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Abstract: In this paper, we have studied the magnetic shielding effect of a spherical shell analytically in fractional 
dimensional space (FDS). The Laplacian equation in fractional space predicts the complex phenomena of physics. This 
is a boundary value problem that has been solved by the separation variable method mathematically by taking low 
frequency ω = 0. Electric potential is obtained in fractional dimensional space for the three regions, namely outside 
the spherical shell, between the shell and hollow sphere and inside the sphere. Also, the induced dipole moment has 
been derived. We obtain a general solution that reduces to the classical results by setting fractional parameter α = 3 
which takes its value (2 < α ≤ 3).  
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1. INTRODUCTION

The novel idea of fractional-dimensional space 
(FDS) is essential in different disciplines of physics 
worked by numerous researchers [1-18]. Like the 
researcher, Wilson [3] has investigated quantum 
field theory (QFT) in FDS. Furthermore, the 
FDS can be employed as an indicator in the Ising 
limit of the QFT [6]. Stillinger [4] has defined an 
axiomatic basis for this idea for the development 
of Schrödinger wave mechanics and Gibbsian 
statistical mechanics in the α-dimensional space. 
The runtime operational category of space-time 
dimension shown by Zeilinger and Svozil [10] 
provides a likelihood of determination of space-
time dimension empirically. It is also acknowledged 
that the fractional dimension of space-time should 
be less than 4. The α-dimensional fractional space 
has also been modelled in the last few decades [11]. 

Moreover, the solution of electro-static problems 
[13-18], has also been investigated in the FDS (2 
< α ≤ 3).

We have extended the problem of a spherical 
shell of highly permeable material which is 
derived by Baleanu et al. [17]. We have solved it 
in fractional dimensional space analytically. The 
primary aim is to use the Laplacian equation to 
find electric potential and induced dipole moment 
in FDS. For the integer order α = 3, the original 
solution is reproduced.

2. MATERIALS AND METHODS 

We consider here a spherical shell of permeable 
material which is placed in fractional space shown 
in Figure 1. We have studied the spherical shell of 
the inner radius ‘a’ and the outer radius ‘b’ for the 



phenomenon of magnetic shielding. This problem 
has been extended from Jackson [13]. The core is 
made of material of permeability, µ, and placed 
in a fractional space. B0 is the uniform magnetic 
field applied on the surface. We need to discover 
the fields В and H everywhere in space, but most 
specifically in the cavity (r < a) as a function of µ. 
The magnetic field H is determined from a scalar 
potential H = -∇Ψ, as there are no currents present. 
Thus, the potential Ψ satisfies the Laplacian in 
fractional space having fractional α-dimension 
in “spherical polar coordinate systems” which is 
described by Baleanu et al. [17]:
 

(1)
 

where the fractional parameter α lies in the range 
(2 < α ≤ 3)
In this case, the Laplace equation for the potential 
independent of angle φ can be expressed as: 
 

 
(2)

 
 

Eq (3) is separable and suppose. 
 

(3)

The differential equation (3) followed by the 
published article [17], can be decoupled into two 

different parts namely angular and radial which are 
written as: 

(4)
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Therefore, the combined solutions of Ψ (r, θ) in 
α-dimensional fractional space, can be expressed as 
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Here, the unknown constants al and bl can be 
determined by using the boundary conditions 
(B.Cs.) on Ψ (r, θ).
We construct here the solution for three different 
regions by satisfying the B.Cs., at r = a and r = b. 
For the outer region r > b, the potential must be of 
the form, 
 

(7)
where H = H0 is the uniform field, at large distance. 
For the inner regions, a < r < b the potential can be 
written as: 
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For r<a 
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All coefficients for l ≠ 1 vanish. Then we can 
construct the solutions for different regions given 
below:
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The boundary conditions, at r = a and r = b, are that 
Hθ and Br be continuous for l = 1, the coefficients 
satisfy the four simultaneous equations. 
 

(13)
 

(14)
 

(15)

 

(16)
 
From the above four boundary conditions, we find 
four simplified equations: 
 

(17)
Where, α0=H0b

α

 
(18)

Where α1=α-1 and κ=µ/µ0.

[13]. The core is made of material of permeability, µ, and 
placed in a fractional space. B0 is the uniform magnetic 
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В and H everywhere in space, but most specifically in the 
cavity (r < a) as a function of µ. The magnetic field H is 
determined from a scalar potential H = -Ψ, as there are 
no currents present. Thus, the potential Ψ satisfies the 
Laplacian in fractional space having fractional α-
dimension in “spherical polar coordinate systems” which 
is described by Baleanu et al. [17]: 
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where the fractional parameter α lies in the range (2 < α ≤ 
3) 

In this case, the Laplace equation for the potential 
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Fig. 1. Spherical Shell of Highly Permeable Material 
Placed in FDS 

Eq (3) is separable and suppose.  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝑅𝑅(𝑟𝑟)𝛩𝛩(𝑐𝑐) (3) 

The differential equation (3) followed by the published 
article [17], can be decoupled into two different parts 
namely angular and radial which are written as: 

  
[ 𝑑𝑑2

𝑑𝑑𝜃𝜃2 + (𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜃𝜃 + 𝑙𝑙(𝑙𝑙 + 𝛼𝛼 − 2)] 𝛩𝛩(𝑐𝑐) = 0 (4) 

[ 𝑑𝑑2

𝑑𝑑𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝑑𝑑
𝑑𝑑𝑟𝑟 + 𝑙𝑙(𝑙𝑙+𝛼𝛼−2)

𝑟𝑟2 ] 𝑅𝑅(𝑟𝑟) = 0 (5) 

Therefore, the combined solutions of Ψ (r, θ) in α-
dimensional fractional space, can be expressed as  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 (𝑎𝑎𝑙𝑙𝑟𝑟𝑙𝑙 + 𝑏𝑏𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2) 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (6) 

Here, the unknown constants al and bl can be determined 
by using the boundary conditions (B.Cs.) on Ψ (r, θ). 
We construct here the solution for three different regions 
by satisfying the B.Cs., at r = a and r = b.  

For the outer region r > b, the potential must be of the form,  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = −𝐻𝐻0𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 +
∑∞

𝑙𝑙=0
𝐴𝐴𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (7) 

where H = H0 is the uniform field, at large distance.  

For the inner regions, a  r  b the potential can be written 
as:  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 (𝐵𝐵𝑙𝑙𝑟𝑟𝑙𝑙 + 𝐶𝐶𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2) 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (8) 

For ra  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 𝐷𝐷𝑙𝑙𝑟𝑟𝑙𝑙𝐶𝐶𝑙𝑙

𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (9) 

All coefficients for l  1  vanish. Then we can construct 
the solutions for different regions given below: 

  
𝛹𝛹𝑒𝑒(𝑟𝑟, 𝑐𝑐) = [−𝐻𝐻0𝑟𝑟 + 𝐴𝐴𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 > 𝑏𝑏
 (10) 

  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = [𝐵𝐵𝑟𝑟 + 𝐶𝐶𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑎𝑎 <
𝑟𝑟 < 𝑏𝑏 (11) 

  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝐷𝐷𝑟𝑟(𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 < 𝑎𝑎. (12) 

[13]. The core is made of material of permeability, µ, and 
placed in a fractional space. B0 is the uniform magnetic 
field applied on the surface. We need to discover the fields 
В and H everywhere in space, but most specifically in the 
cavity (r < a) as a function of µ. The magnetic field H is 
determined from a scalar potential H = -Ψ, as there are 
no currents present. Thus, the potential Ψ satisfies the 
Laplacian in fractional space having fractional α-
dimension in “spherical polar coordinate systems” which 
is described by Baleanu et al. [17]: 

( 𝑑𝑑2

𝑑𝑑𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝑑𝑑
𝑑𝑑𝑟𝑟 + 1

𝑟𝑟2 [ 𝑑𝑑2

𝑑𝑑𝜃𝜃2 + (𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜃𝜃] −

1
𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 [ 𝑑𝑑2

𝑑𝑑𝜙𝜙2 + (𝛼𝛼 − 3)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜙𝜙]) 𝛹𝛹 = 0. (1) 

  

where the fractional parameter α lies in the range (2 < α ≤ 
3) 

In this case, the Laplace equation for the potential 
independent of angle   can be expressed as:  

  
𝛻𝛻2𝛹𝛹 = ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝜕𝜕
𝜕𝜕𝑟𝑟 + 1

𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼−2𝜃𝜃
𝜕𝜕

𝜕𝜕𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼−2𝑐𝑐 𝜕𝜕
𝜕𝜕𝜃𝜃) 𝛹𝛹 = 0

 (2) 

 
 
 

 

 

 

 

 

Fig. 1. Spherical Shell of Highly Permeable Material 
Placed in FDS 

Eq (3) is separable and suppose.  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝑅𝑅(𝑟𝑟)𝛩𝛩(𝑐𝑐) (3) 

The differential equation (3) followed by the published 
article [17], can be decoupled into two different parts 
namely angular and radial which are written as: 

  
[ 𝑑𝑑2

𝑑𝑑𝜃𝜃2 + (𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜃𝜃 + 𝑙𝑙(𝑙𝑙 + 𝛼𝛼 − 2)] 𝛩𝛩(𝑐𝑐) = 0 (4) 

[ 𝑑𝑑2

𝑑𝑑𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝑑𝑑
𝑑𝑑𝑟𝑟 + 𝑙𝑙(𝑙𝑙+𝛼𝛼−2)

𝑟𝑟2 ] 𝑅𝑅(𝑟𝑟) = 0 (5) 

Therefore, the combined solutions of Ψ (r, θ) in α-
dimensional fractional space, can be expressed as  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 (𝑎𝑎𝑙𝑙𝑟𝑟𝑙𝑙 + 𝑏𝑏𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2) 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (6) 

Here, the unknown constants al and bl can be determined 
by using the boundary conditions (B.Cs.) on Ψ (r, θ). 
We construct here the solution for three different regions 
by satisfying the B.Cs., at r = a and r = b.  

For the outer region r > b, the potential must be of the form,  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = −𝐻𝐻0𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 +
∑∞

𝑙𝑙=0
𝐴𝐴𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (7) 

where H = H0 is the uniform field, at large distance.  

For the inner regions, a  r  b the potential can be written 
as:  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 (𝐵𝐵𝑙𝑙𝑟𝑟𝑙𝑙 + 𝐶𝐶𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2) 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (8) 

For ra  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 𝐷𝐷𝑙𝑙𝑟𝑟𝑙𝑙𝐶𝐶𝑙𝑙

𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (9) 

All coefficients for l  1  vanish. Then we can construct 
the solutions for different regions given below: 

  
𝛹𝛹𝑒𝑒(𝑟𝑟, 𝑐𝑐) = [−𝐻𝐻0𝑟𝑟 + 𝐴𝐴𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 > 𝑏𝑏
 (10) 

  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = [𝐵𝐵𝑟𝑟 + 𝐶𝐶𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑎𝑎 <
𝑟𝑟 < 𝑏𝑏 (11) 

  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝐷𝐷𝑟𝑟(𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 < 𝑎𝑎. (12) 

[13]. The core is made of material of permeability, µ, and 
placed in a fractional space. B0 is the uniform magnetic 
field applied on the surface. We need to discover the fields 
В and H everywhere in space, but most specifically in the 
cavity (r < a) as a function of µ. The magnetic field H is 
determined from a scalar potential H = -Ψ, as there are 
no currents present. Thus, the potential Ψ satisfies the 
Laplacian in fractional space having fractional α-
dimension in “spherical polar coordinate systems” which 
is described by Baleanu et al. [17]: 

( 𝑑𝑑2

𝑑𝑑𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝑑𝑑
𝑑𝑑𝑟𝑟 + 1

𝑟𝑟2 [ 𝑑𝑑2

𝑑𝑑𝜃𝜃2 + (𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜃𝜃] −

1
𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 [ 𝑑𝑑2

𝑑𝑑𝜙𝜙2 + (𝛼𝛼 − 3)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜙𝜙]) 𝛹𝛹 = 0. (1) 

  

where the fractional parameter α lies in the range (2 < α ≤ 
3) 

In this case, the Laplace equation for the potential 
independent of angle   can be expressed as:  

  
𝛻𝛻2𝛹𝛹 = ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝜕𝜕
𝜕𝜕𝑟𝑟 + 1

𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼−2𝜃𝜃
𝜕𝜕

𝜕𝜕𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼−2𝑐𝑐 𝜕𝜕
𝜕𝜕𝜃𝜃) 𝛹𝛹 = 0

 (2) 

 
 
 

 

 

 

 

 

Fig. 1. Spherical Shell of Highly Permeable Material 
Placed in FDS 

Eq (3) is separable and suppose.  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝑅𝑅(𝑟𝑟)𝛩𝛩(𝑐𝑐) (3) 

The differential equation (3) followed by the published 
article [17], can be decoupled into two different parts 
namely angular and radial which are written as: 

  
[ 𝑑𝑑2

𝑑𝑑𝜃𝜃2 + (𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜃𝜃 + 𝑙𝑙(𝑙𝑙 + 𝛼𝛼 − 2)] 𝛩𝛩(𝑐𝑐) = 0 (4) 

[ 𝑑𝑑2

𝑑𝑑𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝑑𝑑
𝑑𝑑𝑟𝑟 + 𝑙𝑙(𝑙𝑙+𝛼𝛼−2)

𝑟𝑟2 ] 𝑅𝑅(𝑟𝑟) = 0 (5) 

Therefore, the combined solutions of Ψ (r, θ) in α-
dimensional fractional space, can be expressed as  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
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𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (6) 

Here, the unknown constants al and bl can be determined 
by using the boundary conditions (B.Cs.) on Ψ (r, θ). 
We construct here the solution for three different regions 
by satisfying the B.Cs., at r = a and r = b.  

For the outer region r > b, the potential must be of the form,  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = −𝐻𝐻0𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 +
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where H = H0 is the uniform field, at large distance.  

For the inner regions, a  r  b the potential can be written 
as:  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
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𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (9) 

All coefficients for l  1  vanish. Then we can construct 
the solutions for different regions given below: 

  
𝛹𝛹𝑒𝑒(𝑟𝑟, 𝑐𝑐) = [−𝐻𝐻0𝑟𝑟 + 𝐴𝐴𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 > 𝑏𝑏
 (10) 

  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = [𝐵𝐵𝑟𝑟 + 𝐶𝐶𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑎𝑎 <
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𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝐷𝐷𝑟𝑟(𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 < 𝑎𝑎. (12) 

[13]. The core is made of material of permeability, µ, and 
placed in a fractional space. B0 is the uniform magnetic 
field applied on the surface. We need to discover the fields 
В and H everywhere in space, but most specifically in the 
cavity (r < a) as a function of µ. The magnetic field H is 
determined from a scalar potential H = -Ψ, as there are 
no currents present. Thus, the potential Ψ satisfies the 
Laplacian in fractional space having fractional α-
dimension in “spherical polar coordinate systems” which 
is described by Baleanu et al. [17]: 
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Eq (3) is separable and suppose.  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝑅𝑅(𝑟𝑟)𝛩𝛩(𝑐𝑐) (3) 
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𝑟𝑟𝑙𝑙+𝛼𝛼−2) 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (6) 

Here, the unknown constants al and bl can be determined 
by using the boundary conditions (B.Cs.) on Ψ (r, θ). 
We construct here the solution for three different regions 
by satisfying the B.Cs., at r = a and r = b.  

For the outer region r > b, the potential must be of the form,  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = −𝐻𝐻0𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 +
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where H = H0 is the uniform field, at large distance.  

For the inner regions, a  r  b the potential can be written 
as:  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
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For ra  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 𝐷𝐷𝑙𝑙𝑟𝑟𝑙𝑙𝐶𝐶𝑙𝑙

𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (9) 

All coefficients for l  1  vanish. Then we can construct 
the solutions for different regions given below: 

  
𝛹𝛹𝑒𝑒(𝑟𝑟, 𝑐𝑐) = [−𝐻𝐻0𝑟𝑟 + 𝐴𝐴𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 > 𝑏𝑏
 (10) 

  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = [𝐵𝐵𝑟𝑟 + 𝐶𝐶𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑎𝑎 <
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𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝐷𝐷𝑟𝑟(𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 < 𝑎𝑎. (12) 

[13]. The core is made of material of permeability, µ, and 
placed in a fractional space. B0 is the uniform magnetic 
field applied on the surface. We need to discover the fields 
В and H everywhere in space, but most specifically in the 
cavity (r < a) as a function of µ. The magnetic field H is 
determined from a scalar potential H = -Ψ, as there are 
no currents present. Thus, the potential Ψ satisfies the 
Laplacian in fractional space having fractional α-
dimension in “spherical polar coordinate systems” which 
is described by Baleanu et al. [17]: 
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Eq (3) is separable and suppose.  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝑅𝑅(𝑟𝑟)𝛩𝛩(𝑐𝑐) (3) 
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placed in a fractional space. B0 is the uniform magnetic 
field applied on the surface. We need to discover the fields 
В and H everywhere in space, but most specifically in the 
cavity (r < a) as a function of µ. The magnetic field H is 
determined from a scalar potential H = -Ψ, as there are 
no currents present. Thus, the potential Ψ satisfies the 
Laplacian in fractional space having fractional α-
dimension in “spherical polar coordinate systems” which 
is described by Baleanu et al. [17]: 
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by satisfying the B.Cs., at r = a and r = b.  
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as:  
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field applied on the surface. We need to discover the fields 
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Here, the unknown constants al and bl can be determined 
by using the boundary conditions (B.Cs.) on Ψ (r, θ). 
We construct here the solution for three different regions 
by satisfying the B.Cs., at r = a and r = b.  

For the outer region r > b, the potential must be of the form,  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = −𝐻𝐻0𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 +
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as:  
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𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (9) 

All coefficients for l  1  vanish. Then we can construct 
the solutions for different regions given below: 

  
𝛹𝛹𝑒𝑒(𝑟𝑟, 𝑐𝑐) = [−𝐻𝐻0𝑟𝑟 + 𝐴𝐴𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 > 𝑏𝑏
 (10) 
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[13]. The core is made of material of permeability, µ, and 
placed in a fractional space. B0 is the uniform magnetic 
field applied on the surface. We need to discover the fields 
В and H everywhere in space, but most specifically in the 
cavity (r < a) as a function of µ. The magnetic field H is 
determined from a scalar potential H = -Ψ, as there are 
no currents present. Thus, the potential Ψ satisfies the 
Laplacian in fractional space having fractional α-
dimension in “spherical polar coordinate systems” which 
is described by Baleanu et al. [17]: 
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𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝑅𝑅(𝑟𝑟)𝛩𝛩(𝑐𝑐) (3) 

The differential equation (3) followed by the published 
article [17], can be decoupled into two different parts 
namely angular and radial which are written as: 

  
[ 𝑑𝑑2

𝑑𝑑𝜃𝜃2 + (𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜃𝜃 + 𝑙𝑙(𝑙𝑙 + 𝛼𝛼 − 2)] 𝛩𝛩(𝑐𝑐) = 0 (4) 

[ 𝑑𝑑2

𝑑𝑑𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝑑𝑑
𝑑𝑑𝑟𝑟 + 𝑙𝑙(𝑙𝑙+𝛼𝛼−2)

𝑟𝑟2 ] 𝑅𝑅(𝑟𝑟) = 0 (5) 

Therefore, the combined solutions of Ψ (r, θ) in α-
dimensional fractional space, can be expressed as  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 (𝑎𝑎𝑙𝑙𝑟𝑟𝑙𝑙 + 𝑏𝑏𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2) 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (6) 

Here, the unknown constants al and bl can be determined 
by using the boundary conditions (B.Cs.) on Ψ (r, θ). 
We construct here the solution for three different regions 
by satisfying the B.Cs., at r = a and r = b.  

For the outer region r > b, the potential must be of the form,  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = −𝐻𝐻0𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 +
∑∞

𝑙𝑙=0
𝐴𝐴𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (7) 

where H = H0 is the uniform field, at large distance.  

For the inner regions, a  r  b the potential can be written 
as:  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 (𝐵𝐵𝑙𝑙𝑟𝑟𝑙𝑙 + 𝐶𝐶𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2) 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (8) 

For ra  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 𝐷𝐷𝑙𝑙𝑟𝑟𝑙𝑙𝐶𝐶𝑙𝑙

𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (9) 

All coefficients for l  1  vanish. Then we can construct 
the solutions for different regions given below: 

  
𝛹𝛹𝑒𝑒(𝑟𝑟, 𝑐𝑐) = [−𝐻𝐻0𝑟𝑟 + 𝐴𝐴𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 > 𝑏𝑏
 (10) 

  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = [𝐵𝐵𝑟𝑟 + 𝐶𝐶𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑎𝑎 <
𝑟𝑟 < 𝑏𝑏 (11) 

  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝐷𝐷𝑟𝑟(𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 < 𝑎𝑎. (12) 

[13]. The core is made of material of permeability, µ, and 
placed in a fractional space. B0 is the uniform magnetic 
field applied on the surface. We need to discover the fields 
В and H everywhere in space, but most specifically in the 
cavity (r < a) as a function of µ. The magnetic field H is 
determined from a scalar potential H = -Ψ, as there are 
no currents present. Thus, the potential Ψ satisfies the 
Laplacian in fractional space having fractional α-
dimension in “spherical polar coordinate systems” which 
is described by Baleanu et al. [17]: 

( 𝑑𝑑2

𝑑𝑑𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝑑𝑑
𝑑𝑑𝑟𝑟 + 1

𝑟𝑟2 [ 𝑑𝑑2

𝑑𝑑𝜃𝜃2 + (𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜃𝜃] −

1
𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 [ 𝑑𝑑2

𝑑𝑑𝜙𝜙2 + (𝛼𝛼 − 3)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜙𝜙]) 𝛹𝛹 = 0. (1) 

  

where the fractional parameter α lies in the range (2 < α ≤ 
3) 

In this case, the Laplace equation for the potential 
independent of angle   can be expressed as:  

  
𝛻𝛻2𝛹𝛹 = ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝜕𝜕
𝜕𝜕𝑟𝑟 + 1

𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼−2𝜃𝜃
𝜕𝜕

𝜕𝜕𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼−2𝑐𝑐 𝜕𝜕
𝜕𝜕𝜃𝜃) 𝛹𝛹 = 0

 (2) 

 
 
 

 

 

 

 

 

Fig. 1. Spherical Shell of Highly Permeable Material 
Placed in FDS 

Eq (3) is separable and suppose.  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝑅𝑅(𝑟𝑟)𝛩𝛩(𝑐𝑐) (3) 

The differential equation (3) followed by the published 
article [17], can be decoupled into two different parts 
namely angular and radial which are written as: 

  
[ 𝑑𝑑2

𝑑𝑑𝜃𝜃2 + (𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜃𝜃 + 𝑙𝑙(𝑙𝑙 + 𝛼𝛼 − 2)] 𝛩𝛩(𝑐𝑐) = 0 (4) 

[ 𝑑𝑑2

𝑑𝑑𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝑑𝑑
𝑑𝑑𝑟𝑟 + 𝑙𝑙(𝑙𝑙+𝛼𝛼−2)

𝑟𝑟2 ] 𝑅𝑅(𝑟𝑟) = 0 (5) 

Therefore, the combined solutions of Ψ (r, θ) in α-
dimensional fractional space, can be expressed as  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 (𝑎𝑎𝑙𝑙𝑟𝑟𝑙𝑙 + 𝑏𝑏𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2) 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (6) 

Here, the unknown constants al and bl can be determined 
by using the boundary conditions (B.Cs.) on Ψ (r, θ). 
We construct here the solution for three different regions 
by satisfying the B.Cs., at r = a and r = b.  

For the outer region r > b, the potential must be of the form,  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = −𝐻𝐻0𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 +
∑∞

𝑙𝑙=0
𝐴𝐴𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (7) 

where H = H0 is the uniform field, at large distance.  

For the inner regions, a  r  b the potential can be written 
as:  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 (𝐵𝐵𝑙𝑙𝑟𝑟𝑙𝑙 + 𝐶𝐶𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2) 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (8) 

For ra  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 𝐷𝐷𝑙𝑙𝑟𝑟𝑙𝑙𝐶𝐶𝑙𝑙

𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (9) 

All coefficients for l  1  vanish. Then we can construct 
the solutions for different regions given below: 

  
𝛹𝛹𝑒𝑒(𝑟𝑟, 𝑐𝑐) = [−𝐻𝐻0𝑟𝑟 + 𝐴𝐴𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 > 𝑏𝑏
 (10) 

  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = [𝐵𝐵𝑟𝑟 + 𝐶𝐶𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑎𝑎 <
𝑟𝑟 < 𝑏𝑏 (11) 

  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝐷𝐷𝑟𝑟(𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 < 𝑎𝑎. (12) 

[13]. The core is made of material of permeability, µ, and 
placed in a fractional space. B0 is the uniform magnetic 
field applied on the surface. We need to discover the fields 
В and H everywhere in space, but most specifically in the 
cavity (r < a) as a function of µ. The magnetic field H is 
determined from a scalar potential H = -Ψ, as there are 
no currents present. Thus, the potential Ψ satisfies the 
Laplacian in fractional space having fractional α-
dimension in “spherical polar coordinate systems” which 
is described by Baleanu et al. [17]: 

( 𝑑𝑑2

𝑑𝑑𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝑑𝑑
𝑑𝑑𝑟𝑟 + 1

𝑟𝑟2 [ 𝑑𝑑2

𝑑𝑑𝜃𝜃2 + (𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜃𝜃] −

1
𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 [ 𝑑𝑑2

𝑑𝑑𝜙𝜙2 + (𝛼𝛼 − 3)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜙𝜙]) 𝛹𝛹 = 0. (1) 

  

where the fractional parameter α lies in the range (2 < α ≤ 
3) 

In this case, the Laplace equation for the potential 
independent of angle   can be expressed as:  

  
𝛻𝛻2𝛹𝛹 = ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝜕𝜕
𝜕𝜕𝑟𝑟 + 1

𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼−2𝜃𝜃
𝜕𝜕

𝜕𝜕𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼−2𝑐𝑐 𝜕𝜕
𝜕𝜕𝜃𝜃) 𝛹𝛹 = 0

 (2) 

 
 
 

 

 

 

 

 

Fig. 1. Spherical Shell of Highly Permeable Material 
Placed in FDS 

Eq (3) is separable and suppose.  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝑅𝑅(𝑟𝑟)𝛩𝛩(𝑐𝑐) (3) 

The differential equation (3) followed by the published 
article [17], can be decoupled into two different parts 
namely angular and radial which are written as: 

  
[ 𝑑𝑑2

𝑑𝑑𝜃𝜃2 + (𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜃𝜃 + 𝑙𝑙(𝑙𝑙 + 𝛼𝛼 − 2)] 𝛩𝛩(𝑐𝑐) = 0 (4) 

[ 𝑑𝑑2

𝑑𝑑𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝑑𝑑
𝑑𝑑𝑟𝑟 + 𝑙𝑙(𝑙𝑙+𝛼𝛼−2)

𝑟𝑟2 ] 𝑅𝑅(𝑟𝑟) = 0 (5) 

Therefore, the combined solutions of Ψ (r, θ) in α-
dimensional fractional space, can be expressed as  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 (𝑎𝑎𝑙𝑙𝑟𝑟𝑙𝑙 + 𝑏𝑏𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2) 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (6) 

Here, the unknown constants al and bl can be determined 
by using the boundary conditions (B.Cs.) on Ψ (r, θ). 
We construct here the solution for three different regions 
by satisfying the B.Cs., at r = a and r = b.  

For the outer region r > b, the potential must be of the form,  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = −𝐻𝐻0𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 +
∑∞

𝑙𝑙=0
𝐴𝐴𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (7) 

where H = H0 is the uniform field, at large distance.  

For the inner regions, a  r  b the potential can be written 
as:  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 (𝐵𝐵𝑙𝑙𝑟𝑟𝑙𝑙 + 𝐶𝐶𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2) 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (8) 

For ra  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 𝐷𝐷𝑙𝑙𝑟𝑟𝑙𝑙𝐶𝐶𝑙𝑙

𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (9) 

All coefficients for l  1  vanish. Then we can construct 
the solutions for different regions given below: 

  
𝛹𝛹𝑒𝑒(𝑟𝑟, 𝑐𝑐) = [−𝐻𝐻0𝑟𝑟 + 𝐴𝐴𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 > 𝑏𝑏
 (10) 

  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = [𝐵𝐵𝑟𝑟 + 𝐶𝐶𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑎𝑎 <
𝑟𝑟 < 𝑏𝑏 (11) 

  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝐷𝐷𝑟𝑟(𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 < 𝑎𝑎. (12) 

[13]. The core is made of material of permeability, µ, and 
placed in a fractional space. B0 is the uniform magnetic 
field applied on the surface. We need to discover the fields 
В and H everywhere in space, but most specifically in the 
cavity (r < a) as a function of µ. The magnetic field H is 
determined from a scalar potential H = -Ψ, as there are 
no currents present. Thus, the potential Ψ satisfies the 
Laplacian in fractional space having fractional α-
dimension in “spherical polar coordinate systems” which 
is described by Baleanu et al. [17]: 

( 𝑑𝑑2

𝑑𝑑𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝑑𝑑
𝑑𝑑𝑟𝑟 + 1

𝑟𝑟2 [ 𝑑𝑑2

𝑑𝑑𝜃𝜃2 + (𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜃𝜃] −

1
𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 [ 𝑑𝑑2

𝑑𝑑𝜙𝜙2 + (𝛼𝛼 − 3)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜙𝜙]) 𝛹𝛹 = 0. (1) 

  

where the fractional parameter α lies in the range (2 < α ≤ 
3) 

In this case, the Laplace equation for the potential 
independent of angle   can be expressed as:  

  
𝛻𝛻2𝛹𝛹 = ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝜕𝜕
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𝜕𝜕𝜃𝜃) 𝛹𝛹 = 0

 (2) 
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Eq (3) is separable and suppose.  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝑅𝑅(𝑟𝑟)𝛩𝛩(𝑐𝑐) (3) 

The differential equation (3) followed by the published 
article [17], can be decoupled into two different parts 
namely angular and radial which are written as: 

  
[ 𝑑𝑑2

𝑑𝑑𝜃𝜃2 + (𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜃𝜃 + 𝑙𝑙(𝑙𝑙 + 𝛼𝛼 − 2)] 𝛩𝛩(𝑐𝑐) = 0 (4) 

[ 𝑑𝑑2

𝑑𝑑𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝑑𝑑
𝑑𝑑𝑟𝑟 + 𝑙𝑙(𝑙𝑙+𝛼𝛼−2)

𝑟𝑟2 ] 𝑅𝑅(𝑟𝑟) = 0 (5) 

Therefore, the combined solutions of Ψ (r, θ) in α-
dimensional fractional space, can be expressed as  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 (𝑎𝑎𝑙𝑙𝑟𝑟𝑙𝑙 + 𝑏𝑏𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2) 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (6) 

Here, the unknown constants al and bl can be determined 
by using the boundary conditions (B.Cs.) on Ψ (r, θ). 
We construct here the solution for three different regions 
by satisfying the B.Cs., at r = a and r = b.  

For the outer region r > b, the potential must be of the form,  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = −𝐻𝐻0𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 +
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𝑟𝑟𝑙𝑙+𝛼𝛼−2 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (7) 

where H = H0 is the uniform field, at large distance.  

For the inner regions, a  r  b the potential can be written 
as:  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 (𝐵𝐵𝑙𝑙𝑟𝑟𝑙𝑙 + 𝐶𝐶𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2) 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (8) 

For ra  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 𝐷𝐷𝑙𝑙𝑟𝑟𝑙𝑙𝐶𝐶𝑙𝑙

𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (9) 

All coefficients for l  1  vanish. Then we can construct 
the solutions for different regions given below: 

  
𝛹𝛹𝑒𝑒(𝑟𝑟, 𝑐𝑐) = [−𝐻𝐻0𝑟𝑟 + 𝐴𝐴𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 > 𝑏𝑏
 (10) 

  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = [𝐵𝐵𝑟𝑟 + 𝐶𝐶𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑎𝑎 <
𝑟𝑟 < 𝑏𝑏 (11) 

  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝐷𝐷𝑟𝑟(𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 < 𝑎𝑎. (12) 

[13]. The core is made of material of permeability, µ, and 
placed in a fractional space. B0 is the uniform magnetic 
field applied on the surface. We need to discover the fields 
В and H everywhere in space, but most specifically in the 
cavity (r < a) as a function of µ. The magnetic field H is 
determined from a scalar potential H = -Ψ, as there are 
no currents present. Thus, the potential Ψ satisfies the 
Laplacian in fractional space having fractional α-
dimension in “spherical polar coordinate systems” which 
is described by Baleanu et al. [17]: 

( 𝑑𝑑2

𝑑𝑑𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝑑𝑑
𝑑𝑑𝑟𝑟 + 1

𝑟𝑟2 [ 𝑑𝑑2

𝑑𝑑𝜃𝜃2 + (𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜃𝜃] −
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𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 [ 𝑑𝑑2

𝑑𝑑𝜙𝜙2 + (𝛼𝛼 − 3)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜙𝜙]) 𝛹𝛹 = 0. (1) 

  

where the fractional parameter α lies in the range (2 < α ≤ 
3) 

In this case, the Laplace equation for the potential 
independent of angle   can be expressed as:  

  
𝛻𝛻2𝛹𝛹 = ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝜕𝜕
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𝜕𝜕𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼−2𝑐𝑐 𝜕𝜕
𝜕𝜕𝜃𝜃) 𝛹𝛹 = 0

 (2) 

 
 
 

 

 

 

 

 

Fig. 1. Spherical Shell of Highly Permeable Material 
Placed in FDS 

Eq (3) is separable and suppose.  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝑅𝑅(𝑟𝑟)𝛩𝛩(𝑐𝑐) (3) 

The differential equation (3) followed by the published 
article [17], can be decoupled into two different parts 
namely angular and radial which are written as: 

  
[ 𝑑𝑑2

𝑑𝑑𝜃𝜃2 + (𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑
𝑑𝑑𝜃𝜃 + 𝑙𝑙(𝑙𝑙 + 𝛼𝛼 − 2)] 𝛩𝛩(𝑐𝑐) = 0 (4) 

[ 𝑑𝑑2

𝑑𝑑𝑟𝑟2 + 𝛼𝛼−1
𝑟𝑟

𝑑𝑑
𝑑𝑑𝑟𝑟 + 𝑙𝑙(𝑙𝑙+𝛼𝛼−2)

𝑟𝑟2 ] 𝑅𝑅(𝑟𝑟) = 0 (5) 

Therefore, the combined solutions of Ψ (r, θ) in α-
dimensional fractional space, can be expressed as  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 (𝑎𝑎𝑙𝑙𝑟𝑟𝑙𝑙 + 𝑏𝑏𝑙𝑙

𝑟𝑟𝑙𝑙+𝛼𝛼−2) 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (6) 

Here, the unknown constants al and bl can be determined 
by using the boundary conditions (B.Cs.) on Ψ (r, θ). 
We construct here the solution for three different regions 
by satisfying the B.Cs., at r = a and r = b.  

For the outer region r > b, the potential must be of the form,  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = −𝐻𝐻0𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 +
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𝑟𝑟𝑙𝑙+𝛼𝛼−2 𝐶𝐶𝑙𝑙
𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (7) 

where H = H0 is the uniform field, at large distance.  

For the inner regions, a  r  b the potential can be written 
as:  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
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𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (8) 
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𝛹𝛹(𝑟𝑟, 𝑐𝑐) = ∑∞
𝑙𝑙=0 𝐷𝐷𝑙𝑙𝑟𝑟𝑙𝑙𝐶𝐶𝑙𝑙

𝛼𝛼 2⁄ −1(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) (9) 

All coefficients for l  1  vanish. Then we can construct 
the solutions for different regions given below: 

  
𝛹𝛹𝑒𝑒(𝑟𝑟, 𝑐𝑐) = [−𝐻𝐻0𝑟𝑟 + 𝐴𝐴𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 > 𝑏𝑏
 (10) 

  

𝛹𝛹(𝑟𝑟, 𝑐𝑐) = [𝐵𝐵𝑟𝑟 + 𝐶𝐶𝑟𝑟−(𝛼𝛼−1)](𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑎𝑎 <
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𝛹𝛹(𝑟𝑟, 𝑐𝑐) = 𝐷𝐷𝑟𝑟(𝛼𝛼 − 2)(𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐), 𝑟𝑟 < 𝑎𝑎. (12) 
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The boundary conditions, at r = a and r = b, are that H and 
Br be continuous for l = 1, the coefficients satisfy the four 
simultaneous equations.  

𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)
𝜕𝜕𝜃𝜃

𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)
𝜕𝜕𝜃𝜃 (𝑏𝑏−) = 𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝜃𝜃 (𝑏𝑏+) (13) 

𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)
𝜕𝜕𝜃𝜃 (𝑎𝑎−) = 𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝜃𝜃 (𝑎𝑎+) (14) 

𝜇𝜇1
𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝑟𝑟 (𝑏𝑏−) = 𝜇𝜇0
𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝑟𝑟 (𝑏𝑏+) (15) 

and  

𝜇𝜇0
𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝑟𝑟 (𝑎𝑎−) = 𝜇𝜇1
𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝑟𝑟 (𝑎𝑎+) (16) 

  

From the above four boundary conditions, we find four 
simplified equations:  

𝐴𝐴 − 𝑏𝑏𝛼𝛼𝐵𝐵 − 𝐶𝐶 = 𝑎𝑎0 (17) 

Where, α0=H0bα 

𝑎𝑎1𝐴𝐴 + 𝜅𝜅𝑏𝑏𝛼𝛼𝐵𝐵 − 𝑎𝑎1𝜅𝜅𝐶𝐶 = −𝑎𝑎0 (18) 

Where α1=α-1 and κ=µ/µ0. 

𝑎𝑎𝛼𝛼𝐵𝐵 + 𝐶𝐶 = 𝑎𝑎𝛼𝛼𝐷𝐷 (19) 

𝑎𝑎𝛼𝛼𝜅𝜅𝐵𝐵 − 𝑎𝑎1𝜅𝜅𝐶𝐶 = 𝑎𝑎𝛼𝛼𝐷𝐷 (20) 

By eliminating the unknown constant D from Eq. (19) and 
Eq. (20), we find  

𝐶𝐶 = (𝜅𝜅−1)
(𝑎𝑎1𝜅𝜅+1) 𝑎𝑎𝛼𝛼𝐵𝐵 (21) 

By substituting the value of C in Eq. (18) from Eq. (21), 
we obtain  

𝐶𝐶 = (𝑎𝑎1+𝜅𝜅)
𝑎𝑎1(𝜅𝜅−1) + 𝑎𝑎0𝛼𝛼

𝑎𝑎1(𝜅𝜅−1) (22) 

Now we find the value of B by comparing Eq. (21) and Eq. 
(22). 

𝐵𝐵 = 𝑎𝑎0𝛼𝛼(𝑎𝑎1𝜅𝜅+1)
(𝑎𝑎1𝑎𝑎𝛼𝛼(𝑘𝑘−1)2−(𝑎𝑎1+𝑘𝑘)(𝑎𝑎1𝜅𝜅+1))𝑏𝑏𝛼𝛼 (23) 

Similarly,  

𝐶𝐶 = 𝑎𝑎0𝛼𝛼𝑎𝑎𝛼𝛼(𝜅𝜅−1)
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Solving for Constant A, substituting the value of unknown 
coefficients B and C in Eq. (18), we obtain the simplified 
coefficient A:  

𝐴𝐴 = 𝐻𝐻0
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𝑏𝑏)
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(𝑘𝑘−1)2]
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Where, α1=α-1  and κ=µ/µ0.  

Finally, we solve for coefficient D by substituting the 
value of B and C in Eq. (20), we obtain: 

𝐷𝐷 = 𝐻𝐻0
𝛼𝛼(𝑎𝑎1𝜅𝜅+1+𝜅𝜅−1)
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Which is simplified as:  

𝐷𝐷 = 𝐻𝐻0
𝛼𝛼2𝜅𝜅
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To retrieve the results for integer order we set α = 3.   
Special Case 

The potential outside the spherical shell is uniform and the 
dipole moment equal to the magnitude A. Inside the cavity 
of highly permeable material, there is a uniform magnetic 
field parallel to H0 and equal to magnitude D. For µ ˃˃ µ0, 
the dipole moment A and the inner field D become as:  

𝐴𝐴 = 𝑏𝑏𝛼𝛼𝐻𝐻0 (28) 

 𝐷𝐷 = 𝛼𝛼2𝜇𝜇0

𝜇𝜇(1−(𝑎𝑎
𝑏𝑏)

𝛼𝛼
)
 (29) 

3. RESULTS AND DISCUSSION 

We have investigated a closed-form solution in non-
integer dimensional space (NID) for a spherical shell 
which is made of magnetic materials. Here, the potential 
for three regions of the spherical shell has been calculated 
through induced dipole moment in fractional dimensional 
space. Its results are very interesting. We find that the 
field due to the core that is inversely proportional to µ, it 
means the shielding effect is because of the highly 
permeable material µ/ µ0  103 − 106 that causes enough 
reduction in the field inside the sphere, although, the 
spherical shell is thin. Moreover, this general solution can 
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The boundary conditions, at r = a and r = b, are that H and 
Br be continuous for l = 1, the coefficients satisfy the four 
simultaneous equations.  
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To retrieve the results for integer order we set α = 3.   
Special Case 

The potential outside the spherical shell is uniform and the 
dipole moment equal to the magnitude A. Inside the cavity 
of highly permeable material, there is a uniform magnetic 
field parallel to H0 and equal to magnitude D. For µ ˃˃ µ0, 
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for three regions of the spherical shell has been calculated 
through induced dipole moment in fractional dimensional 
space. Its results are very interesting. We find that the 
field due to the core that is inversely proportional to µ, it 
means the shielding effect is because of the highly 
permeable material µ/ µ0  103 − 106 that causes enough 
reduction in the field inside the sphere, although, the 
spherical shell is thin. Moreover, this general solution can 
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Where, α1=α-1  and κ=µ/µ0.  

Finally, we solve for coefficient D by substituting the 
value of B and C in Eq. (20), we obtain: 

𝐷𝐷 = 𝐻𝐻0
𝛼𝛼(𝑎𝑎1𝜅𝜅+1+𝜅𝜅−1)
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To retrieve the results for integer order we set α = 3.   
Special Case 

The potential outside the spherical shell is uniform and the 
dipole moment equal to the magnitude A. Inside the cavity 
of highly permeable material, there is a uniform magnetic 
field parallel to H0 and equal to magnitude D. For µ ˃˃ µ0, 
the dipole moment A and the inner field D become as:  

𝐴𝐴 = 𝑏𝑏𝛼𝛼𝐻𝐻0 (28) 

 𝐷𝐷 = 𝛼𝛼2𝜇𝜇0

𝜇𝜇(1−(𝑎𝑎
𝑏𝑏)

𝛼𝛼
)
 (29) 

3. RESULTS AND DISCUSSION 

We have investigated a closed-form solution in non-
integer dimensional space (NID) for a spherical shell 
which is made of magnetic materials. Here, the potential 
for three regions of the spherical shell has been calculated 
through induced dipole moment in fractional dimensional 
space. Its results are very interesting. We find that the 
field due to the core that is inversely proportional to µ, it 
means the shielding effect is because of the highly 
permeable material µ/ µ0  103 − 106 that causes enough 
reduction in the field inside the sphere, although, the 
spherical shell is thin. Moreover, this general solution can 
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By eliminating the unknown constant D from Eq. 
(19) and Eq. (20), we find 
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By substituting the value of C in Eq. (18) from Eq. 
(21), we obtain 
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Now we find the value of B by comparing Eq. (21) 
and Eq. (22).
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Similarly, 
 

(24)
Solving for Constant A, substituting the value 
of unknown coefficients B and C in Eq. (18), we 
obtain the simplified coefficient A: 
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Where, α1=α-1 and κ=µ/µ0. 
Finally, we solve for coefficient D by substituting 
the value of B and C in Eq. (20), we obtain:
 

(26)

Which is simplified as: 
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To retrieve the results for integer order we set α = 3. 
Special Case
The potential outside the spherical shell is uniform 
and the dipole moment equal to the magnitude A. 
Inside the cavity of highly permeable material, there 
is a uniform magnetic field parallel to H0 and equal 
to magnitude D. For µ ˃˃ µ0, the dipole moment A 
and the inner field D become as: 
 

(28)
  

(29)

3. RESULTS AND DISCUSSION

We have investigated a closed-form solution in non-

integer dimensional space (NID) for a spherical 
shell which is made of magnetic materials. Here, 
the potential for three regions of the spherical shell 
has been calculated through induced dipole moment 
in fractional dimensional space. Its results are very 
interesting. We find that the field due to the core that 
is inversely proportional to µ, it means the shielding 
effect is because of the highly permeable material 
µ/ µ0 ≈ 103 − 106 that causes enough reduction in 
the field inside the sphere, although, the spherical 
shell is thin. Moreover, this general solution can 
be applied for various materials by replacing 
permeable materials like lossless metamaterials 
DNG, ENG, DPS, MNG, ENZ, MNZ, DNZ and 
plasmas (isotropic, anisotropic, uniaxial, bi-axial, 
magnetized and un magnetized plasmas). Further, it 
can be applied for lossy mediums like dry sand, wet 
sand, water, soil and petroleum etc.

4. CONCLUSIONS

Fractional space plays a key role to describe 
the complex phenomena of Physics. In this 
study, the Laplace equation has been analyzed in 
α-dimensional fractional space (FS). The potential 
for three regions of the spherical shell is calculated 
in (FS). Induced dipole moment has been also 
derived. The shielding effect is because of the 
highly permeable material µ/µ0 ≈ 103 − 106 that 
causes enough reduction in the field inside sphere, 
although, the spherical shell is thin. A general 
solution has been investigated in this article that can 
be applied for different materials inside and outside 
the spherical shell. For all investigated cases when 
α = 3 the classical results are retrieved.

5. CONFLICT OF INTEREST

The authors declare no conflict of interest.

6. REFERENCES 

1. C.G. Bollini, and J.J. Giambiagi. Dimensional 
renormalization: The number of dimensions as a 
regularizing parameter. Nuovo Cimento B 12: 20-26 
(1972).

2. J.F. Ashmore. On renormalization and complex 
spacetime dimensions. Communications in 
Mathematical Physics 29: 177-187 (1973).

3. K.G. Wilson. Quantum Field - Theory Models in 
Less Than 4 Dimensions. Physical Review D 7(10): 
2911-2926 (1973).

 

 3  
 

The boundary conditions, at r = a and r = b, are that H and 
Br be continuous for l = 1, the coefficients satisfy the four 
simultaneous equations.  

𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)
𝜕𝜕𝜃𝜃

𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)
𝜕𝜕𝜃𝜃 (𝑏𝑏−) = 𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝜃𝜃 (𝑏𝑏+) (13) 

𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)
𝜕𝜕𝜃𝜃 (𝑎𝑎−) = 𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝜃𝜃 (𝑎𝑎+) (14) 

𝜇𝜇1
𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝑟𝑟 (𝑏𝑏−) = 𝜇𝜇0
𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝑟𝑟 (𝑏𝑏+) (15) 

and  

𝜇𝜇0
𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝑟𝑟 (𝑎𝑎−) = 𝜇𝜇1
𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝑟𝑟 (𝑎𝑎+) (16) 

  

From the above four boundary conditions, we find four 
simplified equations:  

𝐴𝐴 − 𝑏𝑏𝛼𝛼𝐵𝐵 − 𝐶𝐶 = 𝑎𝑎0 (17) 

Where, α0=H0bα 

𝑎𝑎1𝐴𝐴 + 𝜅𝜅𝑏𝑏𝛼𝛼𝐵𝐵 − 𝑎𝑎1𝜅𝜅𝐶𝐶 = −𝑎𝑎0 (18) 

Where α1=α-1 and κ=µ/µ0. 

𝑎𝑎𝛼𝛼𝐵𝐵 + 𝐶𝐶 = 𝑎𝑎𝛼𝛼𝐷𝐷 (19) 

𝑎𝑎𝛼𝛼𝜅𝜅𝐵𝐵 − 𝑎𝑎1𝜅𝜅𝐶𝐶 = 𝑎𝑎𝛼𝛼𝐷𝐷 (20) 

By eliminating the unknown constant D from Eq. (19) and 
Eq. (20), we find  

𝐶𝐶 = (𝜅𝜅−1)
(𝑎𝑎1𝜅𝜅+1) 𝑎𝑎𝛼𝛼𝐵𝐵 (21) 

By substituting the value of C in Eq. (18) from Eq. (21), 
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𝐶𝐶 = (𝑎𝑎1+𝜅𝜅)
𝑎𝑎1(𝜅𝜅−1) + 𝑎𝑎0𝛼𝛼

𝑎𝑎1(𝜅𝜅−1) (22) 
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Solving for Constant A, substituting the value of unknown 
coefficients B and C in Eq. (18), we obtain the simplified 
coefficient A:  

𝐴𝐴 = 𝐻𝐻0
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Where, α1=α-1  and κ=µ/µ0.  

Finally, we solve for coefficient D by substituting the 
value of B and C in Eq. (20), we obtain: 

𝐷𝐷 = 𝐻𝐻0
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𝛼𝛼
(𝑘𝑘−1)2]

 (26) 

Which is simplified as:  
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𝛼𝛼2𝜅𝜅

[(𝑎𝑎1+𝑘𝑘)(𝑎𝑎1𝜅𝜅+1)−𝑎𝑎1(𝑎𝑎
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To retrieve the results for integer order we set α = 3.   
Special Case 

The potential outside the spherical shell is uniform and the 
dipole moment equal to the magnitude A. Inside the cavity 
of highly permeable material, there is a uniform magnetic 
field parallel to H0 and equal to magnitude D. For µ ˃˃ µ0, 
the dipole moment A and the inner field D become as:  

𝐴𝐴 = 𝑏𝑏𝛼𝛼𝐻𝐻0 (28) 

 𝐷𝐷 = 𝛼𝛼2𝜇𝜇0

𝜇𝜇(1−(𝑎𝑎
𝑏𝑏)

𝛼𝛼
)
 (29) 

3. RESULTS AND DISCUSSION 

We have investigated a closed-form solution in non-
integer dimensional space (NID) for a spherical shell 
which is made of magnetic materials. Here, the potential 
for three regions of the spherical shell has been calculated 
through induced dipole moment in fractional dimensional 
space. Its results are very interesting. We find that the 
field due to the core that is inversely proportional to µ, it 
means the shielding effect is because of the highly 
permeable material µ/ µ0  103 − 106 that causes enough 
reduction in the field inside the sphere, although, the 
spherical shell is thin. Moreover, this general solution can 

 

 3  
 

The boundary conditions, at r = a and r = b, are that H and 
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𝐴𝐴 − 𝑏𝑏𝛼𝛼𝐵𝐵 − 𝐶𝐶 = 𝑎𝑎0 (17) 
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Eq. (20), we find  
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Where, α1=α-1  and κ=µ/µ0.  
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𝑎𝑎1(𝜅𝜅−1) + 𝑎𝑎0𝛼𝛼

𝑎𝑎1(𝜅𝜅−1) (22) 

Now we find the value of B by comparing Eq. (21) and Eq. 
(22). 

𝐵𝐵 = 𝑎𝑎0𝛼𝛼(𝑎𝑎1𝜅𝜅+1)
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(𝑎𝑎1𝑎𝑎𝛼𝛼(𝑘𝑘−1)2−(𝑎𝑎1+𝑘𝑘)(𝑎𝑎1𝜅𝜅+1))𝑏𝑏𝛼𝛼 (24) 

Solving for Constant A, substituting the value of unknown 
coefficients B and C in Eq. (18), we obtain the simplified 
coefficient A:  

𝐴𝐴 = 𝐻𝐻0
[(𝑎𝑎1𝜅𝜅+1)(𝜅𝜅−1)(𝑏𝑏𝛼𝛼−𝑎𝑎𝛼𝛼)]

[(𝑎𝑎1+𝑘𝑘)(𝑎𝑎1𝜅𝜅+1)−𝑎𝑎1(𝑎𝑎
𝑏𝑏)

𝛼𝛼
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 (25) 

Where, α1=α-1  and κ=µ/µ0.  

Finally, we solve for coefficient D by substituting the 
value of B and C in Eq. (20), we obtain: 

𝐷𝐷 = 𝐻𝐻0
𝛼𝛼(𝑎𝑎1𝜅𝜅+1+𝜅𝜅−1)

[(𝑎𝑎1+𝑘𝑘)(𝑎𝑎1𝜅𝜅+1)−𝑎𝑎1(𝑎𝑎
𝑏𝑏)
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Which is simplified as:  

𝐷𝐷 = 𝐻𝐻0
𝛼𝛼2𝜅𝜅

[(𝑎𝑎1+𝑘𝑘)(𝑎𝑎1𝜅𝜅+1)−𝑎𝑎1(𝑎𝑎
𝑏𝑏)
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To retrieve the results for integer order we set α = 3.   
Special Case 

The potential outside the spherical shell is uniform and the 
dipole moment equal to the magnitude A. Inside the cavity 
of highly permeable material, there is a uniform magnetic 
field parallel to H0 and equal to magnitude D. For µ ˃˃ µ0, 
the dipole moment A and the inner field D become as:  

𝐴𝐴 = 𝑏𝑏𝛼𝛼𝐻𝐻0 (28) 

 𝐷𝐷 = 𝛼𝛼2𝜇𝜇0

𝜇𝜇(1−(𝑎𝑎
𝑏𝑏)

𝛼𝛼
)
 (29) 

3. RESULTS AND DISCUSSION 

We have investigated a closed-form solution in non-
integer dimensional space (NID) for a spherical shell 
which is made of magnetic materials. Here, the potential 
for three regions of the spherical shell has been calculated 
through induced dipole moment in fractional dimensional 
space. Its results are very interesting. We find that the 
field due to the core that is inversely proportional to µ, it 
means the shielding effect is because of the highly 
permeable material µ/ µ0  103 − 106 that causes enough 
reduction in the field inside the sphere, although, the 
spherical shell is thin. Moreover, this general solution can 
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The boundary conditions, at r = a and r = b, are that H and 
Br be continuous for l = 1, the coefficients satisfy the four 
simultaneous equations.  
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𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝑟𝑟 (𝑎𝑎+) (16) 
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𝐴𝐴 − 𝑏𝑏𝛼𝛼𝐵𝐵 − 𝐶𝐶 = 𝑎𝑎0 (17) 

Where, α0=H0bα 
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Where α1=α-1 and κ=µ/µ0. 
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𝐶𝐶 = (𝜅𝜅−1)
(𝑎𝑎1𝜅𝜅+1) 𝑎𝑎𝛼𝛼𝐵𝐵 (21) 

By substituting the value of C in Eq. (18) from Eq. (21), 
we obtain  

𝐶𝐶 = (𝑎𝑎1+𝜅𝜅)
𝑎𝑎1(𝜅𝜅−1) + 𝑎𝑎0𝛼𝛼
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Now we find the value of B by comparing Eq. (21) and Eq. 
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Solving for Constant A, substituting the value of unknown 
coefficients B and C in Eq. (18), we obtain the simplified 
coefficient A:  
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Where, α1=α-1  and κ=µ/µ0.  

Finally, we solve for coefficient D by substituting the 
value of B and C in Eq. (20), we obtain: 
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To retrieve the results for integer order we set α = 3.   
Special Case 

The potential outside the spherical shell is uniform and the 
dipole moment equal to the magnitude A. Inside the cavity 
of highly permeable material, there is a uniform magnetic 
field parallel to H0 and equal to magnitude D. For µ ˃˃ µ0, 
the dipole moment A and the inner field D become as:  

𝐴𝐴 = 𝑏𝑏𝛼𝛼𝐻𝐻0 (28) 
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3. RESULTS AND DISCUSSION 

We have investigated a closed-form solution in non-
integer dimensional space (NID) for a spherical shell 
which is made of magnetic materials. Here, the potential 
for three regions of the spherical shell has been calculated 
through induced dipole moment in fractional dimensional 
space. Its results are very interesting. We find that the 
field due to the core that is inversely proportional to µ, it 
means the shielding effect is because of the highly 
permeable material µ/ µ0  103 − 106 that causes enough 
reduction in the field inside the sphere, although, the 
spherical shell is thin. Moreover, this general solution can 
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From the above four boundary conditions, we find four 
simplified equations:  

𝐴𝐴 − 𝑏𝑏𝛼𝛼𝐵𝐵 − 𝐶𝐶 = 𝑎𝑎0 (17) 
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Where α1=α-1 and κ=µ/µ0. 
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𝑎𝑎𝛼𝛼𝜅𝜅𝐵𝐵 − 𝑎𝑎1𝜅𝜅𝐶𝐶 = 𝑎𝑎𝛼𝛼𝐷𝐷 (20) 

By eliminating the unknown constant D from Eq. (19) and 
Eq. (20), we find  

𝐶𝐶 = (𝜅𝜅−1)
(𝑎𝑎1𝜅𝜅+1) 𝑎𝑎𝛼𝛼𝐵𝐵 (21) 

By substituting the value of C in Eq. (18) from Eq. (21), 
we obtain  

𝐶𝐶 = (𝑎𝑎1+𝜅𝜅)
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Where, α1=α-1  and κ=µ/µ0.  

Finally, we solve for coefficient D by substituting the 
value of B and C in Eq. (20), we obtain: 

𝐷𝐷 = 𝐻𝐻0
𝛼𝛼(𝑎𝑎1𝜅𝜅+1+𝜅𝜅−1)

[(𝑎𝑎1+𝑘𝑘)(𝑎𝑎1𝜅𝜅+1)−𝑎𝑎1(𝑎𝑎
𝑏𝑏)

𝛼𝛼
(𝑘𝑘−1)2]

 (26) 

Which is simplified as:  

𝐷𝐷 = 𝐻𝐻0
𝛼𝛼2𝜅𝜅

[(𝑎𝑎1+𝑘𝑘)(𝑎𝑎1𝜅𝜅+1)−𝑎𝑎1(𝑎𝑎
𝑏𝑏)

𝛼𝛼
(𝑘𝑘−1)2]

 (27) 

To retrieve the results for integer order we set α = 3.   
Special Case 

The potential outside the spherical shell is uniform and the 
dipole moment equal to the magnitude A. Inside the cavity 
of highly permeable material, there is a uniform magnetic 
field parallel to H0 and equal to magnitude D. For µ ˃˃ µ0, 
the dipole moment A and the inner field D become as:  

𝐴𝐴 = 𝑏𝑏𝛼𝛼𝐻𝐻0 (28) 

 𝐷𝐷 = 𝛼𝛼2𝜇𝜇0

𝜇𝜇(1−(𝑎𝑎
𝑏𝑏)

𝛼𝛼
)
 (29) 

3. RESULTS AND DISCUSSION 

We have investigated a closed-form solution in non-
integer dimensional space (NID) for a spherical shell 
which is made of magnetic materials. Here, the potential 
for three regions of the spherical shell has been calculated 
through induced dipole moment in fractional dimensional 
space. Its results are very interesting. We find that the 
field due to the core that is inversely proportional to µ, it 
means the shielding effect is because of the highly 
permeable material µ/ µ0  103 − 106 that causes enough 
reduction in the field inside the sphere, although, the 
spherical shell is thin. Moreover, this general solution can 

 

 3  
 

The boundary conditions, at r = a and r = b, are that H and 
Br be continuous for l = 1, the coefficients satisfy the four 
simultaneous equations.  

𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)
𝜕𝜕𝜃𝜃

𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)
𝜕𝜕𝜃𝜃 (𝑏𝑏−) = 𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝜃𝜃 (𝑏𝑏+) (13) 

𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)
𝜕𝜕𝜃𝜃 (𝑎𝑎−) = 𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝜃𝜃 (𝑎𝑎+) (14) 

𝜇𝜇1
𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝑟𝑟 (𝑏𝑏−) = 𝜇𝜇0
𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝑟𝑟 (𝑏𝑏+) (15) 

and  

𝜇𝜇0
𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝑟𝑟 (𝑎𝑎−) = 𝜇𝜇1
𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)

𝜕𝜕𝑟𝑟 (𝑎𝑎+) (16) 

  

From the above four boundary conditions, we find four 
simplified equations:  

𝐴𝐴 − 𝑏𝑏𝛼𝛼𝐵𝐵 − 𝐶𝐶 = 𝑎𝑎0 (17) 

Where, α0=H0bα 

𝑎𝑎1𝐴𝐴 + 𝜅𝜅𝑏𝑏𝛼𝛼𝐵𝐵 − 𝑎𝑎1𝜅𝜅𝐶𝐶 = −𝑎𝑎0 (18) 

Where α1=α-1 and κ=µ/µ0. 

𝑎𝑎𝛼𝛼𝐵𝐵 + 𝐶𝐶 = 𝑎𝑎𝛼𝛼𝐷𝐷 (19) 

𝑎𝑎𝛼𝛼𝜅𝜅𝐵𝐵 − 𝑎𝑎1𝜅𝜅𝐶𝐶 = 𝑎𝑎𝛼𝛼𝐷𝐷 (20) 

By eliminating the unknown constant D from Eq. (19) and 
Eq. (20), we find  

𝐶𝐶 = (𝜅𝜅−1)
(𝑎𝑎1𝜅𝜅+1) 𝑎𝑎𝛼𝛼𝐵𝐵 (21) 

By substituting the value of C in Eq. (18) from Eq. (21), 
we obtain  

𝐶𝐶 = (𝑎𝑎1+𝜅𝜅)
𝑎𝑎1(𝜅𝜅−1) + 𝑎𝑎0𝛼𝛼

𝑎𝑎1(𝜅𝜅−1) (22) 

Now we find the value of B by comparing Eq. (21) and Eq. 
(22). 

𝐵𝐵 = 𝑎𝑎0𝛼𝛼(𝑎𝑎1𝜅𝜅+1)
(𝑎𝑎1𝑎𝑎𝛼𝛼(𝑘𝑘−1)2−(𝑎𝑎1+𝑘𝑘)(𝑎𝑎1𝜅𝜅+1))𝑏𝑏𝛼𝛼 (23) 

Similarly,  

𝐶𝐶 = 𝑎𝑎0𝛼𝛼𝑎𝑎𝛼𝛼(𝜅𝜅−1)
(𝑎𝑎1𝑎𝑎𝛼𝛼(𝑘𝑘−1)2−(𝑎𝑎1+𝑘𝑘)(𝑎𝑎1𝜅𝜅+1))𝑏𝑏𝛼𝛼 (24) 

Solving for Constant A, substituting the value of unknown 
coefficients B and C in Eq. (18), we obtain the simplified 
coefficient A:  

𝐴𝐴 = 𝐻𝐻0
[(𝑎𝑎1𝜅𝜅+1)(𝜅𝜅−1)(𝑏𝑏𝛼𝛼−𝑎𝑎𝛼𝛼)]

[(𝑎𝑎1+𝑘𝑘)(𝑎𝑎1𝜅𝜅+1)−𝑎𝑎1(𝑎𝑎
𝑏𝑏)

𝛼𝛼
(𝑘𝑘−1)2]

 (25) 

Where, α1=α-1  and κ=µ/µ0.  

Finally, we solve for coefficient D by substituting the 
value of B and C in Eq. (20), we obtain: 

𝐷𝐷 = 𝐻𝐻0
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Which is simplified as:  

𝐷𝐷 = 𝐻𝐻0
𝛼𝛼2𝜅𝜅
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𝑏𝑏)
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To retrieve the results for integer order we set α = 3.   
Special Case 

The potential outside the spherical shell is uniform and the 
dipole moment equal to the magnitude A. Inside the cavity 
of highly permeable material, there is a uniform magnetic 
field parallel to H0 and equal to magnitude D. For µ ˃˃ µ0, 
the dipole moment A and the inner field D become as:  

𝐴𝐴 = 𝑏𝑏𝛼𝛼𝐻𝐻0 (28) 

 𝐷𝐷 = 𝛼𝛼2𝜇𝜇0

𝜇𝜇(1−(𝑎𝑎
𝑏𝑏)

𝛼𝛼
)
 (29) 

3. RESULTS AND DISCUSSION 

We have investigated a closed-form solution in non-
integer dimensional space (NID) for a spherical shell 
which is made of magnetic materials. Here, the potential 
for three regions of the spherical shell has been calculated 
through induced dipole moment in fractional dimensional 
space. Its results are very interesting. We find that the 
field due to the core that is inversely proportional to µ, it 
means the shielding effect is because of the highly 
permeable material µ/ µ0  103 − 106 that causes enough 
reduction in the field inside the sphere, although, the 
spherical shell is thin. Moreover, this general solution can 
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The boundary conditions, at r = a and r = b, are that H and 
Br be continuous for l = 1, the coefficients satisfy the four 
simultaneous equations.  

𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)
𝜕𝜕𝜃𝜃

𝜕𝜕𝜕𝜕(𝑟𝑟,𝜃𝜃)
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From the above four boundary conditions, we find four 
simplified equations:  

𝐴𝐴 − 𝑏𝑏𝛼𝛼𝐵𝐵 − 𝐶𝐶 = 𝑎𝑎0 (17) 

Where, α0=H0bα 
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