.6434e-3 6.5995e-3
Per. Error 1.1384 % 0.4639 % 0.8402 %
MA 0.780204267 0.782199413 0.778824026
Abs. Error 5.1938e-3 3.1987e-3 6.5741e-3
Per. Error 0.6613 % 0.4072 % 0.8370 %
SMA 0.781128346 0.781754818 0.782341531
Abs. Error 4.2698e-3 3.6433e-3 3.0566e-3
Per. Error 0.5436 % 0.4638 % 0.3891 %

Table 3. Numerical results from example 2 - EM, PMA and MA in comparison to SMA
 n = 9 n = 10 n = 11

EM 2.394714891 2.394609023 2.394530692
Abs. Error 5.5721e-4 4.5134e-4 3.7301e-4
Per. Error 2.3273e-2 % 1.8852e-2 % 1.5580e-2 %
PMA 2.394213311 2.39415769 2.394188088
Abs. Error 5.5635e-5 1.4999e-8 3.0412e-5
Per. Error 2.3238e-3 % 6.3e-7 % 1.2703e-3 %
MA 2.394157718 2.394157674 2.39418808 
Abs. Error 4.3000e-8 1.0000e-9 3.0404e-5
Per. Error 1.7960e-6 % 4.0000e-8 % 1.2699e-3 %
SMA 2.394157703 2.394157690 2.394157675
Abs. Error 2.7960e-08 1.5331e-08 1.2720e-10
Per. Error 1.1670e-6 % 6.4000e-8 % 5.3000e-9 %

Table 4. Numerical results from example 3 - EM, PMA and MA in comparison to SMA
 n = 9 n = 10 n = 11

EM 0.862664226 0.862179431 0.861788193
Abs. Error 3.5233e-3 3.0385e-3 2.6473e-3
Per. Error 4.1009e-1 % 3.5367e-1 % 3.0813e-1 %
PMA 0.860034834 0.859147486 0.859737179
Abs. Error 8.9392e-4 6.5720e-6 5.9627e-4
Per. Error 1.0405e-1 % 7.6495e-4 % 6.9402e-2 %
MA 0.859167420 0.859141382 0.859733843 
Abs. Error 2.6505e-5 4.680e-7 5.9293e-4
Per. Error 3.0851e-3 % 5.4470e-5 % 6.9014e-2 %
SMA 0.859150653 0.859147358 0.859148341
Abs. Error 9.739e-6 6.4440e-6 7.4270e-6
Per. Error 1.1335e-3 % 7.5005e-4 % 8.6446e-4 %
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Fig. 3. Results from example 3 
 

 

4.   CONCLUSION  

The introduced SMA method is an improved 
version of the rule proposed by Bhatti et al. [10], 
incorporating a better the selection of quadrature 
rule combinations. The research reveals that as the 
number of subintervals increases, the SMA exhibits 
significantly greater stability in comparison to the 
existing composite rules by Amanat [5] and Bhatti 
et al. [10]. The findings demonstrate that the 
accuracy fluctuations encountered in previous 
methods are effectively mitigated through the 
redefined integration rule choices and their 
combined integration pattern implemented in SMA. 
This approach emerges as a preferable alternative 
to the previously employed rules, addressing 
accuracy concerns with enhanced stability. 
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Abstract: According to recent research on the brain and cognition, the microtubule level activities in the brain are 
in accordance with the quantum mechanical concepts. Consciousness is the emergent phenomenon of the brain’s 
subsystems and the quantum neural correlates. Based on the global work-space theory and traditional neural networks, 
investigations in machine consciousness and machine intelligence are reporting new techniques.  In this study, a 
novel approach using circuit-based quantum neural network is proposed and simulated. This approach satisfies all 
the criteria of quantum computing and is tested for the exclusive OR (XOR) gate’s nonlinear learning. As a result 
of the use of quantum gates, various quantum circuits, such as quantum adders and subtractors, are also created and 
included in the designing and simulation of circuit of the quantum neural networks. Moreover, it is also argued that the 
proposed circuit of quantum neural network may also be tested and implemented on real quantum computer hardware. 
The present study also stresses the applicability of techniques of machine learning algorithms such as quantum and 
classical neural networks to various challenges of High Energy Physics.

Keywords: High Energy Physics, Artificial Neural Network, Quantum Computing, Quantum Circuits, Quantum 
Neural Network.

1. INTRODUCTION

To recreate the characteristics of human intellect 
in computers, different theories of consciousness 
such as Global Workspace Theory [1–5] and Neural 
Correlate Theory have proposed different models 
in the recent years [6–18]. In machine intelligence, 
neurological correlates of consciousness are 
employed by artificial neural networks (ANNs) 
[18–21] which consist of layers (input, hidden and 
output) of neurons [21–23]. Real values are used as 
the ANNs’ inputs, weights (connection strengths), 
and outputs [22, 23]. The artificial neural networks 
are being simulated to learn and recognize using 
the typically available computer architecture, 
which represents information with “0” or “1”. By 
claiming that information at the microtubule level 
in human brain follows the laws of quantum physics 
[9], Roger Penrose and Hameroff’s Orch-OR model 
[13, 21] was used to describe the capabilities of the 
brain at the microtubule level. This model further 
contended that higher-level characteristics of the 
brain, such as consciousness and unconsciousness, 

may be explained by general relativity and quantum 
physics principles [6-7, 13, 21]. Quantum physics 
may more effectively describe nature, including 
energy and matter at the microscopic level [24]. 
Quantum computing based upon its marvelous 
features such as superposition and entanglement 
is promising to provide answers to those higher 
dimensional issues that conventional computing 
has not yet been able to resolve [25]. The amazing 
properties of interference, entanglement, and 
superposition in quantum computing also offer a 
genuine parallel architecture [21, 24-27]. 

The typical concepts about Quantum Circuits, 
Quantum Neural Networks (QNNs) and Machine 
Learning in High-Energy Physics are as follows. 
As far as the Quantum Circuits are concerned, 
the quantum counterpart of classical information, 
known as a qubit, is denoted by the Dirac notations 
which are Ket (column) and Bra (row) vectors. 
Qubits may be a superposition of these states 
[24–25, 27] even if they are in the state of “|0>” 
or “|1>.” The arithmetic and logical units, registers, 



and memory are only a few examples of the several 
classical gates utilized in classical computers. 
Quantum computing also consists of Hermitian 
matrices/operators named as single-qubit and 
multiqubit gates (H, X, Y, Z, CNOT, Toffoli, Fradklin 
etc.) to process information in quantum circuits 
required to build quantum computer architecture. 
The Toffoli gate, which can be seen in Figures 1, 
2, and 3, is used to transform classical gates and 
circuits therefore named as the universal gate of 
quantum computing. As a result, Toffoli gate is 
used to form quantum circuits for the corresponding 
classical circuits (as seen in Figures 4, 5, 6, and 7). 

Fig. 1. By fixing the Toffoli gate’s third qubit to |0> or 
|1>, the classical AND and NAND gates are transformed 
into Quantum AND and Quantum NAND gates 
respectively. Where inputs (|A〉, |B〉 and |C〉 are named 
as Qubits (quantum states) with A and B being classical 
bits (0 or 1) [28-30].

Fig. 3. CNOT gate of quantum computing is equivalent 
of Classical XOR gate. Where, inputs (|A〉, |B〉 and |C〉 
are named as Qubits (quantum states) and A and B are 
classical bits (0 or 1) [28-30].

Fig. 4. Classical half adder is transformed into quantum 
half adder by applying Toffoli gate on the three qubits 
followed by CNOT gate applied to the first two qubits. 
Where, inputs (|A〉, |B〉 and |C〉 are named as Qubits 
(quantum states), and A, B, S (Sum), and C (Carry) are 
classical bits (0 or 1) [28-30].

Fig. 5. Classical full adder is transformed into quantum 
full adder with CNOT gate and three Toffoli gates acting 
on different qubits. Where, inputs (|A〉, |B〉 and |C〉are 
named as Qubits (quantum states) and A, B, S (Sum), 
and C (Carry) being classical bits (0 or 1) [28-30].

Fig. 6. Classical Half Subtractor is transformed into 
quantum Half Subtractor with two CNOT gates and one 
Toffoli gate acting on different qubits. Where, inputs 
(|A〉, |B〉 and |C〉 are named as Qubits (quantum states), 
A and B are classical bits (0 or 1), D (Difference) and B 
(borrowed) are classical outputs (0 or 1) [28-30].

Fig. 2. By fixing third qubit of Toffoli gate to be |1> or 
|0>, the classical OR and NOR gates are transformed 
into QOR and QNOR gates respectively. Where, inputs 
(|A〉, |B〉 and |C〉 are named as Qubits (quantum states) 
and A and B are classical bits (0 or 1) [28-30].
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conventional neural networks, as shown by earlier 
research in this field [22–23]. Li Fei [22] argued 
that one quantum neuron outperforms a network 
of six conventional neurons for the different input 

    The Quantum Neural Networks (QNNs) are 
neural networks that use quantum mechanical 
concepts. Similar to artificial neuron, the quantum 
neurons are arranged in different layers of neuron 
such as input, hidden, and output. In contrast to 
conventional neural networks, quantum neural 
networks (QNNs) use complex column vectors for 
input and output, and complex Hermitian matrices 
or quantum operators for connection weights. 
Quantum neural networks are more effective than 
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patterns of the XOR gate’s nonlinear learning.
The concepts of Machine Learning in High-
Energy Physics are also quite important. The high 
energy physicists (HEP) conduct experiments 
employing accelerator and detector technology as 
well as the Standard Model of particle physics to 
study the fundamental properties of the cosmos. 
Gravitational, strong, electromagnetic, and weak 
interactions are the basic forces that control how 
particles behave towards one another. The Standard 
Model, which was created in the 1970s, has proven 
very effective in describing physical processes 
involving basic interactions (apart from gravity), 
becoming the most thoroughly tested theory of 
physics, and accurately predicting the results in a 
broad range of events [31-33]. To optimize high-
energy physics processes, several issues are being 
resolved using artificial neural networks [34–39]. 
Artificial neural networks are used in experimental 
high energy physics for classification of events [43–
44], reconstruction of objects [45–46], triggering 
process [47–48], and track finding [49–50], while 
they are used in theoretical high energy physics to 
solve the Schrodinger wave equation and calculate 
the mass spectra of particles [40–42]. In addition, 
ordinary and partial differential equations of various 
domains [52-54] as well as quantum many-body 
problems are being resolved using artificial neural 
networks [51]. Quantum neural networks have also 
been emphasized recently by developments in high-
energy physics and machine learning [55–58]. This 
research will be expanded in the future to address 
the issues in the aforementioned fields.  

During the last ten years, a lot of research has 
been done on quantum neural networks [18-20, 
22-23, 58-75]. Alexander’s research on “quantum 
neural networks” basically presents explanation of 
the paradigm of shifting from classical computing 
to quantum computing. There was also discussion 
of the advantages of quantum computing (using 
quantum neural networks) over conventional 
computing (using conventional neural networks) 
[23]. These advantages included high performance, 
Exponential memory, faster learning, processing 
speed, compact size, great stability, and reliability. 
By duplicating certain characteristics of the 
conventional neural network into a quantum 
counterpart, many algorithms have been developed 
for quantum neural networks, however, they are 
missing other qualities and limitations imposed by 
quantum computing. 

QNNs are created by solely altering the input, 
output, and weights of artificial neural network 
into their quantum counterparts, by having overall 
architecture and methodology to be the same [19-20, 
22-23, 57-58, 69-73]. However, Gradient Descent-
based Algorithms are used for the majority of ANN 
implementation [22]. The present architecture 
of conventional and quantum neural networks is 
shown in Figure 8, and it has the following three 
shortcomings:
(a) Cloning in Quantum Circuits: In conventional 

computers, it is simple to make a duplicate of 
the information, but according to the quantum 
theory of nature, because information is the 

Fig. 7. Classical Half Subtractor is transformed into quantum 
Half Subtractor with three X gates, 6 Toffoli gates, and one 
CNOT gate acting on different qubits. Where, |A〉, |B〉, |C〉
|Difference〉 |Borrow〉 are Qubits (quantum states) and 
A, B, D (Difference) and B (Borrow ) are classical bits (0 or 
1) [28-30]. 
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conventional and quantum neural networks is shown in 
Figure 8, and it has the following shortcomings: 

 

Fig. 8. Currently existing Classical or Quantum Neural 
Network Structure [30] 

(a) Cloning in Quantum Circuits: In conventional 
computers, it is simple to make a duplicate of the 
information, but according to the quantum theory of 
nature, because information is the representational state 
of a physical system, like electrons or photons, it cannot 
be directly copied.  In quantum computing, information 
may be copied from one location to another via the fan-
out operator or circuit of teleportation [76]. Therefore, 
without teleportation or the use of the fan-out operator, 
it is not feasible to transmit copies of the quantum 
information to the other neurons. (b) Reversibility in 
Quantum Computing: In quantum computing, 
information is processed by using quantum gates which 
are Hermitian matrices which make quantum circuits 
and quantum processes to be reversible. Because 
classical weight signals are not Hermitian matrices, 
therefore, a straight modification from classical to 
quantum is irretrievable. (c) Loss of Information: In 
classical circuits, number of inputs varies from number 
outputs resulting into loss of information in the form of 
heat and direct conversion of classical neural network 
into quantum neural network in which inputs are qubits 
which represent of the physical system and this 
variation of input and output results into loss of 
information. 

The main objectives of the present studies are as 
follows: (i) To highlight the drawbacks of the 
architecture of the existing conversion of classical 
neural networks to quantum neural networks, (ii) To 
address these drawbacks through a proposed quantum 
circuit-based approach and to simulate for the non-
linear learning of XOR Gate, (iii) To process the 
proposed algorithm for each pattern of the truth table of 
the XOR Gate. 

2. MATERIALS AND METHODS 

The rules of quantum computing are not satisfied when 
a conventional neural network circuit or design is 
replicated into a quantum counterpart, therefore, it is 
essential to create a circuit or architecture for quantum 
neural networks that complies with all conceivable 
principles and computing/quantum mechanics 
limitations. Since traditional gates/circuits and neural 
networks have only one output and two input lines, 
respectively. Moreover, they are irreversible and lost 
their information as heat. However, one cannot claim 
that limitations exist in quantum computing, such as 
information loss, irreversibility, and the no-cloning 
theorem, since the number of input and output lines in 
quantum circuits is identical. The current research in 
quantum neural networks continues in accordance with 
the classical hierarchy rather than the principles of 
quantum mechanics/computing. The present work 
argues that every transformation of the classical circuit 
into its quantum counterpart must satisfy all limitations 
or principle(s) of quantum computing. Therefore, it is 
argued that present practice of QNNs may not be used 
for the quantum mechanical way of implementation of 
higher-level feature of mind and brain into machines to 
accomplish intelligence. Because of the above-
mentioned flaws, it is difficult to say that existing 
QNNs are capable of quantum learning. The presented 
quantum neuron has four inputs and four outputs, as 
shown in Figure 9. The connection weights are 
quantum operators with complex entities, whereas the 
inputs and outputs are complex column vectors.  

Fig. 8. Currently existing Classical or Quantum Neural 
Network Structure [30]

 Quantum Circuit Based Quantum Neural Networks 47



representational state of a physical system, 
like electrons or photons, it cannot be directly 
copied.  In quantum computing, information 
may be copied from one location to another via 
the fan-out operator or circuit of teleportation 
[76]. Therefore, without teleportation or the 
use of the fan-out operator, it is not feasible to 
transmit copies of the quantum information to 
the other neurons. 

(b) Reversibility in Quantum Computing: In 
quantum computing, information is processed 
by using quantum gates which are Hermitian 
matrices which make quantum circuits and 
quantum processes to be reversible. Because 
classical weight signals are not Hermitian 
matrices, therefore, a straight modification 
from classical to quantum is irretrievable. 

(c) Loss of Information: In classical circuits, 
number of inputs varies from number outputs 
resulting into loss of information in the form 
of heat and direct conversion of classical 
neural network into quantum neural network in 
which inputs are qubits which represent of the 
physical system and this variation of input and 
output results into loss of information.

The main objectives of the present studies are 
as follows: (i) To highlight the drawbacks of the 
architecture of the existing conversion of classical 
neural networks to quantum neural networks, (ii) 
To address these drawbacks through a proposed 
quantum circuit-based approach and to simulate 
for the non-linear learning of XOR Gate, (iii) To 
process the proposed algorithm for each pattern of 
the truth table of the XOR Gate.

2. MATERIALS AND METHODS

The rules of quantum computing are not satisfied 
when a conventional neural network circuit or design 
is replicated into a quantum counterpart, therefore, 
it is essential to create a circuit or architecture for 
quantum neural networks that complies with all 
conceivable principles and computing/quantum 
mechanics limitations. Since traditional gates/
circuits and neural networks have only one output 
and two input lines, respectively. Moreover, they 
are irreversible and lost their information as heat. 
However, one cannot claim that limitations exist 
in quantum computing, such as information loss, 
irreversibility, and the no-cloning theorem, since 
the number of input and output lines in quantum 
circuits is identical. The current research in quantum 
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to say that existing QNNs are capable of quantum 
learning. The presented quantum neuron has four 
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connection weights are quantum operators with 
complex entities, whereas the inputs and outputs 
are complex column vectors. 
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may be used to build quantum neural networks 
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The suggested quantum neurons (Figure. 9) may 
be used to build quantum neural networks (Figure. 10). 
The circuit lines that are not used by the next quantum 
neuron, may be passed on to other brain cells to 
accomplish additional functions. The suggested design 
prevents information loss by having an equal number 
of input and output lines, avoiding copying of quantum 
information, and having a reversible neural network. 
Quantum neuron layers may also be added to aid in the 
understanding of complicated events. 

 

Fig. 10. Suggested model of Quantum Neural Network 

The suggested quantum neural network in this 
research complies with all restrictions and quantum 
computing principles. The identification and recovery 
of data about the suggested circuit/hierarchy of 
quantum neural networks is thus said to be beneficial 
for the employment of quantum learning, and it may 
also be advantageous to title it for the quantum-oriented 
involvement of the complicated processes in the brain 
and mind.   

For quantum circuit-based simulation of the non-linear 
learning of XOR Gate, it is necessary to initially define 
the input and output patterns of the Quantum XOR 
gate. Table 1 shows the Truth table with the 
corresponding input and output patterns of the 
Quantum XOR gate.  

Table 1. Truth table with corresponding input and output 
patterns of Quantum XOR gate. 

Input 
Pattern # 

|A〉 |B〉 |t〉 

1 |0〉 |0〉 |0〉 

2 |0〉 |1〉 |1〉 

3 |1〉 |0〉 |1〉 

4 |1〉 |1〉 |0〉 

Where |𝟎𝟎〉 = [𝟏𝟏
𝟎𝟎]  , |𝟏𝟏〉 = [𝟎𝟎

𝟏𝟏]  and mixed or 

superposition state |𝚿𝚿〉 = [𝐚𝐚
𝐛𝐛] = 𝐚𝐚|𝟎𝟎〉 + 𝐛𝐛|𝟏𝟏〉  (here 𝒂𝒂 

and 𝒃𝒃 are probability amplitudes). 
 

Subsequently, the following quantum circuit-based 
algorithm/approach or steps are proposed for the 
simulation of non-linear learning of XOR Gate.  

Step 1: Set up the quantum neuron's initial parameters, 
such as count=0, the connection weights as quantum 
operators, the learning rate (eta), the acceptable 
minimal error as Emin, and ∅, 𝜸𝜸, 𝜹𝜹 𝒂𝒂𝒂𝒂𝒂𝒂 𝜽𝜽 with random 
values for each various weight.  

Step 2: Compute Wa and Wb by using undermentioned 
function for further calculation of corresponding output 
for different patterns of XOR gate. 

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ ( cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾) 

 |Out>=W*|In> 

e.g. |Ao> = Wa*|A>, |Bo> = Wb*|B> 
Note: A tensor product of weights may be used to 
match the desired input order. 
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(Figure. 10). The circuit lines that are not used 
by the next quantum neuron, may be passed on to 
other brain cells to accomplish additional functions. 
The suggested design prevents information loss 
by having an equal number of input and output 
lines, avoiding copying of quantum information, 
and having a reversible neural network. Quantum 
neuron layers may also be added to aid in the 
understanding of complicated events.

The suggested quantum neural network in 
this research complies with all restrictions and 
quantum computing principles. The identification 
and recovery of data about the suggested circuit/
hierarchy of quantum neural networks is thus said 
to be beneficial for the employment of quantum 
learning, and it may also be advantageous to title 
it for the quantum-oriented involvement of the 
complicated processes in the brain and mind.

  
For quantum circuit-based simulation of the 

non-linear learning of XOR Gate, it is necessary to 
initially define the input and output patterns of the 
Quantum XOR gate. Table 1 shows the Truth table 
with the corresponding input and output patterns of 
the Quantum XOR gate. 

Subsequently, the following quantum circuit-
based algorithm/approach or steps are proposed for 
the simulation of non-linear learning of XOR Gate.
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e.g. |Ao> = Wa*|A>, |Bo> = Wb*|B> 
Note: A tensor product of weights may be used to 
match the desired input order. 

Step 3: Quantum neuron's final output is calculated by 
applying the quantum adder upon |Ao> and |Bo>. 

Step 4: Obtain a transfer function to use on the 
estimated |Out> that is comparable to the one 
mentioned by Li Fei [22]. The following is the transfer 
function: 

FT = 1
√2

[0 1
1 −1] [sin (•) 0

0 sin (•)] 

Step 5: Use the transfer function:  |Yo> =FT*|Out> i.e 

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] |Out〉 

Here |Out〉 may be a mixed state: 

 |Out〉 = [±a
±b]  

|Yo >= 1
√2

[0 1
1 −1] [sin(•) 0

0 sin(•)] [±a
±b] 

=  1
√2

[0 1
1 −1] [sin(±a)

sin(±b)] =
1

√2
[0 1
1 −1] [+a

+b] 

|Yo >= 1
√2

[ b
a − b] 

Step 6: Calculate error for the current patterns using 
|Er> = QSub(|t>, |Yo>) 

Step 7: Determine error by taking the inner product 
with itself error = <Er|Er>  

Step 8: compare this error with the Emin If error is less 
than Emin then increases the value of count++. 

Table 1. Truth table with corresponding input and output 
patterns of Quantum XOR gate.
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|Er> = QSub(|t>, |Yo>) 

Step 7: Determine error by taking the inner product 
with itself error = <Er|Er>  

Step 8: compare this error with the Emin If error is less 
than Emin then increases the value of count++. 

Step 9: If the patterns of XOR gate is fourth and the 
value of count equal to 4 then proceed to step 11 

otherwise update the weight parameters in step 10 and 
then choose first pattern again as input/output, set the 
value of counter equal to 0 and goto step2. 

Step 10: Update the following parameters. 

∅=∅+ eta*<In| QSub (|t>,|Yo>)  
𝛾𝛾 = 𝛾𝛾 + eta*< In | QSub (|t>,| Yo >) 
𝛿𝛿 = 𝛿𝛿 + eta*< In | QSub (|t>,| Yo >)  
𝜃𝜃 = 𝜃𝜃 + eta*< In | QSub (|t>,| Yo >) 

<In| = <A| and <In| = <B| for Wa and Wb respectively.  

Step 11: Break 

3. RESULTS AND DISCUSSIONS 

The suggested approach is simulated using the Open 
Quantum Computing Framework (OpenQCF), which 
was created in Python and C#. It uses the QRegister 
(|xxxx>), which is made up of various XOR Gate 
patterns, as the inputs and outputs (target output) to the 
quantum neuron. The Hermitian matrices are used as 
connection weights. Through the tensor product, many 
qubits are merged to create a QRegister, for 
example.|AB〉 = |A〉 ⊗ |B〉 

Let |A〉 = |0〉 = [1
0] and |B〉 = |1〉 = [0

1] 

|01〉 = |0〉 ⊗ |1〉 = [1
0]  ⊗ [0

1] = [
0
1
0
0

] 

Figures 11 and 12 show the mean squared error 
convergence rate with respect to number of iterations 
for minimum errors 0.000000005 and 0.000000005 
corresponding to learning rates 0.035 and 0.0135, 
respectively. 

From the truth table of XOR gate (Table 1) choose first 

pattern as input |A> = |0〉 = [1
0]  , |B> = |0〉 = [1

0] . 

Initialize the Wa weight and corresponding output by 
using the following: 

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ ( cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾),  

|Out>=W*|In> 
 

Fig. 11. Convergence of mean squared error of Quantum 
learning with learning rate=0.035 and MinError= 
0.000000005 

 
 

Fig. 12. Convergence of mean squared error of 
Quantum learning with learning rate=0. 0135 and 
MinError=0.000000005 

To explain the algorithm in simpler way, suppose 
following weight matrices are initialed based upon the 
random values of ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃. 

Wa = 1
√2 [1 1

1 −1],    Wb = 1
√2 [1 1

1 −1] 

then 

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
] 

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
] 

Quantum adder is applied on |Ao> and |Bo> to 
calculate the quantum neuron’s final |Out>. 

|Out> = QAdd (|Ao> and |Bo>) =  [√2
√2

] (assume QAdd 

provides this output) 
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quantum neuron. The Hermitian matrices are used as 
connection weights. Through the tensor product, many 
qubits are merged to create a QRegister, for 
example.|AB〉 = |A〉 ⊗ |B〉 

Let |A〉 = |0〉 = [1
0] and |B〉 = |1〉 = [0

1] 

|01〉 = |0〉 ⊗ |1〉 = [1
0]  ⊗ [0

1] = [
0
1
0
0

] 

Figures 11 and 12 show the mean squared error 
convergence rate with respect to number of iterations 
for minimum errors 0.000000005 and 0.000000005 
corresponding to learning rates 0.035 and 0.0135, 
respectively. 

From the truth table of XOR gate (Table 1) choose first 

pattern as input |A> = |0〉 = [1
0]  , |B> = |0〉 = [1

0] . 

Initialize the Wa weight and corresponding output by 
using the following: 

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ ( cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾),  

|Out>=W*|In> 
 

Fig. 11. Convergence of mean squared error of Quantum 
learning with learning rate=0.035 and MinError= 
0.000000005 

 
 

Fig. 12. Convergence of mean squared error of 
Quantum learning with learning rate=0. 0135 and 
MinError=0.000000005 

To explain the algorithm in simpler way, suppose 
following weight matrices are initialed based upon the 
random values of ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃. 

Wa = 1
√2 [1 1

1 −1],    Wb = 1
√2 [1 1

1 −1] 

then 

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
] 

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
] 

Quantum adder is applied on |Ao> and |Bo> to 
calculate the quantum neuron’s final |Out>. 

|Out> = QAdd (|Ao> and |Bo>) =  [√2
√2

] (assume QAdd 

provides this output) 

Fig. 11. Convergence of mean squared error of 
Quantum learning with learning rate=0.035 and 
MinError=0.000000005 

Fig. 12. Convergence of mean squared error of 
Quantum learning with learning rate=0. 0135 and 
MinError=0.000000005

From the truth table of XOR gate (Table 1) choose first 

pattern as input |A> = |0〉 = [1
0]  , |B> = |0〉 = [1

0] . 

Initialize the Wa weight and corresponding output by 
using the following: 

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ ( cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾),  

|Out>=W*|In> 

To explain the algorithm in simpler way, suppose 
following weight matrices are initialed based upon the 
random values of ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃. 

Wa = 1
√2 [1 1

1 −1],    Wb = 1
√2 [1 1

1 −1] 

then 

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
] 

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
] 

Quantum adder is applied on |Ao> and |Bo> to 
calculate the quantum neuron’s final |Out>. 

|Out> = QAdd (|Ao> and |Bo>) =  [√2
√2

] (assume QAdd 

provides this output) 

Apply the following transfer function upon the 
calculated |Out> which is considered by Li Fei [22]. 

FT = 1
√2

[0 1
1 −1] [sin (•) 0

0 sin (•)] 

Final output is calculated as |Yo> =FT*|Out> 

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] |Out〉 

Here we may get |Out〉  aa a mixed quantum state 

|Out〉 = [±a
±b]  

= 1
√2

[0 1
1 −1] [sin(•) 0

0 sin(•)] [√2
√2

] 

=  1
√2

[0 1
1 −1] [sin(√2)

sin(√2)
] = 1

√2
[0 1
1 −1] [√2

√2
] 

|Yo >= 1
√2

[√2
0 ] = [1

0] = |0 > 

As |t> = |0>, |Yo> = |0> calculate  

|Er> = QSub(|t>,|Yo>)  

to Estimate error= ‖QSubt(|t >, |Yo >)‖2=0.  

Based upon this error weights parameter will be 
updated by following formulas.  

For Wa,    |In > = |A > = |0 > 

∅=∅+ eta*<In| ( QSub (|t>,|Yo>)> 

∅=∅+ eta*<A| Er> 

𝛾𝛾 = 𝛾𝛾 + eta*<In| ( QSub (|t>,|Yo>)> 
𝛿𝛿 = 𝛿𝛿 + eta*<In| ( QSub (|t>,|Yo>)> 
𝜃𝜃 = 𝜃𝜃 + eta*<In| ( QSub (|t>,|Yo>)> 

Wa = W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ ( cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾) 

For Wb, |In >  is |B > = |0 >  and the factors 
α, ψ, φ and χ  will be revised to evaluate Wb 
consequently. For the current pattern weights will not 
be updated because error=0, therefore, XOR gate’s 
second pattern will be processed which is |A> = |0〉 =
[1
0] , |B> = |1〉 = [0

1] 

Wa = 1
√2 [1 1

1 −1],   Wb = 1
√2 [1 1

1 −1], Then 

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
] 

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [0
1] = 1

√2 [ 1
−1]= [

1
√2

− 1
√2

] 

Quantum adder is applied on |Ao> and |Bo> to 
calculate the quantum neuron’s final |Out>. 

|Out> = QAdd (|Ao> and |Bo>) =  [√2
0 ] 

(Assume QAdd provides this output) 

Apply the following transfer function upon the 
calculated |Out> which is considered by Li Fei [22]  
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From the truth table of XOR gate (Table 1) choose first 
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0]  , |B> = |0〉 = [1
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√2 [1 1

1 −1],    Wb = 1
√2 [1 1

1 −1] 

then 
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√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
] 

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
] 

Quantum adder is applied on |Ao> and |Bo> to 
calculate the quantum neuron’s final |Out>. 

|Out> = QAdd (|Ao> and |Bo>) =  [√2
√2

] (assume QAdd 

provides this output) 

Apply the following transfer function upon the 
calculated |Out> which is considered by Li Fei [22]. 

FT = 1
√2

[0 1
1 −1] [sin (•) 0

0 sin (•)] 

Final output is calculated as |Yo> =FT*|Out> 

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] |Out〉 

Here we may get |Out〉  aa a mixed quantum state 

|Out〉 = [±a
±b]  

= 1
√2

[0 1
1 −1] [sin(•) 0

0 sin(•)] [√2
√2

] 

=  1
√2

[0 1
1 −1] [sin(√2)

sin(√2)
] = 1

√2
[0 1
1 −1] [√2

√2
] 

|Yo >= 1
√2

[√2
0 ] = [1

0] = |0 > 

As |t> = |0>, |Yo> = |0> calculate  

|Er> = QSub(|t>,|Yo>)  

to Estimate error= ‖QSubt(|t >, |Yo >)‖2=0.  

Based upon this error weights parameter will be 
updated by following formulas.  

For Wa,    |In > = |A > = |0 > 

∅=∅+ eta*<In| ( QSub (|t>,|Yo>)> 

∅=∅+ eta*<A| Er> 

𝛾𝛾 = 𝛾𝛾 + eta*<In| ( QSub (|t>,|Yo>)> 
𝛿𝛿 = 𝛿𝛿 + eta*<In| ( QSub (|t>,|Yo>)> 
𝜃𝜃 = 𝜃𝜃 + eta*<In| ( QSub (|t>,|Yo>)> 

Wa = W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ ( cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾) 

For Wb, |In >  is |B > = |0 >  and the factors 
α, ψ, φ and χ  will be revised to evaluate Wb 
consequently. For the current pattern weights will not 
be updated because error=0, therefore, XOR gate’s 
second pattern will be processed which is |A> = |0〉 =
[1
0] , |B> = |1〉 = [0

1] 

Wa = 1
√2 [1 1

1 −1],   Wb = 1
√2 [1 1

1 −1], Then 

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
] 

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [0
1] = 1

√2 [ 1
−1]= [

1
√2

− 1
√2

] 

Quantum adder is applied on |Ao> and |Bo> to 
calculate the quantum neuron’s final |Out>. 

|Out> = QAdd (|Ao> and |Bo>) =  [√2
0 ] 

(Assume QAdd provides this output) 

Apply the following transfer function upon the 
calculated |Out> which is considered by Li Fei [22]  

FT = 1
√2

[0 1
1 −1] [sin (•) 0

0 sin (•)] 

Final output is calculated as |Yo> =FT*|Out> 

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] |Out〉 

Here we may get |Out〉  aa a mixed quantum state 

|Out〉 = [±a
±b]  

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] [√2

0 ] 

=  1
√2

[0 1
1 −1] [sin(√2)

sin(0) ] = 1
√2

[0 1
1 −1] [√2

0 ] 

|Yo >= 1
√2

[ 0
√2] = [0

1] = |1 > 

As |t> = |1>, |Yo> = |1> calculate  

|Er> = QSub(|t>,|Yo>)  

to Estimate error= ‖QSub(|t >, |Yo >)‖2=0.  

For this pattern weights will not again be updated 
because error=0. In the same way, next input will be 

processed i.e. (|B> = |0〉 = [1
0] , |A> = |1〉 = [0

1]) and 

the fourth pattern (|A> = |1〉 = [0
1] , |B> = |1〉 = [0

1]) 

for XOR Gate. If four patterns yield no error, the 
processing will be stopped; if not, it will resume with 
first pattern of truth table by using updated weights and 
will continue until acceptable error is obtained. 

There is no information loss or copying since the 
circuit for quantum neurons or neural networks has an 
equal number of input and output lines. Therefore, the 
suggested approach qualifies all limitations of quantum 
computing by considering the architecture's processing 
power, which is used to run the proposed algorithm’s 
simulation. The findings and execution of the 
suggested method make it evident that the limitations 
discussed in this study are resolved. The suggested 
quantum neuron’s corresponding circuit and algorithm 
satisfy all the fundamental laws and theorems of 
quantum computing. The simulation findings also 
demonstrate that it can learn many phenomena. 
Therefore, the proposed quantum circuit and algorithm 
is it is suggested, for the solution of Partial differential 

equations (PDEs) and Ordinary Differential Equations 
(ODEs), to implement quantum neural correlates of 
consciousness into machines, to calculate mass 
spectroscopy, and in high energy physics instead of 
using existing quantum or classical artificial neural 
networks. The related detail can be seen in author's PhD 
thesis [30] for further information.   

A prominent work on the non-linear learning of 
XOR gate through quantum neural network is by Li Fei 
[22]. The algorithm used by Li Fei [22] violates the 
quantum computing principles such as no-loss of 
information, reversibility, and no-cloning theorem etc. 
The algorithm explained in the present study is free of 
such drawbacks and ensures that principles of quantum 
computing are fully satisfied. 

4. CONCLUSION 

The present study proposes and implements a novel 
paradigm of quantum neural networks for the XOR 
gate’s nonlinear learning. It is demonstrated that the 
proposed method follows all quantum computing 
constraints. Therefore, it is recommended to utilize the 
suggested QNNs circuit and corresponding algorithm 
for the modelling and employment of higher-level 
characteristics in conscious robots if the brain functions 
are in accordance with the principle of quantum 
mechanics. Additionally, the suggested quantum neural 
network and its associated circuits and algorithms may 
be employed to address certain high-energy physics 
issues. 
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There is no information loss or copying since 
the circuit for quantum neurons or neural networks 
has an equal number of input and output lines. 
Therefore, the suggested approach qualifies all 
limitations of quantum computing by considering 
the architecture’s processing power, which is used 
to run the proposed algorithm’s simulation. The 
findings and execution of the suggested method 
make it evident that the limitations discussed in 
this study are resolved. The suggested quantum 
neuron’s corresponding circuit and algorithm 
satisfy all the fundamental laws and theorems of 
quantum computing. The simulation findings also 
demonstrate that it can learn many phenomena. 
Therefore, the proposed quantum circuit and 
algorithm is it is suggested, for the solution of 
Partial differential equations (PDEs) and Ordinary 
Differential Equations (ODEs), to implement 
quantum neural correlates of consciousness into 
machines, to calculate mass spectroscopy, and 
in high energy physics instead of using existing 
quantum or classical artificial neural networks. The 
related detail can be seen in author’s PhD thesis 
[30] for further information. 

A prominent work on the non-linear learning 
of XOR gate through quantum neural network is 
by Li Fei [22]. The algorithm used by Li Fei [22] 
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violates the quantum computing principles such as 
no-loss of information, reversibility, and no-cloning 
theorem etc. The algorithm explained in the present 
study is free of such drawbacks and ensures that 
principles of quantum computing are fully satisfied.

4. CONCLUSION

The present study proposes and implements a novel 
paradigm of quantum neural networks for the XOR 
gate’s nonlinear learning. It is demonstrated that the 
proposed method follows all quantum computing 
constraints. Therefore, it is recommended to utilize 
the suggested QNNs circuit and corresponding 
algorithm for the modelling and employment of 
higher-level characteristics in conscious robots if the 
brain functions are in accordance with the principle 
of quantum mechanics. Additionally, the suggested 
quantum neural network and its associated circuits 
and algorithms may be employed to address certain 
high-energy physics issues.
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Abstract: An advanced neutronics and thermal hydraulics nuclear code, called GNTHACP code, is designed and 
developed in LabVIEW as Graphical Neutronics and Thermal Hydraulics toolkit for 1100 MWe Advanced Chinese 
PWR (ACP-1000) nuclear power plant.  The reactor neutronics model is developed using a nonlinear point reactor 
kinetics model, while the reactor thermal hydraulics model is developed based on nonlinear fuel and coolant 
temperature dynamics. The heart of the GNTHACP code is the control rod reactivity model. Control rod reactivity 
banks are comprised of four power compensation banks G1, G2, N1, N2 and one temperature compensation bank R. 
The reactivity control configuration of these banks is highly nonlinear, complex and challenging in nature. The control 
rod reactivity model as a function of G1, G2, N1, N2 and R banks is optimized using two distinct techniques. The 
control rod reactivity model is optimized using Simplex Linear Programming (SLP) technique under constraints of 
reactor power as safety limit and control rod speed as maximum speed limit in LabVIEW. The control rod reactivity 
model is also optimized and investigated using nonlinear Sequential Quadratic Programming (SQP) technique under 
same constraints in LabVIEW. All the models are integrated and the state-of-the-art virtual instruments (VIs) are 
designed for cost function optimization, configuring models and calibration of model parameters in LabVIEW. The 
integrated model as graphical coupled neutronics and thermal hydraulics modeling code is optimized and validated 
against the Final Safety Analysis Report (FSAR) and different parameters of interest are investigated and proved 
within design limits as reported with CORCA and CORTH benchmark nuclear codes. The proposed code is stable, 
highly efficient and accurate as compared to other nuclear codes. 

Keywords: Reactor Neutronics, Thermal Hydraulics, Linear Optimization, Nonlinear Optimization, ACP1000, 
Nuclear Power Plant.

1. INTRODUCTION

Nuclear reactor codes are designed, developed and 
used for industry-standard modeling of nuclear 
reactor cores for transient, safety and accident 
analyses. A reactor kinetics and dynamics model 
was developed in detail for the PWR type nuclear 
reactor  by Johnson et al. [1], while the coupled 
transient neutronics calculations were performed 
for molten fast reactor by Laureau et al. [2]. An 
educational simulator for PWR neutronics was 
developed by Lam [3]. The educational tool was 
further extended for PWR neutronics with special 

emphasis on transient and safety studies by Mollah 
et al. [4]. The reactor neutronics simulator is 
developed in LabVIEW by Hakim et al. [5]. The 
research is extended to thermal hydraulics studies 
of PWR by Ibrahim [6]. LabVIEW based Graphical 
User Interface (GUI) is developed for thermal 
hydraulics Reactor Excursion and Leak Analysis 
Program (RELAP) code for PWR by Macedo et al. 
[7]. A 3D neutron diffusion code is developed by 
Park et al. [8] for PWR neutron kinetics studies. 
A reactor dynamics code is developed for PWR 
studies for three different ratings of PWRs including 
ACP1000 using deep learning technique by Malik et 



EXTERNALρ = External Reactivity

FUELρ = Reactivity due to Fuel

MODERATORρ = Reactivity due to Moderator

CRρ = Reactivity due to Control Rods
β = Delayed Neutron Fraction
Λ = Average Neutron Life Time
λ = Decay Constant
C = Precursor Concentration

BANKCRG − = Worth of Control Rod Bank
MF = Mass of Fuel
CF = Specific Heat Capacity of Fuel
MC = Mass of Coolant 
CPC = Specific Heat Capacity of Coolant at Constant 
Pressure
W = Flow Rate of Coolant 
R = Thermal Resistance
TF = Temperature of Fuel
TC = Temperature of Coolant
TIN = Temperature of Inlet 

2. MATERIALS AND METHODS

2.1 ACP1000 Neutronics Modeling in CORCA 
Code   

The CORCA Code is a two-group two-dimension 
fine-mesh static neutron diffusion and core burn-up 
calculation code. CORCA Code could be used in 
light water moderated PWRs. The code is capable 
to do calculations in both partial (1/8, 1/4, 1/2) and 
whole geometry. Baffle, thermal shield and reflector 
can be described in detail by the code. Replacement 
of assemblies’ location is allowed in the code, 
which is frequently used in refueling calculations.

All the nuclear design parameters calculated, 
such as Neutron Effective Multiplication Factor 
(NEMF called Keff), Moderator Temperature 
Coefficient (MTC), Total Peaking Factor (Fq) and 
Control rod worth, etc., are evaluated, and the 
accuracy of all the parameters is found the same 
as that of international comparable nuclear design 
codes, meeting the requirements of engineering 
design. The fuel temperature coefficient is calculated 
by performing two-group X-Y calculations using 
the CORCA Code. Moderator temperature is held 
constant and the power level is varied. Spatial 
variation of fuel temperature is taken into account 
by calculating the effective fuel temperature as a 
function of reactor power.

al. [9]. Coupled neutronics and thermal hydraulics 
analysis is performed for nuclear reactor by Rais et 
al. [10]. Research is further extended for neutronics 
and thermal hydraulics sub-channel analysis of 
PWR by Ribeiro et al. [11] using Computational 
Fluid Dynamics (CFD) techniques. Point reactor 
kinetics model is optimized using Particle Swam 
Optimization (PSO) technique by Mousakazemi 
[12]. PWR control rod drive mechanism is 
addressed with emphasis on 3D modeling and 
analysis by Tanaka [13]. Parameters of PWR 
steam cycle are optimized by simplex optimization 
technique by Wang et al. [14]. Sequential quadratic 
programming is used for large scale nonlinear 
problems by Boggs et al. [15]. Neutronics analysis 
is performed for research reactor with emphasis on 
safety parameters by Torabi et al. [16]. 

In the present research work, a third generation 
PWR nuclear reactor ACP1000 is addressed 
for design, modeling, analysis and simulation 
purposes. The techniques addressed above [13-16] 
are adopted for this research work. Accordingly, 
a novel state-of-the-art coupled neutronics and 
thermal hydraulics graphical code is developed 
with novel control rod reactivity optimal models 
using simplex linear programming and nonlinear 
sequential quadratic programming algorithms in 
LabVIEW for the first time for ACP1000 nuclear 
power plant. These new models based on SLP 
and SQP optimization techniques are more stable, 
efficient, faster and accurate as compared to other 
numerical techniques and Industry Standard 
Toolset (IST) nuclear codes such as CORCA and 
CORTH codes. SQP exhibits excellent stability and 
convergence for solving large-scale optimization 
problems. SQP can find high Net Present Value 
(NPV) after about few iterations. CORCA and 
CORTH codes are coupled through traditional 
master slave coupling. CORCA and CORTH codes 
do not incorporate the comprehensive modeling 
of control rods for advanced ACP1000 reactor 
dynamics. Average coolant temperature dynamics 
predicted by CORTH code is overestimated. 
Therefore, GNTHACP Code is a one step ahead 
towards nuclear code development as well as 
numerical optimization based toolkit development 
for ACP1000 reactor dynamics in LabVIEW. 
Various parameters used in the present research 
work are described as following:

rn = Relative Reactor Power
 ρ = Net Reactivity

INTERNALρ = Internal Reactivity
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2. MATERIALS AND METHODS 

2.1. ACP1000 Neutronics Modeling in CORCA Code    

The CORCA Code is a two-group two-dimension fine-
mesh static neutron diffusion and core burn-up 
calculation code. CORCA Code could be used in light 
water moderated PWRs. The code is capable to do 
calculations in both partial (1/8, 1/4, 1/2) and whole 
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frequently used in refueling calculations. 
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2.2 ACP1000 Thermal Hydraulics Modeling in 
CORTH Code   

The objective of reactor core thermal design is to 
determine the maximum heat removal capability in 
all flow sub-channels and show that the core safety 
limits, as presented in the technical specifications 
are not exceeded while compounding engineering 
and nuclear effects. The thermal design considers 
local variations in dimensions, power generation, 
flow redistribution and mixing. The design is made 
using the CORTH computer code which is a three 
dimensional core sub-channels of variable size and 
form connected together. It determines in a very 
general way the steady state and transient flows of 
a fluid flowing in separate or connected channels. 
It is, thus, a suitable tool for the thermal-hydraulic 
analysis of reactor cores or experimental loops with 
heating rod bundles (limits of heat extraction from 
the core and in particular as it affects the critical 
heat flux). The CORTH Code gives all thermal-
hydraulic variables in every node of the mesh: 
temperature of coolant, pressure, enthalpy, quality, 
void fraction, heat flux and flow-rate. It determines 
the margin with regard to the critical heat flux 
phenomenon.

2.3 Neutronics Modeling of ACP1000 Reactor 
Core  

 
The neutronics modeling of ACP1000 reactor core 
is carried out using point reactor kinetics model 
with six precursor groups. The coupled relative 
neutron power and precursor concentrations are 
given as [1]:  

where the symbols having their usual meanings.

Six group precursors are chosen because these 
are representative groups in terms of half-lives 
of fission fragments and provides the sufficiently 
accurate neutron dynamics.

The net reactivity is given as:

Internal reactivity is given as:

where the symbols having their usual meanings.

Now, assuming the reactor is controlled with control 
rod banks. So, the external reactivity is given as:

where the symbols having their usual meanings.

2.4 Reactor Thermal Hydraulics Modeling of 
ACP1000 Reactor Core

The fuel temperature dynamics is given as [6]:

 The average reactor coolant temperature dynamics 
is given as:

 

where the symbols having their usual meanings.

2.5 Control Rod Reactivity Modeling of 
ACP1000 Reactor Core

The control rod reactivity is given as [13]:

where )(txCR and )(tvCR are the control rod bank 
position and control bank velocity respectively.

Amongst all models adopted in this research 
work, the control rod reactivity model is the most 
complex because it is comprised of four power 
compensation banks G1, G2, N1, N2 and one 
temperature compensation bank R which are 
configured in a highly nonlinear fashion.

2.6 Optimization of Control Rod Reactivity 
Model

The control rod reactivity model is optimized by 
the following two techniques:
i) Simplex linear optimization technique
ii) SQP nonlinear optimization technique

2.6.1 Simplex Linear Optimization Problem 
Formulation

Simplex linear optimization algorithm is used 
to optimize the control rod reactivity problem 
described in equation (8). This technique is the 
best choice with linear constraints which is the core 
advantage of this method [14]. 
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2.6.2.  SQP Nonlinear Optimization Problem  
Formulation

SQP nonlinear optimization algorithm is used 
to optimize the control rod reactivity problem 
described in equation (8). SQP exhibits excellent 
stability and convergence for solving large-scale 
optimization problem of control rod reactivity 
comprising of several banks operating in complex 
configuration. This technique is the best with 
nonlinear constraints. 

where symbols having their usual meanings in 
nonlinear domain.

Now, the nonlinear control rod reactivity 
optimization problem is converted into QP sub-
problem by means of gradient and nonlinear 
constraints. The solution space is obtained by series 
of QP sub-problems as [15]:

2.7 Framework of Neutronics and Thermal 
Hydraulics Modeling Code of ACP1000 
Nuclear Reactor 

The overall framework of neutronics and thermal 
hydraulics model consists of point reactor kinetics 
model, thermal hydraulics model of fuel and 
coolant and control reactivity model with both 
linear and nonlinear optimization techniques. The 
framework of ACP1000 neutronics and thermal 
hydraulics modeling is shown in Figure 1. All 
the models are coupled dynamic in nature solved 
and computed in parallel computing framework. 
LabVIEW is selected as programming platform 
because it is the best choice for nuclear code as 
stand-alone product development with powerful 
excellent user friendly GUI. However, initially, 
the coupled integrated model is first analyzed with 
simplex linear programming (SLP) and then with 
sequential quadratic programming (SQP).

Fig. 1. Framework of ACP1000 neutronics and 
thermal hydraulics modeling.
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reactor must be zero as shown in Figure 5. This proves 
that reactor is self-regulating with internal and external 
reactivity feedbacks. 
  

 
Fig. 5. Optimization of reciprocal reactor period at optimal 
control rod speed with linear control rod reactivity model in 
LabVIEW 
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shown in Figure 6. The maximum power level using ex-
core instrumentation for large power excursion is 110% 
RP having equivalent relative reactor power of 1.1 on 
normalized or per unit scale. This value is basically the 
design safety limit before the actuation of protection 
system. The safest power level is found as 107% RP 
which is well below the design safety limit (110%). 
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The optimal trend of average coolant temperature (ACT) 
is shown in Figure 7. The coolant cold leg temperature 
is 291.5 ºC, coolant hot leg temperature is 328.5 ºC, and 
initial reactor coolant average temperature is 307.8º C. 
The optimized value of average coolant temperature by 
using CORTH Code is 310 ºC with ± 2.8 ºC uncertainty. 
However, this average coolant temperature is 
overestimated by 2.2℃   
The optimized coolant average temperature using 
GNTHACP Code is 307.4 ºC which is an excellent 
estimate as compared to CORTH Code. 
 

3.2 Modeling and Nonlinear Optimization in 
LabVIEW 
 

In this research work, a VI is designed for nonlinear SQP 
optimization as shown in Figure 8. The design of cost 
function for nonlinear SQP optimization VI is shown in 
Figure 9. While, the design of front panel for nonlinear 
SQP optimization VI is shown in Figure 10. 
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safest power level is found as 107% RP which is 
well below the design safety limit (110%).

The optimal trend of average coolant 
temperature (ACT) is shown in Figure 7. The 
coolant cold leg temperature is 291.5 ºC, coolant 
hot leg temperature is 328.5 ºC, and initial reactor 
coolant average temperature is 307.8º C. The 
optimized value of average coolant temperature 
by using CORTH Code is 310 ºC with ± 2.8 
ºC uncertainty. However, this average coolant 
temperature is overestimated by 2.2℃.  

The optimized coolant average temperature 
using GNTHACP Code is 307.4 ºC which is an 
excellent estimate as compared to CORTH Code.

3.2 Modeling and Nonlinear Optimization in 
LabVIEW

In this research work, a VI is designed for nonlinear 
SQP optimization as shown in Figure 8. The design 
of cost function for nonlinear SQP optimization 
VI is shown in Figure 9, while the design of front 
panel for nonlinear SQP optimization VI is shown 
in Figure 10.

The VI is designed for the computation of 
neutronics and thermal hydraulics system model 
parameters as shown in Figure 11. A VI is designed 
to model neutronics and thermal hydraulics model 
equations as shown in Figure 12. A VI is designed 
to calibrate the neutronics and thermal hydraulics 
system model as shown in Figure 13.

Fig. 7.  Optimization of average coolant with linear 
control rod reactivity model in LabVIEW
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Fig. 9. Design of cost function for nonlinear SQP optimization 
VI in LabVIEW 
 

 

Fig. 10. Design of front panel for nonlinear SQP optimization 
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The comparison of optimization parameters of both 
algorithms are tabulated in Table 1.

The behavior of relative reactor power against two 
different control rod speed is shown in Figure 14. 
The safest power level is found 107.33% RP which 
is well below the design safety limit. The optimal 
trend of average coolant temperature is shown in 
Figure 15.

The comparison of parameters of coupled neutronics 
and thermal hydraulics model of GNTHACP 
code and benchmark FSAR results computed 
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Fig. 13. Calibration of neutronics and thermal hydraulics 
system model in LabVIEW 

The comparison of optimization parameters of both 
algorithms are tabulated in Table 1. 

Table 1. Comparison of optimization parameters 

GNTHACP Code  Design 
values 

SIMPEX Algorithm Optimization Time (Sec) 70  
SQP Algorithm Optimization Time (Sec) 52.5  
Number of total gradient evaluations in SQP 31 
SQP Lagrangian Multiplier  0.0036 
SQP Penalty Factor  0.5 
SQP Cost Function 0.0013 

 

The behavior of relative reactor power against two 
different control rod speed is shown in Figure 14. The 
safest power level is found 107.33% RP which is well 

below the design safety limit. The optimal trend of 
average coolant temperature is shown in Figure 15. 

 

Fig. 14.  Optimization of relative reactor power with nonlinear 
control rod reactivity model in LabVIEW  
 
 

Fig. 15.  Optimization of average coolant and fuel 
temperatures with nonlinear control rod reactivity model in 
LabVIEW 

The comparison of parameters of coupled neutronics and 
thermal hydraulics model of GNTHACP code and 
benchmark FSAR results computed using CORCA and 
CORTH Codes is tabulated in Table 2. The results show 
that the proposed GNTHACP Code is quite accurate and 
hence a successful realization has been made. 
Table 2. Parameters of coupled neutronics and thermal 
hydraulics model of GNTHACP code 

Parameters GNTHACP 
Code 

FSAR 
Benchmark 

MRRP (% RP) 107 110 
MSCRS (cm/sec) 2  1.905 
AFT (ºC)  653 650 
ACT (ºC) 307.4 307.8 

 
 
 

 

4. CONCLUSIONS 

The reactor neutronics and thermal hydraulics modeling 
has been successfully attempted and a state-of-the-art 
nuclear code (GNTHACP) is designed and developed in 
graphical programming environment LabVIEW. The 
GNTHACP nuclear code in LabVIEW is a step towards 
new toolkit development for the ACP1000 nuclear 
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using CORCA and CORTH Codes is tabulated in  
Table 2. The results show that the proposed 
GNTHACP Code is quite accurate and hence a 
successful realization has been made.

4. CONCLUSION

The reactor neutronics and thermal hydraulics 
modeling has been successfully attempted and 
a state-of-the-art nuclear code (GNTHACP) is 
designed and developed in graphical programming 
environment LabVIEW. The GNTHACP nuclear 
code in LabVIEW is a step towards new toolkit 
development for the ACP1000 nuclear power 
plant neutronics and thermal hydraulics modeling 
in LabVIEW. The GNTHACP nuclear code is 
100% equivalent to coupled CORCA and CORTH 
nuclear codes. The performance of GNTHACP 
nuclear code has been tested and validated against 
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FSAR as benchmark and found robust. As such, 
the robustness of the GNTHACP nuclear code is 
established as tested and validated under extreme 
safety limits of ACP1000 imposed over the 
neutronics and thermal hydraulic parameters to 
ensure the design and optimization process valid 
under maximum allowed perturbing conditions. 
The results of control rod speed, reciprocal reactor 
period, relative reactor power, coolant temperature 
have been investigated and found industry standard 
toolset (IST) for neutronics and thermal hydraulics 
modeling of ACP1000 nuclear power plant. The 
proposed code development has established a 
strong basis for similar development for nuclear 
reactor systems other than ACP1000 in future.  
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