
Proceedings of the Pakistan Academy of Sciences: A Pakistan Academy of Sciences
Physical and Computational Sciences 60(2): 45-54 (2023)
Copyright © Pakistan Academy of Sciences
ISSN (Print): 2518-4245; ISSN (Online): 2518-4253
https://doi.org/10.53560/PPASA(60-2)668

Research Article

————————————————
Received: January 2023; Accepted: June 2023
*Corresponding Author: Tariq Mahmood <tariqmahmood.chep@pu.edu.pk>

Quantum Computer Architecture: A Quantum Circuit-Based
Approach Towards Quantum Neural Network

Tariq Mahmood*, Talab Hussain, and Maqsood Ahmed

Centre for High Energy Physics, University of the Punjab, Lahore, Pakistan

Abstract: According to recent research on the brain and cognition, the microtubule level activities in the brain are
in accordance with the quantum mechanical concepts. Consciousness is the emergent phenomenon of the brain’s
subsystems and the quantum neural correlates. Based on the global work-space theory and traditional neural networks,
investigations in machine consciousness and machine intelligence are reporting new techniques. In this study, a
novel approach using circuit-based quantum neural network is proposed and simulated. This approach satisfies all
the criteria of quantum computing and is tested for the exclusive OR (XOR) gate’s nonlinear learning. As a result
of the use of quantum gates, various quantum circuits, such as quantum adders and subtractors, are also created and
included in the designing and simulation of circuit of the quantum neural networks. Moreover, it is also argued that the
proposed circuit of quantum neural network may also be tested and implemented on real quantum computer hardware.
The present study also stresses the applicability of techniques of machine learning algorithms such as quantum and
classical neural networks to various challenges of High Energy Physics.

Keywords: High Energy Physics, Artificial Neural Network, Quantum Computing, Quantum Circuits, Quantum
Neural Network.

1. INTRODUCTION

To recreate the characteristics of human intellect
in computers, different theories of consciousness
such as Global Workspace Theory [1–5] and Neural
Correlate Theory have proposed different models
in the recent years [6–18]. In machine intelligence,
neurological correlates of consciousness are
employed by artificial neural networks (ANNs)
[18–21] which consist of layers (input, hidden and
output) of neurons [21–23]. Real values are used as
the ANNs’ inputs, weights (connection strengths),
and outputs [22, 23]. The artificial neural networks
are being simulated to learn and recognize using
the typically available computer architecture,
which represents information with “0” or “1”. By
claiming that information at the microtubule level
in human brain follows the laws of quantum physics
[9], Roger Penrose and Hameroff’s Orch-OR model
[13, 21] was used to describe the capabilities of the
brain at the microtubule level. This model further
contended that higher-level characteristics of the
brain, such as consciousness and unconsciousness,

may be explained by general relativity and quantum
physics principles [6-7, 13, 21]. Quantum physics
may more effectively describe nature, including
energy and matter at the microscopic level [24].
Quantum computing based upon its marvelous
features such as superposition and entanglement
is promising to provide answers to those higher
dimensional issues that conventional computing
has not yet been able to resolve [25]. The amazing
properties of interference, entanglement, and
superposition in quantum computing also offer a
genuine parallel architecture [21, 24-27].

The typical concepts about Quantum Circuits,
Quantum Neural Networks (QNNs) and Machine
Learning in High-Energy Physics are as follows.
As far as the Quantum Circuits are concerned,
the quantum counterpart of classical information,
known as a qubit, is denoted by the Dirac notations
which are Ket (column) and Bra (row) vectors.
Qubits may be a superposition of these states
[24–25, 27] even if they are in the state of “|0>”
or “|1>.” The arithmetic and logical units, registers,

and memory are only a few examples of the several
classical gates utilized in classical computers.
Quantum computing also consists of Hermitian
matrices/operators named as single-qubit and
multiqubit gates (H, X, Y, Z, CNOT, Toffoli, Fradklin
etc.) to process information in quantum circuits
required to build quantum computer architecture.
The Toffoli gate, which can be seen in Figures 1,
2, and 3, is used to transform classical gates and
circuits therefore named as the universal gate of
quantum computing. As a result, Toffoli gate is
used to form quantum circuits for the corresponding
classical circuits (as seen in Figures 4, 5, 6, and 7).

Fig. 1. By fixing the Toffoli gate’s third qubit to |0> or
|1>, the classical AND and NAND gates are transformed
into Quantum AND and Quantum NAND gates
respectively. Where inputs (|A〉, |B〉 and |C〉 are named
as Qubits (quantum states) with A and B being classical
bits (0 or 1) [28-30].

Fig. 3. CNOT gate of quantum computing is equivalent
of Classical XOR gate. Where, inputs (|A〉, |B〉 and |C〉
are named as Qubits (quantum states) and A and B are
classical bits (0 or 1) [28-30].

Fig. 4. Classical half adder is transformed into quantum
half adder by applying Toffoli gate on the three qubits
followed by CNOT gate applied to the first two qubits.
Where, inputs (|A〉, |B〉 and |C〉 are named as Qubits
(quantum states), and A, B, S (Sum), and C (Carry) are
classical bits (0 or 1) [28-30].

Fig. 5. Classical full adder is transformed into quantum
full adder with CNOT gate and three Toffoli gates acting
on different qubits. Where, inputs (|A〉, |B〉 and |C〉are
named as Qubits (quantum states) and A, B, S (Sum),
and C (Carry) being classical bits (0 or 1) [28-30].

Fig. 6. Classical Half Subtractor is transformed into
quantum Half Subtractor with two CNOT gates and one
Toffoli gate acting on different qubits. Where, inputs
(|A〉, |B〉 and |C〉 are named as Qubits (quantum states),
A and B are classical bits (0 or 1), D (Difference) and B
(borrowed) are classical outputs (0 or 1) [28-30].

Fig. 2. By fixing third qubit of Toffoli gate to be |1> or
|0>, the classical OR and NOR gates are transformed
into QOR and QNOR gates respectively. Where, inputs
(|A〉, |B〉 and |C〉 are named as Qubits (quantum states)
and A and B are classical bits (0 or 1) [28-30].

Learning in High-Energy Physics are as follows. As far
as the Quantum Circuits are concerned, the quantum
counterpart of classical information, known as a qubit,
is denoted by the Dirac notations which are Ket
(column) and Bra (row) vectors. Qubits may be a
superposition of these states [24–25, 27] even if they
are in the state of "|0>" or "|1>." The arithmetic and
logical units, registers, and memory are only a few
examples of the several classical gates utilized in
classical computers. Quantum computing also consists
of Hermitian matrices/operators named as single-qubit
and multiqubit gates (H, X, Y, Z, CNOT, Toffoli,
Fradklin etc.) to process information in quantum
circuits required to build quantum computer
architecture. The Toffoli gate, which can be seen in
Figures 1, 2, and 3, is used to transform classical gates
and circuits therefore named as the universal gate of
quantum computing. As a result, Toffoli gate is used to
form quantum circuits for the corresponding classical
circuits (as seen in Figures 4, 5, 6, and 7).

Fig. 1. By fixing the Toffoli gate’s third qubit to |0> or |1>,
the classical AND and NAND gates are transformed into
Quantum AND and Quantum NAND gates respectively.
Where inputs (|𝑨𝑨〉 , |𝑩𝑩〉 and |𝑪𝑪〉 are named as Qubits
(quantum states) with A and B being classical bits (0 or 1)
[28-30].

Fig. 2. By fixing third qubit of Toffoli gate to be |1> or |0>,
the classical OR and NOR gates are transformed into QOR
and QNOR gates respectively. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and
|𝑪𝑪〉 are named as Qubits (quantum states) and A and B are
classical bits (0 or 1) [28-30].

Fig. 3. CNOT gate of quantum computing is equivalent of
Classical XOR gate. Where, inputs (|𝑨𝑨〉 , |𝑩𝑩〉 and |𝑪𝑪〉 are
named as Qubits (quantum states) and A and B are classical
bits (0 or 1) [28-30].

Fig. 4. Classical half adder is transformed into quantum half
adder by applying Toffoli gate on the three qubits followed
by CNOT gate applied to the first two qubits. Where, inputs
(|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉 are named as Qubits (quantum states), and
A, B, S (Sum), and C (Carry) are classical bits (0 or 1) [28-
30].

Fig. 5. Classical full adder is transformed into quantum full
adder with CNOT gate and three Toffoli gates acting on
different qubits. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉 are named
as Qubits (quantum states) and A, B, S (Sum), and C (Carry)
being classical bits (0 or 1) [28-30].

Fig. 6. Classical Half Subtractor is transformed into quantum
Half Subtractor with two CNOT gates and one Toffoli gate
acting on different qubits. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉
are named as Qubits (quantum states), A and B are classical
bits (0 or 1), D (Difference) and B (borrowed) are classical
outputs (0 or 1) [28-30].

Learning in High-Energy Physics are as follows. As far
as the Quantum Circuits are concerned, the quantum
counterpart of classical information, known as a qubit,
is denoted by the Dirac notations which are Ket
(column) and Bra (row) vectors. Qubits may be a
superposition of these states [24–25, 27] even if they
are in the state of "|0>" or "|1>." The arithmetic and
logical units, registers, and memory are only a few
examples of the several classical gates utilized in
classical computers. Quantum computing also consists
of Hermitian matrices/operators named as single-qubit
and multiqubit gates (H, X, Y, Z, CNOT, Toffoli,
Fradklin etc.) to process information in quantum
circuits required to build quantum computer
architecture. The Toffoli gate, which can be seen in
Figures 1, 2, and 3, is used to transform classical gates
and circuits therefore named as the universal gate of
quantum computing. As a result, Toffoli gate is used to
form quantum circuits for the corresponding classical
circuits (as seen in Figures 4, 5, 6, and 7).

Fig. 1. By fixing the Toffoli gate’s third qubit to |0> or |1>,
the classical AND and NAND gates are transformed into
Quantum AND and Quantum NAND gates respectively.
Where inputs (|𝑨𝑨〉 , |𝑩𝑩〉 and |𝑪𝑪〉 are named as Qubits
(quantum states) with A and B being classical bits (0 or 1)
[28-30].

Fig. 2. By fixing third qubit of Toffoli gate to be |1> or |0>,
the classical OR and NOR gates are transformed into QOR
and QNOR gates respectively. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and
|𝑪𝑪〉 are named as Qubits (quantum states) and A and B are
classical bits (0 or 1) [28-30].

Fig. 3. CNOT gate of quantum computing is equivalent of
Classical XOR gate. Where, inputs (|𝑨𝑨〉 , |𝑩𝑩〉 and |𝑪𝑪〉 are
named as Qubits (quantum states) and A and B are classical
bits (0 or 1) [28-30].

Fig. 4. Classical half adder is transformed into quantum half
adder by applying Toffoli gate on the three qubits followed
by CNOT gate applied to the first two qubits. Where, inputs
(|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉 are named as Qubits (quantum states), and
A, B, S (Sum), and C (Carry) are classical bits (0 or 1) [28-
30].

Fig. 5. Classical full adder is transformed into quantum full
adder with CNOT gate and three Toffoli gates acting on
different qubits. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉 are named
as Qubits (quantum states) and A, B, S (Sum), and C (Carry)
being classical bits (0 or 1) [28-30].

Fig. 6. Classical Half Subtractor is transformed into quantum
Half Subtractor with two CNOT gates and one Toffoli gate
acting on different qubits. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉
are named as Qubits (quantum states), A and B are classical
bits (0 or 1), D (Difference) and B (borrowed) are classical
outputs (0 or 1) [28-30].

Learning in High-Energy Physics are as follows. As far
as the Quantum Circuits are concerned, the quantum
counterpart of classical information, known as a qubit,
is denoted by the Dirac notations which are Ket
(column) and Bra (row) vectors. Qubits may be a
superposition of these states [24–25, 27] even if they
are in the state of "|0>" or "|1>." The arithmetic and
logical units, registers, and memory are only a few
examples of the several classical gates utilized in
classical computers. Quantum computing also consists
of Hermitian matrices/operators named as single-qubit
and multiqubit gates (H, X, Y, Z, CNOT, Toffoli,
Fradklin etc.) to process information in quantum
circuits required to build quantum computer
architecture. The Toffoli gate, which can be seen in
Figures 1, 2, and 3, is used to transform classical gates
and circuits therefore named as the universal gate of
quantum computing. As a result, Toffoli gate is used to
form quantum circuits for the corresponding classical
circuits (as seen in Figures 4, 5, 6, and 7).

Fig. 1. By fixing the Toffoli gate’s third qubit to |0> or |1>,
the classical AND and NAND gates are transformed into
Quantum AND and Quantum NAND gates respectively.
Where inputs (|𝑨𝑨〉 , |𝑩𝑩〉 and |𝑪𝑪〉 are named as Qubits
(quantum states) with A and B being classical bits (0 or 1)
[28-30].

Fig. 2. By fixing third qubit of Toffoli gate to be |1> or |0>,
the classical OR and NOR gates are transformed into QOR
and QNOR gates respectively. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and
|𝑪𝑪〉 are named as Qubits (quantum states) and A and B are
classical bits (0 or 1) [28-30].

Fig. 3. CNOT gate of quantum computing is equivalent of
Classical XOR gate. Where, inputs (|𝑨𝑨〉 , |𝑩𝑩〉 and |𝑪𝑪〉 are
named as Qubits (quantum states) and A and B are classical
bits (0 or 1) [28-30].

Fig. 4. Classical half adder is transformed into quantum half
adder by applying Toffoli gate on the three qubits followed
by CNOT gate applied to the first two qubits. Where, inputs
(|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉 are named as Qubits (quantum states), and
A, B, S (Sum), and C (Carry) are classical bits (0 or 1) [28-
30].

Fig. 5. Classical full adder is transformed into quantum full
adder with CNOT gate and three Toffoli gates acting on
different qubits. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉 are named
as Qubits (quantum states) and A, B, S (Sum), and C (Carry)
being classical bits (0 or 1) [28-30].

Fig. 6. Classical Half Subtractor is transformed into quantum
Half Subtractor with two CNOT gates and one Toffoli gate
acting on different qubits. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉
are named as Qubits (quantum states), A and B are classical
bits (0 or 1), D (Difference) and B (borrowed) are classical
outputs (0 or 1) [28-30].

Learning in High-Energy Physics are as follows. As far
as the Quantum Circuits are concerned, the quantum
counterpart of classical information, known as a qubit,
is denoted by the Dirac notations which are Ket
(column) and Bra (row) vectors. Qubits may be a
superposition of these states [24–25, 27] even if they
are in the state of "|0>" or "|1>." The arithmetic and
logical units, registers, and memory are only a few
examples of the several classical gates utilized in
classical computers. Quantum computing also consists
of Hermitian matrices/operators named as single-qubit
and multiqubit gates (H, X, Y, Z, CNOT, Toffoli,
Fradklin etc.) to process information in quantum
circuits required to build quantum computer
architecture. The Toffoli gate, which can be seen in
Figures 1, 2, and 3, is used to transform classical gates
and circuits therefore named as the universal gate of
quantum computing. As a result, Toffoli gate is used to
form quantum circuits for the corresponding classical
circuits (as seen in Figures 4, 5, 6, and 7).

Fig. 1. By fixing the Toffoli gate’s third qubit to |0> or |1>,
the classical AND and NAND gates are transformed into
Quantum AND and Quantum NAND gates respectively.
Where inputs (|𝑨𝑨〉 , |𝑩𝑩〉 and |𝑪𝑪〉 are named as Qubits
(quantum states) with A and B being classical bits (0 or 1)
[28-30].

Fig. 2. By fixing third qubit of Toffoli gate to be |1> or |0>,
the classical OR and NOR gates are transformed into QOR
and QNOR gates respectively. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and
|𝑪𝑪〉 are named as Qubits (quantum states) and A and B are
classical bits (0 or 1) [28-30].

Fig. 3. CNOT gate of quantum computing is equivalent of
Classical XOR gate. Where, inputs (|𝑨𝑨〉 , |𝑩𝑩〉 and |𝑪𝑪〉 are
named as Qubits (quantum states) and A and B are classical
bits (0 or 1) [28-30].

Fig. 4. Classical half adder is transformed into quantum half
adder by applying Toffoli gate on the three qubits followed
by CNOT gate applied to the first two qubits. Where, inputs
(|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉 are named as Qubits (quantum states), and
A, B, S (Sum), and C (Carry) are classical bits (0 or 1) [28-
30].

Fig. 5. Classical full adder is transformed into quantum full
adder with CNOT gate and three Toffoli gates acting on
different qubits. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉 are named
as Qubits (quantum states) and A, B, S (Sum), and C (Carry)
being classical bits (0 or 1) [28-30].

Fig. 6. Classical Half Subtractor is transformed into quantum
Half Subtractor with two CNOT gates and one Toffoli gate
acting on different qubits. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉
are named as Qubits (quantum states), A and B are classical
bits (0 or 1), D (Difference) and B (borrowed) are classical
outputs (0 or 1) [28-30].

Learning in High-Energy Physics are as follows. As far
as the Quantum Circuits are concerned, the quantum
counterpart of classical information, known as a qubit,
is denoted by the Dirac notations which are Ket
(column) and Bra (row) vectors. Qubits may be a
superposition of these states [24–25, 27] even if they
are in the state of "|0>" or "|1>." The arithmetic and
logical units, registers, and memory are only a few
examples of the several classical gates utilized in
classical computers. Quantum computing also consists
of Hermitian matrices/operators named as single-qubit
and multiqubit gates (H, X, Y, Z, CNOT, Toffoli,
Fradklin etc.) to process information in quantum
circuits required to build quantum computer
architecture. The Toffoli gate, which can be seen in
Figures 1, 2, and 3, is used to transform classical gates
and circuits therefore named as the universal gate of
quantum computing. As a result, Toffoli gate is used to
form quantum circuits for the corresponding classical
circuits (as seen in Figures 4, 5, 6, and 7).

Fig. 1. By fixing the Toffoli gate’s third qubit to |0> or |1>,
the classical AND and NAND gates are transformed into
Quantum AND and Quantum NAND gates respectively.
Where inputs (|𝑨𝑨〉 , |𝑩𝑩〉 and |𝑪𝑪〉 are named as Qubits
(quantum states) with A and B being classical bits (0 or 1)
[28-30].

Fig. 2. By fixing third qubit of Toffoli gate to be |1> or |0>,
the classical OR and NOR gates are transformed into QOR
and QNOR gates respectively. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and
|𝑪𝑪〉 are named as Qubits (quantum states) and A and B are
classical bits (0 or 1) [28-30].

Fig. 3. CNOT gate of quantum computing is equivalent of
Classical XOR gate. Where, inputs (|𝑨𝑨〉 , |𝑩𝑩〉 and |𝑪𝑪〉 are
named as Qubits (quantum states) and A and B are classical
bits (0 or 1) [28-30].

Fig. 4. Classical half adder is transformed into quantum half
adder by applying Toffoli gate on the three qubits followed
by CNOT gate applied to the first two qubits. Where, inputs
(|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉 are named as Qubits (quantum states), and
A, B, S (Sum), and C (Carry) are classical bits (0 or 1) [28-
30].

Fig. 5. Classical full adder is transformed into quantum full
adder with CNOT gate and three Toffoli gates acting on
different qubits. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉 are named
as Qubits (quantum states) and A, B, S (Sum), and C (Carry)
being classical bits (0 or 1) [28-30].

Fig. 6. Classical Half Subtractor is transformed into quantum
Half Subtractor with two CNOT gates and one Toffoli gate
acting on different qubits. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉
are named as Qubits (quantum states), A and B are classical
bits (0 or 1), D (Difference) and B (borrowed) are classical
outputs (0 or 1) [28-30].

Learning in High-Energy Physics are as follows. As far
as the Quantum Circuits are concerned, the quantum
counterpart of classical information, known as a qubit,
is denoted by the Dirac notations which are Ket
(column) and Bra (row) vectors. Qubits may be a
superposition of these states [24–25, 27] even if they
are in the state of "|0>" or "|1>." The arithmetic and
logical units, registers, and memory are only a few
examples of the several classical gates utilized in
classical computers. Quantum computing also consists
of Hermitian matrices/operators named as single-qubit
and multiqubit gates (H, X, Y, Z, CNOT, Toffoli,
Fradklin etc.) to process information in quantum
circuits required to build quantum computer
architecture. The Toffoli gate, which can be seen in
Figures 1, 2, and 3, is used to transform classical gates
and circuits therefore named as the universal gate of
quantum computing. As a result, Toffoli gate is used to
form quantum circuits for the corresponding classical
circuits (as seen in Figures 4, 5, 6, and 7).

Fig. 1. By fixing the Toffoli gate’s third qubit to |0> or |1>,
the classical AND and NAND gates are transformed into
Quantum AND and Quantum NAND gates respectively.
Where inputs (|𝑨𝑨〉 , |𝑩𝑩〉 and |𝑪𝑪〉 are named as Qubits
(quantum states) with A and B being classical bits (0 or 1)
[28-30].

Fig. 2. By fixing third qubit of Toffoli gate to be |1> or |0>,
the classical OR and NOR gates are transformed into QOR
and QNOR gates respectively. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and
|𝑪𝑪〉 are named as Qubits (quantum states) and A and B are
classical bits (0 or 1) [28-30].

Fig. 3. CNOT gate of quantum computing is equivalent of
Classical XOR gate. Where, inputs (|𝑨𝑨〉 , |𝑩𝑩〉 and |𝑪𝑪〉 are
named as Qubits (quantum states) and A and B are classical
bits (0 or 1) [28-30].

Fig. 4. Classical half adder is transformed into quantum half
adder by applying Toffoli gate on the three qubits followed
by CNOT gate applied to the first two qubits. Where, inputs
(|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉 are named as Qubits (quantum states), and
A, B, S (Sum), and C (Carry) are classical bits (0 or 1) [28-
30].

Fig. 5. Classical full adder is transformed into quantum full
adder with CNOT gate and three Toffoli gates acting on
different qubits. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉 are named
as Qubits (quantum states) and A, B, S (Sum), and C (Carry)
being classical bits (0 or 1) [28-30].

Fig. 6. Classical Half Subtractor is transformed into quantum
Half Subtractor with two CNOT gates and one Toffoli gate
acting on different qubits. Where, inputs (|𝑨𝑨〉, |𝑩𝑩〉 and |𝑪𝑪〉
are named as Qubits (quantum states), A and B are classical
bits (0 or 1), D (Difference) and B (borrowed) are classical
outputs (0 or 1) [28-30].

conventional neural networks, as shown by earlier
research in this field [22–23]. Li Fei [22] argued
that one quantum neuron outperforms a network
of six conventional neurons for the different input

 The Quantum Neural Networks (QNNs) are
neural networks that use quantum mechanical
concepts. Similar to artificial neuron, the quantum
neurons are arranged in different layers of neuron
such as input, hidden, and output. In contrast to
conventional neural networks, quantum neural
networks (QNNs) use complex column vectors for
input and output, and complex Hermitian matrices
or quantum operators for connection weights.
Quantum neural networks are more effective than

46 Mahmood et al

patterns of the XOR gate’s nonlinear learning.
The concepts of Machine Learning in High-
Energy Physics are also quite important. The high
energy physicists (HEP) conduct experiments
employing accelerator and detector technology as
well as the Standard Model of particle physics to
study the fundamental properties of the cosmos.
Gravitational, strong, electromagnetic, and weak
interactions are the basic forces that control how
particles behave towards one another. The Standard
Model, which was created in the 1970s, has proven
very effective in describing physical processes
involving basic interactions (apart from gravity),
becoming the most thoroughly tested theory of
physics, and accurately predicting the results in a
broad range of events [31-33]. To optimize high-
energy physics processes, several issues are being
resolved using artificial neural networks [34–39].
Artificial neural networks are used in experimental
high energy physics for classification of events [43–
44], reconstruction of objects [45–46], triggering
process [47–48], and track finding [49–50], while
they are used in theoretical high energy physics to
solve the Schrodinger wave equation and calculate
the mass spectra of particles [40–42]. In addition,
ordinary and partial differential equations of various
domains [52-54] as well as quantum many-body
problems are being resolved using artificial neural
networks [51]. Quantum neural networks have also
been emphasized recently by developments in high-
energy physics and machine learning [55–58]. This
research will be expanded in the future to address
the issues in the aforementioned fields.

During the last ten years, a lot of research has
been done on quantum neural networks [18-20,
22-23, 58-75]. Alexander’s research on “quantum
neural networks” basically presents explanation of
the paradigm of shifting from classical computing
to quantum computing. There was also discussion
of the advantages of quantum computing (using
quantum neural networks) over conventional
computing (using conventional neural networks)
[23]. These advantages included high performance,
Exponential memory, faster learning, processing
speed, compact size, great stability, and reliability.
By duplicating certain characteristics of the
conventional neural network into a quantum
counterpart, many algorithms have been developed
for quantum neural networks, however, they are
missing other qualities and limitations imposed by
quantum computing.

QNNs are created by solely altering the input,
output, and weights of artificial neural network
into their quantum counterparts, by having overall
architecture and methodology to be the same [19-20,
22-23, 57-58, 69-73]. However, Gradient Descent-
based Algorithms are used for the majority of ANN
implementation [22]. The present architecture
of conventional and quantum neural networks is
shown in Figure 8, and it has the following three
shortcomings:
(a) Cloning in Quantum Circuits: In conventional

computers, it is simple to make a duplicate of
the information, but according to the quantum
theory of nature, because information is the

Fig. 7. Classical Half Subtractor is transformed into quantum
Half Subtractor with three X gates, 6 Toffoli gates, and one
CNOT gate acting on different qubits. Where, |A〉, |B〉, |C〉
|Difference〉 |Borrow〉 are Qubits (quantum states) and
A, B, D (Difference) and B (Borrow) are classical bits (0 or
1) [28-30].

The Quantum Neural Networks (QNNs) are
neural networks that use quantum mechanical
concepts. Similar to artificial neuron, the quantum
neurons are arranged in different layers of neuron such
as input, hidden, and output. In contrast to conventional
neural networks, quantum neural networks (QNNs) use
complex column vectors for input and output, and
complex Hermitian matrices or quantum operators for
connection weights. Quantum neural networks are
more effective than conventional neural networks, as
shown by earlier research in this field [22–23]. Li Fei
[22] argued that one quantum neuron outperforms a
network of six conventional neurons for the different
input patterns of the XOR gate’s nonlinear learning.

The concepts of Machine Learning in High-
Energy Physics are also quite important. The high
energy physicists (HEP) conduct experiments
employing accelerator and detector technology as well
as the Standard Model of particle physics to study the
fundamental properties of the cosmos. Gravitational,
strong, electromagnetic, and weak interactions are the
basic forces that control how particles behave towards
one another. The Standard Model, which was created
in the 1970s, has proven very effective in describing
physical processes involving basic interactions (apart
from gravity), becoming the most thoroughly tested

theory of physics, and accurately predicting the results
in a broad range of events [31-33]. To optimize high-
energy physics processes, several issues are being
resolved using artificial neural networks [34–39].
Artificial neural networks are used in experimental
high energy physics for classification of events [43–
44], reconstruction of objects [45–46], triggering
process [47–48], and track finding [49–50], while they
are used in theoretical high energy physics to solve the
Schrodinger wave equation and calculate the mass
spectra of particles [40–42]. In addition, ordinary and
partial differential equations of various domains [52-
54] as well as quantum many-body problems are being
resolved using artificial neural networks [51]. Quantum
neural networks have also been emphasized recently by
developments in high-energy physics and machine
learning [55–58]. This research will be expanded in the
future to address the issues in the aforementioned
fields.

During the last ten years, a lot of research has been
done on quantum neural networks [18-20, 22-23, 58-
75]. Alexander's research on "quantum neural
networks" basically presents explanation of the
paradigm of shifting from classical computing to
quantum computing. There was also discussion of the
advantages of quantum computing (using quantum
neural networks) over conventional computing (using
conventional neural networks) [23]. These advantages
included high performance, Exponential memory,
faster learning, processing speed, compact size, great
stability, and reliability. By duplicating certain
characteristics of the conventional neural network into
a quantum counterpart, many algorithms have been
developed for quantum neural networks, however, they
are missing other qualities and limitations imposed by
quantum computing.

QNNs are created by solely altering the input,
output, and weights of artificial neural network into
their quantum counterparts, by having overall
architecture and methodology to be the same [19-20,
22-23, 57-58, 69-73]. However, Gradient Descent-
based Algorithms are used for the majority of ANN
implementation [22]. The present architecture of

Fig. 7. Classical Half Subtractor is transformed into
quantum Half Subtractor with three X gates, 6 Toffoli
gates, and one CNOT gate acting on different qubits.
Where, (|A〉, |B〉 and |C〉 , |Difference〉 and |Borrow〉 are
Qubits (quantum states) and A, B, D (Difference) and B
(Borrow) are classical bits (0 or 1) [28-30].

conventional and quantum neural networks is shown in
Figure 8, and it has the following shortcomings:

Fig. 8. Currently existing Classical or Quantum Neural
Network Structure [30]

(a) Cloning in Quantum Circuits: In conventional
computers, it is simple to make a duplicate of the
information, but according to the quantum theory of
nature, because information is the representational state
of a physical system, like electrons or photons, it cannot
be directly copied. In quantum computing, information
may be copied from one location to another via the fan-
out operator or circuit of teleportation [76]. Therefore,
without teleportation or the use of the fan-out operator,
it is not feasible to transmit copies of the quantum
information to the other neurons. (b) Reversibility in
Quantum Computing: In quantum computing,
information is processed by using quantum gates which
are Hermitian matrices which make quantum circuits
and quantum processes to be reversible. Because
classical weight signals are not Hermitian matrices,
therefore, a straight modification from classical to
quantum is irretrievable. (c) Loss of Information: In
classical circuits, number of inputs varies from number
outputs resulting into loss of information in the form of
heat and direct conversion of classical neural network
into quantum neural network in which inputs are qubits
which represent of the physical system and this
variation of input and output results into loss of
information.

The main objectives of the present studies are as
follows: (i) To highlight the drawbacks of the
architecture of the existing conversion of classical
neural networks to quantum neural networks, (ii) To
address these drawbacks through a proposed quantum
circuit-based approach and to simulate for the non-
linear learning of XOR Gate, (iii) To process the
proposed algorithm for each pattern of the truth table of
the XOR Gate.

2. MATERIALS AND METHODS

The rules of quantum computing are not satisfied when
a conventional neural network circuit or design is
replicated into a quantum counterpart, therefore, it is
essential to create a circuit or architecture for quantum
neural networks that complies with all conceivable
principles and computing/quantum mechanics
limitations. Since traditional gates/circuits and neural
networks have only one output and two input lines,
respectively. Moreover, they are irreversible and lost
their information as heat. However, one cannot claim
that limitations exist in quantum computing, such as
information loss, irreversibility, and the no-cloning
theorem, since the number of input and output lines in
quantum circuits is identical. The current research in
quantum neural networks continues in accordance with
the classical hierarchy rather than the principles of
quantum mechanics/computing. The present work
argues that every transformation of the classical circuit
into its quantum counterpart must satisfy all limitations
or principle(s) of quantum computing. Therefore, it is
argued that present practice of QNNs may not be used
for the quantum mechanical way of implementation of
higher-level feature of mind and brain into machines to
accomplish intelligence. Because of the above-
mentioned flaws, it is difficult to say that existing
QNNs are capable of quantum learning. The presented
quantum neuron has four inputs and four outputs, as
shown in Figure 9. The connection weights are
quantum operators with complex entities, whereas the
inputs and outputs are complex column vectors.

Fig. 8. Currently existing Classical or Quantum Neural
Network Structure [30]

 Quantum Circuit Based Quantum Neural Networks 47

representational state of a physical system,
like electrons or photons, it cannot be directly
copied. In quantum computing, information
may be copied from one location to another via
the fan-out operator or circuit of teleportation
[76]. Therefore, without teleportation or the
use of the fan-out operator, it is not feasible to
transmit copies of the quantum information to
the other neurons.

(b) Reversibility in Quantum Computing: In
quantum computing, information is processed
by using quantum gates which are Hermitian
matrices which make quantum circuits and
quantum processes to be reversible. Because
classical weight signals are not Hermitian
matrices, therefore, a straight modification
from classical to quantum is irretrievable.

(c) Loss of Information: In classical circuits,
number of inputs varies from number outputs
resulting into loss of information in the form
of heat and direct conversion of classical
neural network into quantum neural network in
which inputs are qubits which represent of the
physical system and this variation of input and
output results into loss of information.

The main objectives of the present studies are
as follows: (i) To highlight the drawbacks of the
architecture of the existing conversion of classical
neural networks to quantum neural networks, (ii)
To address these drawbacks through a proposed
quantum circuit-based approach and to simulate
for the non-linear learning of XOR Gate, (iii) To
process the proposed algorithm for each pattern of
the truth table of the XOR Gate.

2. MATERIALS AND METHODS

The rules of quantum computing are not satisfied
when a conventional neural network circuit or design
is replicated into a quantum counterpart, therefore,
it is essential to create a circuit or architecture for
quantum neural networks that complies with all
conceivable principles and computing/quantum
mechanics limitations. Since traditional gates/
circuits and neural networks have only one output
and two input lines, respectively. Moreover, they
are irreversible and lost their information as heat.
However, one cannot claim that limitations exist
in quantum computing, such as information loss,
irreversibility, and the no-cloning theorem, since
the number of input and output lines in quantum
circuits is identical. The current research in quantum

neural networks continues in accordance with the
classical hierarchy rather than the principles of
quantum mechanics/computing. The present work
argues that every transformation of the classical
circuit into its quantum counterpart must satisfy all
limitations or principle(s) of quantum computing.
Therefore, it is argued that present practice of QNNs
may not be used for the quantum mechanical way
of implementation of higher-level feature of mind
and brain into machines to accomplish intelligence.
Because of the above-mentioned flaws, it is difficult
to say that existing QNNs are capable of quantum
learning. The presented quantum neuron has four
inputs and four outputs, as shown in Figure 9. The
connection weights are quantum operators with
complex entities, whereas the inputs and outputs
are complex column vectors.

The suggested quantum neurons (Figure. 9)
may be used to build quantum neural networks

Fig. 9. Circuit Diagram of Quantum Neuron

The suggested quantum neurons (Figure. 9) may
be used to build quantum neural networks (Figure. 10).
The circuit lines that are not used by the next quantum
neuron, may be passed on to other brain cells to
accomplish additional functions. The suggested design
prevents information loss by having an equal number
of input and output lines, avoiding copying of quantum

Fig. 10. Suggested model of Quantum Neural
Network

Fig. 9. Circuit Diagram of Quantum Neuron

Fig. 9. Circuit Diagram of Quantum Neuron

The suggested quantum neurons (Figure. 9) may
be used to build quantum neural networks (Figure. 10).
The circuit lines that are not used by the next quantum
neuron, may be passed on to other brain cells to
accomplish additional functions. The suggested design
prevents information loss by having an equal number
of input and output lines, avoiding copying of quantum
information, and having a reversible neural network.
Quantum neuron layers may also be added to aid in the
understanding of complicated events.

Fig. 10. Suggested model of Quantum Neural Network

The suggested quantum neural network in this
research complies with all restrictions and quantum
computing principles. The identification and recovery
of data about the suggested circuit/hierarchy of
quantum neural networks is thus said to be beneficial
for the employment of quantum learning, and it may
also be advantageous to title it for the quantum-oriented
involvement of the complicated processes in the brain
and mind.

For quantum circuit-based simulation of the non-linear
learning of XOR Gate, it is necessary to initially define
the input and output patterns of the Quantum XOR
gate. Table 1 shows the Truth table with the
corresponding input and output patterns of the
Quantum XOR gate.

Table 1. Truth table with corresponding input and output
patterns of Quantum XOR gate.

Input
Pattern #

|A〉 |B〉 |t〉

1 |0〉 |0〉 |0〉

2 |0〉 |1〉 |1〉

3 |1〉 |0〉 |1〉

4 |1〉 |1〉 |0〉

Where |𝟎𝟎〉 = [𝟏𝟏
𝟎𝟎] , |𝟏𝟏〉 = [𝟎𝟎

𝟏𝟏] and mixed or

superposition state |𝚿𝚿〉 = [𝐚𝐚
𝐛𝐛] = 𝐚𝐚|𝟎𝟎〉 + 𝐛𝐛|𝟏𝟏〉 (here 𝒂𝒂

and 𝒃𝒃 are probability amplitudes).

Subsequently, the following quantum circuit-based
algorithm/approach or steps are proposed for the
simulation of non-linear learning of XOR Gate.

Step 1: Set up the quantum neuron's initial parameters,
such as count=0, the connection weights as quantum
operators, the learning rate (eta), the acceptable
minimal error as Emin, and ∅, 𝜸𝜸, 𝜹𝜹 𝒂𝒂𝒂𝒂𝒂𝒂 𝜽𝜽 with random
values for each various weight.

Step 2: Compute Wa and Wb by using undermentioned
function for further calculation of corresponding output
for different patterns of XOR gate.

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾)

 |Out>=W*|In>

e.g. |Ao> = Wa*|A>, |Bo> = Wb*|B>
Note: A tensor product of weights may be used to
match the desired input order.

48 Mahmood et al

(Figure. 10). The circuit lines that are not used
by the next quantum neuron, may be passed on to
other brain cells to accomplish additional functions.
The suggested design prevents information loss
by having an equal number of input and output
lines, avoiding copying of quantum information,
and having a reversible neural network. Quantum
neuron layers may also be added to aid in the
understanding of complicated events.

The suggested quantum neural network in
this research complies with all restrictions and
quantum computing principles. The identification
and recovery of data about the suggested circuit/
hierarchy of quantum neural networks is thus said
to be beneficial for the employment of quantum
learning, and it may also be advantageous to title
it for the quantum-oriented involvement of the
complicated processes in the brain and mind.

For quantum circuit-based simulation of the

non-linear learning of XOR Gate, it is necessary to
initially define the input and output patterns of the
Quantum XOR gate. Table 1 shows the Truth table
with the corresponding input and output patterns of
the Quantum XOR gate.

Subsequently, the following quantum circuit-
based algorithm/approach or steps are proposed for
the simulation of non-linear learning of XOR Gate.

and having a reversible neural network. Quantum
neuron layers may also be added to aid in the
understanding of complicated events.

The suggested quantum neural network in this
research complies with all restrictions and quantum
computing principles. The identification and recovery
of data about the suggested circuit/hierarchy of
quantum neural networks is thus said to be beneficial
for the employment of quantum learning, and it may
also be advantageous to title it for the quantum-oriented
involvement of the complicated processes in the brain
and mind.

For quantum circuit-based simulation of the non-
linear learning of XOR Gate, it is necessary to initially
define the input and output patterns of the Quantum
XOR gate. Table 1 shows the Truth table with the
corresponding input and output patterns of the
Quantum XOR gate.

Table 1. Truth table with corresponding input and output
patterns of Quantum XOR gate.

Input Pattern # |𝐀𝐀〉 |𝐁𝐁〉 |𝐭𝐭〉

1 |0〉 |0〉 |0〉

2 |0〉 |1〉 |1〉

3 |1〉 |0〉 |1〉

4 |1〉 |1〉 |0〉

Where |𝟎𝟎〉 = [𝟏𝟏

𝟎𝟎] , |𝟏𝟏〉 = [𝟎𝟎
𝟏𝟏] and mixed or

superposition state |𝚿𝚿〉 = [𝐚𝐚
𝐛𝐛] = 𝐚𝐚|𝟎𝟎〉 + 𝐛𝐛|𝟏𝟏〉 (here 𝒂𝒂

and 𝒃𝒃 are probability amplitudes).

Subsequently, the following quantum circuit-based
algorithm/approach or steps are proposed for the
simulation of non-linear learning of XOR Gate.

Step 1: Set up the quantum neuron's initial parameters,
such as count=0, the connection weights as quantum
operators, the learning rate (eta), the acceptable
minimal error as Emin, and ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃 with random
values for each various weight.

Step 2: Compute Wa and Wb by using undermentioned
function for further calculation of corresponding output
for different patterns of XOR gate.

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾)

 |Out>=W*|In>

e.g. |Ao> = Wa*|A>, |Bo> = Wb*|B>
Note: A tensor product of weights may be used to
match the desired input order.

Step 3: Quantum neuron's final output is calculated by
applying the quantum adder upon |Ao> and |Bo>.

Step 4: Obtain a transfer function to use on the
estimated |Out> that is comparable to the one
mentioned by Li Fei [22]. The following is the transfer
function:

FT = 1
√2

[0 1
1 −1] [sin (•) 0

0 sin (•)]

Step 5: Use the transfer function: |Yo> =FT*|Out> i.e

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] |Out〉

Here |Out〉 may be a mixed state:

 |Out〉 = [±a
±b]

|Yo >= 1
√2

[0 1
1 −1] [sin(•) 0

0 sin(•)] [±a
±b]

= 1
√2

[0 1
1 −1] [sin(±a)

sin(±b)] =
1

√2
[0 1
1 −1] [+a

+b]

|Yo >= 1
√2

[b
a − b]

Step 6: Calculate error for the current patterns using
|Er> = QSub(|t>, |Yo>)

Step 7: Determine error by taking the inner product
with itself error = <Er|Er>

Step 8: compare this error with the Emin If error is less
than Emin then increases the value of count++.

Table 1. Truth table with corresponding input and output
patterns of Quantum XOR gate.

and having a reversible neural network. Quantum
neuron layers may also be added to aid in the
understanding of complicated events.

The suggested quantum neural network in this
research complies with all restrictions and quantum
computing principles. The identification and recovery
of data about the suggested circuit/hierarchy of
quantum neural networks is thus said to be beneficial
for the employment of quantum learning, and it may
also be advantageous to title it for the quantum-oriented
involvement of the complicated processes in the brain
and mind.

For quantum circuit-based simulation of the non-
linear learning of XOR Gate, it is necessary to initially
define the input and output patterns of the Quantum
XOR gate. Table 1 shows the Truth table with the
corresponding input and output patterns of the
Quantum XOR gate.

Table 1. Truth table with corresponding input and output
patterns of Quantum XOR gate.

Input Pattern # |𝐀𝐀〉 |𝐁𝐁〉 |𝐭𝐭〉

1 |0〉 |0〉 |0〉

2 |0〉 |1〉 |1〉

3 |1〉 |0〉 |1〉

4 |1〉 |1〉 |0〉

Where |𝟎𝟎〉 = [𝟏𝟏

𝟎𝟎] , |𝟏𝟏〉 = [𝟎𝟎
𝟏𝟏] and mixed or

superposition state |𝚿𝚿〉 = [𝐚𝐚
𝐛𝐛] = 𝐚𝐚|𝟎𝟎〉 + 𝐛𝐛|𝟏𝟏〉 (here 𝒂𝒂

and 𝒃𝒃 are probability amplitudes).

Subsequently, the following quantum circuit-based
algorithm/approach or steps are proposed for the
simulation of non-linear learning of XOR Gate.

Step 1: Set up the quantum neuron's initial parameters,
such as count=0, the connection weights as quantum
operators, the learning rate (eta), the acceptable
minimal error as Emin, and ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃 with random
values for each various weight.

Step 2: Compute Wa and Wb by using undermentioned
function for further calculation of corresponding output
for different patterns of XOR gate.

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾)

 |Out>=W*|In>

e.g. |Ao> = Wa*|A>, |Bo> = Wb*|B>
Note: A tensor product of weights may be used to
match the desired input order.

Step 3: Quantum neuron's final output is calculated by
applying the quantum adder upon |Ao> and |Bo>.

Step 4: Obtain a transfer function to use on the
estimated |Out> that is comparable to the one
mentioned by Li Fei [22]. The following is the transfer
function:

FT = 1
√2

[0 1
1 −1] [sin (•) 0

0 sin (•)]

Step 5: Use the transfer function: |Yo> =FT*|Out> i.e

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] |Out〉

Here |Out〉 may be a mixed state:

 |Out〉 = [±a
±b]

|Yo >= 1
√2

[0 1
1 −1] [sin(•) 0

0 sin(•)] [±a
±b]

= 1
√2

[0 1
1 −1] [sin(±a)

sin(±b)] =
1

√2
[0 1
1 −1] [+a

+b]

|Yo >= 1
√2

[b
a − b]

Step 6: Calculate error for the current patterns using
|Er> = QSub(|t>, |Yo>)

Step 7: Determine error by taking the inner product
with itself error = <Er|Er>

Step 8: compare this error with the Emin If error is less
than Emin then increases the value of count++.

and having a reversible neural network. Quantum
neuron layers may also be added to aid in the
understanding of complicated events.

The suggested quantum neural network in this
research complies with all restrictions and quantum
computing principles. The identification and recovery
of data about the suggested circuit/hierarchy of
quantum neural networks is thus said to be beneficial
for the employment of quantum learning, and it may
also be advantageous to title it for the quantum-oriented
involvement of the complicated processes in the brain
and mind.

For quantum circuit-based simulation of the non-
linear learning of XOR Gate, it is necessary to initially
define the input and output patterns of the Quantum
XOR gate. Table 1 shows the Truth table with the
corresponding input and output patterns of the
Quantum XOR gate.

Table 1. Truth table with corresponding input and output
patterns of Quantum XOR gate.

Input Pattern # |𝐀𝐀〉 |𝐁𝐁〉 |𝐭𝐭〉

1 |0〉 |0〉 |0〉

2 |0〉 |1〉 |1〉

3 |1〉 |0〉 |1〉

4 |1〉 |1〉 |0〉

Where |𝟎𝟎〉 = [𝟏𝟏

𝟎𝟎] , |𝟏𝟏〉 = [𝟎𝟎
𝟏𝟏] and mixed or

superposition state |𝚿𝚿〉 = [𝐚𝐚
𝐛𝐛] = 𝐚𝐚|𝟎𝟎〉 + 𝐛𝐛|𝟏𝟏〉 (here 𝒂𝒂

and 𝒃𝒃 are probability amplitudes).

Subsequently, the following quantum circuit-based
algorithm/approach or steps are proposed for the
simulation of non-linear learning of XOR Gate.

Step 1: Set up the quantum neuron's initial parameters,
such as count=0, the connection weights as quantum
operators, the learning rate (eta), the acceptable
minimal error as Emin, and ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃 with random
values for each various weight.

Step 2: Compute Wa and Wb by using undermentioned
function for further calculation of corresponding output
for different patterns of XOR gate.

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾)

 |Out>=W*|In>

e.g. |Ao> = Wa*|A>, |Bo> = Wb*|B>
Note: A tensor product of weights may be used to
match the desired input order.

Step 3: Quantum neuron's final output is calculated by
applying the quantum adder upon |Ao> and |Bo>.

Step 4: Obtain a transfer function to use on the
estimated |Out> that is comparable to the one
mentioned by Li Fei [22]. The following is the transfer
function:

FT = 1
√2

[0 1
1 −1] [sin (•) 0

0 sin (•)]

Step 5: Use the transfer function: |Yo> =FT*|Out> i.e

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] |Out〉

Here |Out〉 may be a mixed state:

 |Out〉 = [±a
±b]

|Yo >= 1
√2

[0 1
1 −1] [sin(•) 0

0 sin(•)] [±a
±b]

= 1
√2

[0 1
1 −1] [sin(±a)

sin(±b)] =
1

√2
[0 1
1 −1] [+a

+b]

|Yo >= 1
√2

[b
a − b]

Step 6: Calculate error for the current patterns using
|Er> = QSub(|t>, |Yo>)

Step 7: Determine error by taking the inner product
with itself error = <Er|Er>

Step 8: compare this error with the Emin If error is less
than Emin then increases the value of count++.

and having a reversible neural network. Quantum
neuron layers may also be added to aid in the
understanding of complicated events.

The suggested quantum neural network in this
research complies with all restrictions and quantum
computing principles. The identification and recovery
of data about the suggested circuit/hierarchy of
quantum neural networks is thus said to be beneficial
for the employment of quantum learning, and it may
also be advantageous to title it for the quantum-oriented
involvement of the complicated processes in the brain
and mind.

For quantum circuit-based simulation of the non-
linear learning of XOR Gate, it is necessary to initially
define the input and output patterns of the Quantum
XOR gate. Table 1 shows the Truth table with the
corresponding input and output patterns of the
Quantum XOR gate.

Table 1. Truth table with corresponding input and output
patterns of Quantum XOR gate.

Input Pattern # |𝐀𝐀〉 |𝐁𝐁〉 |𝐭𝐭〉

1 |0〉 |0〉 |0〉

2 |0〉 |1〉 |1〉

3 |1〉 |0〉 |1〉

4 |1〉 |1〉 |0〉

Where |𝟎𝟎〉 = [𝟏𝟏

𝟎𝟎] , |𝟏𝟏〉 = [𝟎𝟎
𝟏𝟏] and mixed or

superposition state |𝚿𝚿〉 = [𝐚𝐚
𝐛𝐛] = 𝐚𝐚|𝟎𝟎〉 + 𝐛𝐛|𝟏𝟏〉 (here 𝒂𝒂

and 𝒃𝒃 are probability amplitudes).

Subsequently, the following quantum circuit-based
algorithm/approach or steps are proposed for the
simulation of non-linear learning of XOR Gate.

Step 1: Set up the quantum neuron's initial parameters,
such as count=0, the connection weights as quantum
operators, the learning rate (eta), the acceptable
minimal error as Emin, and ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃 with random
values for each various weight.

Step 2: Compute Wa and Wb by using undermentioned
function for further calculation of corresponding output
for different patterns of XOR gate.

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾)

 |Out>=W*|In>

e.g. |Ao> = Wa*|A>, |Bo> = Wb*|B>
Note: A tensor product of weights may be used to
match the desired input order.

Step 3: Quantum neuron's final output is calculated by
applying the quantum adder upon |Ao> and |Bo>.

Step 4: Obtain a transfer function to use on the
estimated |Out> that is comparable to the one
mentioned by Li Fei [22]. The following is the transfer
function:

FT = 1
√2

[0 1
1 −1] [sin (•) 0

0 sin (•)]

Step 5: Use the transfer function: |Yo> =FT*|Out> i.e

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] |Out〉

Here |Out〉 may be a mixed state:

 |Out〉 = [±a
±b]

|Yo >= 1
√2

[0 1
1 −1] [sin(•) 0

0 sin(•)] [±a
±b]

= 1
√2

[0 1
1 −1] [sin(±a)

sin(±b)] =
1

√2
[0 1
1 −1] [+a

+b]

|Yo >= 1
√2

[b
a − b]

Step 6: Calculate error for the current patterns using
|Er> = QSub(|t>, |Yo>)

Step 7: Determine error by taking the inner product
with itself error = <Er|Er>

Step 8: compare this error with the Emin If error is less
than Emin then increases the value of count++.

Step 9: If the patterns of XOR gate is fourth and the
value of count equal to 4 then proceed to step 11

otherwise update the weight parameters in step 10 and
then choose first pattern again as input/output, set the
value of counter equal to 0 and goto step2.

Step 10: Update the following parameters.

∅=∅+ eta*<In| QSub (|t>,|Yo>)
𝛾𝛾 = 𝛾𝛾 + eta*< In | QSub (|t>,| Yo >)
𝛿𝛿 = 𝛿𝛿 + eta*< In | QSub (|t>,| Yo >)
𝜃𝜃 = 𝜃𝜃 + eta*< In | QSub (|t>,| Yo >)

<In| = <A| and <In| = <B| for Wa and Wb respectively.

Step 11: Break

3. RESULTS AND DISCUSSIONS

The suggested approach is simulated using the Open
Quantum Computing Framework (OpenQCF), which
was created in Python and C#. It uses the QRegister
(|xxxx>), which is made up of various XOR Gate
patterns, as the inputs and outputs (target output) to the
quantum neuron. The Hermitian matrices are used as
connection weights. Through the tensor product, many
qubits are merged to create a QRegister, for
example.|AB〉 = |A〉 ⊗ |B〉

Let |A〉 = |0〉 = [1
0] and |B〉 = |1〉 = [0

1]

|01〉 = |0〉 ⊗ |1〉 = [1
0] ⊗ [0

1] = [
0
1
0
0

]

Figures 11 and 12 show the mean squared error
convergence rate with respect to number of iterations
for minimum errors 0.000000005 and 0.000000005
corresponding to learning rates 0.035 and 0.0135,
respectively.

From the truth table of XOR gate (Table 1) choose first

pattern as input |A> = |0〉 = [1
0] , |B> = |0〉 = [1

0] .

Initialize the Wa weight and corresponding output by
using the following:

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾),

|Out>=W*|In>

Fig. 11. Convergence of mean squared error of Quantum
learning with learning rate=0.035 and MinError=
0.000000005

Fig. 12. Convergence of mean squared error of
Quantum learning with learning rate=0. 0135 and
MinError=0.000000005

To explain the algorithm in simpler way, suppose
following weight matrices are initialed based upon the
random values of ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃.

Wa = 1
√2 [1 1

1 −1], Wb = 1
√2 [1 1

1 −1]

then

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

Quantum adder is applied on |Ao> and |Bo> to
calculate the quantum neuron’s final |Out>.

|Out> = QAdd (|Ao> and |Bo>) = [√2
√2

] (assume QAdd

provides this output)

Step 9: If the patterns of XOR gate is fourth and the
value of count equal to 4 then proceed to step 11

otherwise update the weight parameters in step 10 and
then choose first pattern again as input/output, set the
value of counter equal to 0 and goto step2.

Step 10: Update the following parameters.

∅=∅+ eta*<In| QSub (|t>,|Yo>)
𝛾𝛾 = 𝛾𝛾 + eta*< In | QSub (|t>,| Yo >)
𝛿𝛿 = 𝛿𝛿 + eta*< In | QSub (|t>,| Yo >)
𝜃𝜃 = 𝜃𝜃 + eta*< In | QSub (|t>,| Yo >)

<In| = <A| and <In| = <B| for Wa and Wb respectively.

Step 11: Break

3. RESULTS AND DISCUSSIONS

The suggested approach is simulated using the Open
Quantum Computing Framework (OpenQCF), which
was created in Python and C#. It uses the QRegister
(|xxxx>), which is made up of various XOR Gate
patterns, as the inputs and outputs (target output) to the
quantum neuron. The Hermitian matrices are used as
connection weights. Through the tensor product, many
qubits are merged to create a QRegister, for
example.|AB〉 = |A〉 ⊗ |B〉

Let |A〉 = |0〉 = [1
0] and |B〉 = |1〉 = [0

1]

|01〉 = |0〉 ⊗ |1〉 = [1
0] ⊗ [0

1] = [
0
1
0
0

]

Figures 11 and 12 show the mean squared error
convergence rate with respect to number of iterations
for minimum errors 0.000000005 and 0.000000005
corresponding to learning rates 0.035 and 0.0135,
respectively.

From the truth table of XOR gate (Table 1) choose first

pattern as input |A> = |0〉 = [1
0] , |B> = |0〉 = [1

0] .

Initialize the Wa weight and corresponding output by
using the following:

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾),

|Out>=W*|In>

Fig. 11. Convergence of mean squared error of Quantum
learning with learning rate=0.035 and MinError=
0.000000005

Fig. 12. Convergence of mean squared error of
Quantum learning with learning rate=0. 0135 and
MinError=0.000000005

To explain the algorithm in simpler way, suppose
following weight matrices are initialed based upon the
random values of ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃.

Wa = 1
√2 [1 1

1 −1], Wb = 1
√2 [1 1

1 −1]

then

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

Quantum adder is applied on |Ao> and |Bo> to
calculate the quantum neuron’s final |Out>.

|Out> = QAdd (|Ao> and |Bo>) = [√2
√2

] (assume QAdd

provides this output)

 Quantum Circuit Based Quantum Neural Networks 49

Step 9: If the patterns of XOR gate is fourth and the
value of count equal to 4 then proceed to step 11

otherwise update the weight parameters in step 10 and
then choose first pattern again as input/output, set the
value of counter equal to 0 and goto step2.

Step 10: Update the following parameters.

∅=∅+ eta*<In| QSub (|t>,|Yo>)
𝛾𝛾 = 𝛾𝛾 + eta*< In | QSub (|t>,| Yo >)
𝛿𝛿 = 𝛿𝛿 + eta*< In | QSub (|t>,| Yo >)
𝜃𝜃 = 𝜃𝜃 + eta*< In | QSub (|t>,| Yo >)

<In| = <A| and <In| = <B| for Wa and Wb respectively.

Step 11: Break

3. RESULTS AND DISCUSSIONS

The suggested approach is simulated using the Open
Quantum Computing Framework (OpenQCF), which
was created in Python and C#. It uses the QRegister
(|xxxx>), which is made up of various XOR Gate
patterns, as the inputs and outputs (target output) to the
quantum neuron. The Hermitian matrices are used as
connection weights. Through the tensor product, many
qubits are merged to create a QRegister, for
example.|AB〉 = |A〉 ⊗ |B〉

Let |A〉 = |0〉 = [1
0] and |B〉 = |1〉 = [0

1]

|01〉 = |0〉 ⊗ |1〉 = [1
0] ⊗ [0

1] = [
0
1
0
0

]

Figures 11 and 12 show the mean squared error
convergence rate with respect to number of iterations
for minimum errors 0.000000005 and 0.000000005
corresponding to learning rates 0.035 and 0.0135,
respectively.

From the truth table of XOR gate (Table 1) choose first

pattern as input |A> = |0〉 = [1
0] , |B> = |0〉 = [1

0] .

Initialize the Wa weight and corresponding output by
using the following:

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾),

|Out>=W*|In>

Fig. 11. Convergence of mean squared error of Quantum
learning with learning rate=0.035 and MinError=
0.000000005

Fig. 12. Convergence of mean squared error of
Quantum learning with learning rate=0. 0135 and
MinError=0.000000005

To explain the algorithm in simpler way, suppose
following weight matrices are initialed based upon the
random values of ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃.

Wa = 1
√2 [1 1

1 −1], Wb = 1
√2 [1 1

1 −1]

then

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

Quantum adder is applied on |Ao> and |Bo> to
calculate the quantum neuron’s final |Out>.

|Out> = QAdd (|Ao> and |Bo>) = [√2
√2

] (assume QAdd

provides this output)

Step 9: If the patterns of XOR gate is fourth and the
value of count equal to 4 then proceed to step 11

otherwise update the weight parameters in step 10 and
then choose first pattern again as input/output, set the
value of counter equal to 0 and goto step2.

Step 10: Update the following parameters.

∅=∅+ eta*<In| QSub (|t>,|Yo>)
𝛾𝛾 = 𝛾𝛾 + eta*< In | QSub (|t>,| Yo >)
𝛿𝛿 = 𝛿𝛿 + eta*< In | QSub (|t>,| Yo >)
𝜃𝜃 = 𝜃𝜃 + eta*< In | QSub (|t>,| Yo >)

<In| = <A| and <In| = <B| for Wa and Wb respectively.

Step 11: Break

3. RESULTS AND DISCUSSIONS

The suggested approach is simulated using the Open
Quantum Computing Framework (OpenQCF), which
was created in Python and C#. It uses the QRegister
(|xxxx>), which is made up of various XOR Gate
patterns, as the inputs and outputs (target output) to the
quantum neuron. The Hermitian matrices are used as
connection weights. Through the tensor product, many
qubits are merged to create a QRegister, for
example.|AB〉 = |A〉 ⊗ |B〉

Let |A〉 = |0〉 = [1
0] and |B〉 = |1〉 = [0

1]

|01〉 = |0〉 ⊗ |1〉 = [1
0] ⊗ [0

1] = [
0
1
0
0

]

Figures 11 and 12 show the mean squared error
convergence rate with respect to number of iterations
for minimum errors 0.000000005 and 0.000000005
corresponding to learning rates 0.035 and 0.0135,
respectively.

From the truth table of XOR gate (Table 1) choose first

pattern as input |A> = |0〉 = [1
0] , |B> = |0〉 = [1

0] .

Initialize the Wa weight and corresponding output by
using the following:

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾),

|Out>=W*|In>

Fig. 11. Convergence of mean squared error of Quantum
learning with learning rate=0.035 and MinError=
0.000000005

Fig. 12. Convergence of mean squared error of
Quantum learning with learning rate=0. 0135 and
MinError=0.000000005

To explain the algorithm in simpler way, suppose
following weight matrices are initialed based upon the
random values of ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃.

Wa = 1
√2 [1 1

1 −1], Wb = 1
√2 [1 1

1 −1]

then

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

Quantum adder is applied on |Ao> and |Bo> to
calculate the quantum neuron’s final |Out>.

|Out> = QAdd (|Ao> and |Bo>) = [√2
√2

] (assume QAdd

provides this output)

Step 9: If the patterns of XOR gate is fourth and the
value of count equal to 4 then proceed to step 11

otherwise update the weight parameters in step 10 and
then choose first pattern again as input/output, set the
value of counter equal to 0 and goto step2.

Step 10: Update the following parameters.

∅=∅+ eta*<In| QSub (|t>,|Yo>)
𝛾𝛾 = 𝛾𝛾 + eta*< In | QSub (|t>,| Yo >)
𝛿𝛿 = 𝛿𝛿 + eta*< In | QSub (|t>,| Yo >)
𝜃𝜃 = 𝜃𝜃 + eta*< In | QSub (|t>,| Yo >)

<In| = <A| and <In| = <B| for Wa and Wb respectively.

Step 11: Break

3. RESULTS AND DISCUSSIONS

The suggested approach is simulated using the Open
Quantum Computing Framework (OpenQCF), which
was created in Python and C#. It uses the QRegister
(|xxxx>), which is made up of various XOR Gate
patterns, as the inputs and outputs (target output) to the
quantum neuron. The Hermitian matrices are used as
connection weights. Through the tensor product, many
qubits are merged to create a QRegister, for
example.|AB〉 = |A〉 ⊗ |B〉

Let |A〉 = |0〉 = [1
0] and |B〉 = |1〉 = [0

1]

|01〉 = |0〉 ⊗ |1〉 = [1
0] ⊗ [0

1] = [
0
1
0
0

]

Figures 11 and 12 show the mean squared error
convergence rate with respect to number of iterations
for minimum errors 0.000000005 and 0.000000005
corresponding to learning rates 0.035 and 0.0135,
respectively.

From the truth table of XOR gate (Table 1) choose first

pattern as input |A> = |0〉 = [1
0] , |B> = |0〉 = [1

0] .

Initialize the Wa weight and corresponding output by
using the following:

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾),

|Out>=W*|In>

Fig. 11. Convergence of mean squared error of Quantum
learning with learning rate=0.035 and MinError=
0.000000005

Fig. 12. Convergence of mean squared error of
Quantum learning with learning rate=0. 0135 and
MinError=0.000000005

To explain the algorithm in simpler way, suppose
following weight matrices are initialed based upon the
random values of ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃.

Wa = 1
√2 [1 1

1 −1], Wb = 1
√2 [1 1

1 −1]

then

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

Quantum adder is applied on |Ao> and |Bo> to
calculate the quantum neuron’s final |Out>.

|Out> = QAdd (|Ao> and |Bo>) = [√2
√2

] (assume QAdd

provides this output)
Step 9: If the patterns of XOR gate is fourth and the
value of count equal to 4 then proceed to step 11

otherwise update the weight parameters in step 10 and
then choose first pattern again as input/output, set the
value of counter equal to 0 and goto step2.

Step 10: Update the following parameters.

∅=∅+ eta*<In| QSub (|t>,|Yo>)
𝛾𝛾 = 𝛾𝛾 + eta*< In | QSub (|t>,| Yo >)
𝛿𝛿 = 𝛿𝛿 + eta*< In | QSub (|t>,| Yo >)
𝜃𝜃 = 𝜃𝜃 + eta*< In | QSub (|t>,| Yo >)

<In| = <A| and <In| = <B| for Wa and Wb respectively.

Step 11: Break

3. RESULTS AND DISCUSSIONS

The suggested approach is simulated using the Open
Quantum Computing Framework (OpenQCF), which
was created in Python and C#. It uses the QRegister
(|xxxx>), which is made up of various XOR Gate
patterns, as the inputs and outputs (target output) to the
quantum neuron. The Hermitian matrices are used as
connection weights. Through the tensor product, many
qubits are merged to create a QRegister, for
example.|AB〉 = |A〉 ⊗ |B〉

Let |A〉 = |0〉 = [1
0] and |B〉 = |1〉 = [0

1]

|01〉 = |0〉 ⊗ |1〉 = [1
0] ⊗ [0

1] = [
0
1
0
0

]

Figures 11 and 12 show the mean squared error
convergence rate with respect to number of iterations
for minimum errors 0.000000005 and 0.000000005
corresponding to learning rates 0.035 and 0.0135,
respectively.

From the truth table of XOR gate (Table 1) choose first

pattern as input |A> = |0〉 = [1
0] , |B> = |0〉 = [1

0] .

Initialize the Wa weight and corresponding output by
using the following:

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾),

|Out>=W*|In>

Fig. 11. Convergence of mean squared error of Quantum
learning with learning rate=0.035 and MinError=
0.000000005

Fig. 12. Convergence of mean squared error of
Quantum learning with learning rate=0. 0135 and
MinError=0.000000005

To explain the algorithm in simpler way, suppose
following weight matrices are initialed based upon the
random values of ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃.

Wa = 1
√2 [1 1

1 −1], Wb = 1
√2 [1 1

1 −1]

then

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

Quantum adder is applied on |Ao> and |Bo> to
calculate the quantum neuron’s final |Out>.

|Out> = QAdd (|Ao> and |Bo>) = [√2
√2

] (assume QAdd

provides this output)

Step 9: If the patterns of XOR gate is fourth and the
value of count equal to 4 then proceed to step 11

otherwise update the weight parameters in step 10 and
then choose first pattern again as input/output, set the
value of counter equal to 0 and goto step2.

Step 10: Update the following parameters.

∅=∅+ eta*<In| QSub (|t>,|Yo>)
𝛾𝛾 = 𝛾𝛾 + eta*< In | QSub (|t>,| Yo >)
𝛿𝛿 = 𝛿𝛿 + eta*< In | QSub (|t>,| Yo >)
𝜃𝜃 = 𝜃𝜃 + eta*< In | QSub (|t>,| Yo >)

<In| = <A| and <In| = <B| for Wa and Wb respectively.

Step 11: Break

3. RESULTS AND DISCUSSIONS

The suggested approach is simulated using the Open
Quantum Computing Framework (OpenQCF), which
was created in Python and C#. It uses the QRegister
(|xxxx>), which is made up of various XOR Gate
patterns, as the inputs and outputs (target output) to the
quantum neuron. The Hermitian matrices are used as
connection weights. Through the tensor product, many
qubits are merged to create a QRegister, for
example.|AB〉 = |A〉 ⊗ |B〉

Let |A〉 = |0〉 = [1
0] and |B〉 = |1〉 = [0

1]

|01〉 = |0〉 ⊗ |1〉 = [1
0] ⊗ [0

1] = [
0
1
0
0

]

Figures 11 and 12 show the mean squared error
convergence rate with respect to number of iterations
for minimum errors 0.000000005 and 0.000000005
corresponding to learning rates 0.035 and 0.0135,
respectively.

From the truth table of XOR gate (Table 1) choose first

pattern as input |A> = |0〉 = [1
0] , |B> = |0〉 = [1

0] .

Initialize the Wa weight and corresponding output by
using the following:

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾),

|Out>=W*|In>

Fig. 11. Convergence of mean squared error of Quantum
learning with learning rate=0.035 and MinError=
0.000000005

Fig. 12. Convergence of mean squared error of
Quantum learning with learning rate=0. 0135 and
MinError=0.000000005

To explain the algorithm in simpler way, suppose
following weight matrices are initialed based upon the
random values of ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃.

Wa = 1
√2 [1 1

1 −1], Wb = 1
√2 [1 1

1 −1]

then

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

Quantum adder is applied on |Ao> and |Bo> to
calculate the quantum neuron’s final |Out>.

|Out> = QAdd (|Ao> and |Bo>) = [√2
√2

] (assume QAdd

provides this output)

Step 9: If the patterns of XOR gate is fourth and the
value of count equal to 4 then proceed to step 11

otherwise update the weight parameters in step 10 and
then choose first pattern again as input/output, set the
value of counter equal to 0 and goto step2.

Step 10: Update the following parameters.

∅=∅+ eta*<In| QSub (|t>,|Yo>)
𝛾𝛾 = 𝛾𝛾 + eta*< In | QSub (|t>,| Yo >)
𝛿𝛿 = 𝛿𝛿 + eta*< In | QSub (|t>,| Yo >)
𝜃𝜃 = 𝜃𝜃 + eta*< In | QSub (|t>,| Yo >)

<In| = <A| and <In| = <B| for Wa and Wb respectively.

Step 11: Break

3. RESULTS AND DISCUSSIONS

The suggested approach is simulated using the Open
Quantum Computing Framework (OpenQCF), which
was created in Python and C#. It uses the QRegister
(|xxxx>), which is made up of various XOR Gate
patterns, as the inputs and outputs (target output) to the
quantum neuron. The Hermitian matrices are used as
connection weights. Through the tensor product, many
qubits are merged to create a QRegister, for
example.|AB〉 = |A〉 ⊗ |B〉

Let |A〉 = |0〉 = [1
0] and |B〉 = |1〉 = [0

1]

|01〉 = |0〉 ⊗ |1〉 = [1
0] ⊗ [0

1] = [
0
1
0
0

]

Figures 11 and 12 show the mean squared error
convergence rate with respect to number of iterations
for minimum errors 0.000000005 and 0.000000005
corresponding to learning rates 0.035 and 0.0135,
respectively.

From the truth table of XOR gate (Table 1) choose first

pattern as input |A> = |0〉 = [1
0] , |B> = |0〉 = [1

0] .

Initialize the Wa weight and corresponding output by
using the following:

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾),

|Out>=W*|In>

Fig. 11. Convergence of mean squared error of Quantum
learning with learning rate=0.035 and MinError=
0.000000005

Fig. 12. Convergence of mean squared error of
Quantum learning with learning rate=0. 0135 and
MinError=0.000000005

To explain the algorithm in simpler way, suppose
following weight matrices are initialed based upon the
random values of ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃.

Wa = 1
√2 [1 1

1 −1], Wb = 1
√2 [1 1

1 −1]

then

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

Quantum adder is applied on |Ao> and |Bo> to
calculate the quantum neuron’s final |Out>.

|Out> = QAdd (|Ao> and |Bo>) = [√2
√2

] (assume QAdd

provides this output)

Step 9: If the patterns of XOR gate is fourth and the
value of count equal to 4 then proceed to step 11

otherwise update the weight parameters in step 10 and
then choose first pattern again as input/output, set the
value of counter equal to 0 and goto step2.

Step 10: Update the following parameters.

∅=∅+ eta*<In| QSub (|t>,|Yo>)
𝛾𝛾 = 𝛾𝛾 + eta*< In | QSub (|t>,| Yo >)
𝛿𝛿 = 𝛿𝛿 + eta*< In | QSub (|t>,| Yo >)
𝜃𝜃 = 𝜃𝜃 + eta*< In | QSub (|t>,| Yo >)

<In| = <A| and <In| = <B| for Wa and Wb respectively.

Step 11: Break

3. RESULTS AND DISCUSSIONS

The suggested approach is simulated using the Open
Quantum Computing Framework (OpenQCF), which
was created in Python and C#. It uses the QRegister
(|xxxx>), which is made up of various XOR Gate
patterns, as the inputs and outputs (target output) to the
quantum neuron. The Hermitian matrices are used as
connection weights. Through the tensor product, many
qubits are merged to create a QRegister, for
example.|AB〉 = |A〉 ⊗ |B〉

Let |A〉 = |0〉 = [1
0] and |B〉 = |1〉 = [0

1]

|01〉 = |0〉 ⊗ |1〉 = [1
0] ⊗ [0

1] = [
0
1
0
0

]

Figures 11 and 12 show the mean squared error
convergence rate with respect to number of iterations
for minimum errors 0.000000005 and 0.000000005
corresponding to learning rates 0.035 and 0.0135,
respectively.

From the truth table of XOR gate (Table 1) choose first

pattern as input |A> = |0〉 = [1
0] , |B> = |0〉 = [1

0] .

Initialize the Wa weight and corresponding output by
using the following:

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾),

|Out>=W*|In>

Fig. 11. Convergence of mean squared error of Quantum
learning with learning rate=0.035 and MinError=
0.000000005

Fig. 12. Convergence of mean squared error of
Quantum learning with learning rate=0. 0135 and
MinError=0.000000005

To explain the algorithm in simpler way, suppose
following weight matrices are initialed based upon the
random values of ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃.

Wa = 1
√2 [1 1

1 −1], Wb = 1
√2 [1 1

1 −1]

then

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

Quantum adder is applied on |Ao> and |Bo> to
calculate the quantum neuron’s final |Out>.

|Out> = QAdd (|Ao> and |Bo>) = [√2
√2

] (assume QAdd

provides this output)

Fig. 11. Convergence of mean squared error of
Quantum learning with learning rate=0.035 and
MinError=0.000000005

Fig. 12. Convergence of mean squared error of
Quantum learning with learning rate=0. 0135 and
MinError=0.000000005

From the truth table of XOR gate (Table 1) choose first

pattern as input |A> = |0〉 = [1
0] , |B> = |0〉 = [1

0] .

Initialize the Wa weight and corresponding output by
using the following:

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾),

|Out>=W*|In>

To explain the algorithm in simpler way, suppose
following weight matrices are initialed based upon the
random values of ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃.

Wa = 1
√2 [1 1

1 −1], Wb = 1
√2 [1 1

1 −1]

then

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

Quantum adder is applied on |Ao> and |Bo> to
calculate the quantum neuron’s final |Out>.

|Out> = QAdd (|Ao> and |Bo>) = [√2
√2

] (assume QAdd

provides this output)

Apply the following transfer function upon the
calculated |Out> which is considered by Li Fei [22].

FT = 1
√2

[0 1
1 −1] [sin (•) 0

0 sin (•)]

Final output is calculated as |Yo> =FT*|Out>

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] |Out〉

Here we may get |Out〉 aa a mixed quantum state

|Out〉 = [±a
±b]

= 1
√2

[0 1
1 −1] [sin(•) 0

0 sin(•)] [√2
√2

]

= 1
√2

[0 1
1 −1] [sin(√2)

sin(√2)
] = 1

√2
[0 1
1 −1] [√2

√2
]

|Yo >= 1
√2

[√2
0] = [1

0] = |0 >

As |t> = |0>, |Yo> = |0> calculate

|Er> = QSub(|t>,|Yo>)

to Estimate error= ‖QSubt(|t >, |Yo >)‖2=0.

Based upon this error weights parameter will be
updated by following formulas.

For Wa, |In > = |A > = |0 >

∅=∅+ eta*<In| (QSub (|t>,|Yo>)>

∅=∅+ eta*<A| Er>

𝛾𝛾 = 𝛾𝛾 + eta*<In| (QSub (|t>,|Yo>)>
𝛿𝛿 = 𝛿𝛿 + eta*<In| (QSub (|t>,|Yo>)>
𝜃𝜃 = 𝜃𝜃 + eta*<In| (QSub (|t>,|Yo>)>

Wa = W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾)

For Wb, |In > is |B > = |0 > and the factors
α, ψ, φ and χ will be revised to evaluate Wb
consequently. For the current pattern weights will not
be updated because error=0, therefore, XOR gate’s
second pattern will be processed which is |A> = |0〉 =
[1
0] , |B> = |1〉 = [0

1]

Wa = 1
√2 [1 1

1 −1], Wb = 1
√2 [1 1

1 −1], Then

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [0
1] = 1

√2 [1
−1]= [

1
√2

− 1
√2

]

Quantum adder is applied on |Ao> and |Bo> to
calculate the quantum neuron’s final |Out>.

|Out> = QAdd (|Ao> and |Bo>) = [√2
0]

(Assume QAdd provides this output)

Apply the following transfer function upon the
calculated |Out> which is considered by Li Fei [22]

50 Mahmood et al

From the truth table of XOR gate (Table 1) choose first

pattern as input |A> = |0〉 = [1
0] , |B> = |0〉 = [1

0] .

Initialize the Wa weight and corresponding output by
using the following:

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾),

|Out>=W*|In>

To explain the algorithm in simpler way, suppose
following weight matrices are initialed based upon the
random values of ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃.

Wa = 1
√2 [1 1

1 −1], Wb = 1
√2 [1 1

1 −1]

then

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

Quantum adder is applied on |Ao> and |Bo> to
calculate the quantum neuron’s final |Out>.

|Out> = QAdd (|Ao> and |Bo>) = [√2
√2

] (assume QAdd

provides this output)

Apply the following transfer function upon the
calculated |Out> which is considered by Li Fei [22].

FT = 1
√2

[0 1
1 −1] [sin (•) 0

0 sin (•)]

Final output is calculated as |Yo> =FT*|Out>

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] |Out〉

Here we may get |Out〉 aa a mixed quantum state

|Out〉 = [±a
±b]

= 1
√2

[0 1
1 −1] [sin(•) 0

0 sin(•)] [√2
√2

]

= 1
√2

[0 1
1 −1] [sin(√2)

sin(√2)
] = 1

√2
[0 1
1 −1] [√2

√2
]

|Yo >= 1
√2

[√2
0] = [1

0] = |0 >

As |t> = |0>, |Yo> = |0> calculate

|Er> = QSub(|t>,|Yo>)

to Estimate error= ‖QSubt(|t >, |Yo >)‖2=0.

Based upon this error weights parameter will be
updated by following formulas.

For Wa, |In > = |A > = |0 >

∅=∅+ eta*<In| (QSub (|t>,|Yo>)>

∅=∅+ eta*<A| Er>

𝛾𝛾 = 𝛾𝛾 + eta*<In| (QSub (|t>,|Yo>)>
𝛿𝛿 = 𝛿𝛿 + eta*<In| (QSub (|t>,|Yo>)>
𝜃𝜃 = 𝜃𝜃 + eta*<In| (QSub (|t>,|Yo>)>

Wa = W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ (cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾)

For Wb, |In > is |B > = |0 > and the factors
α, ψ, φ and χ will be revised to evaluate Wb
consequently. For the current pattern weights will not
be updated because error=0, therefore, XOR gate’s
second pattern will be processed which is |A> = |0〉 =
[1
0] , |B> = |1〉 = [0

1]

Wa = 1
√2 [1 1

1 −1], Wb = 1
√2 [1 1

1 −1], Then

|Ao> = Wa*|A> = 1
√2 [1 1

1 −1] [1
0] = 1

√2 [1
1]= [

1
√2
1

√2
]

|Bo> = Wb*|B> = 1
√2 [1 1

1 −1] [0
1] = 1

√2 [1
−1]= [

1
√2

− 1
√2

]

Quantum adder is applied on |Ao> and |Bo> to
calculate the quantum neuron’s final |Out>.

|Out> = QAdd (|Ao> and |Bo>) = [√2
0]

(Assume QAdd provides this output)

Apply the following transfer function upon the
calculated |Out> which is considered by Li Fei [22]

FT = 1
√2

[0 1
1 −1] [sin (•) 0

0 sin (•)]

Final output is calculated as |Yo> =FT*|Out>

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] |Out〉

Here we may get |Out〉 aa a mixed quantum state

|Out〉 = [±a
±b]

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] [√2

0]

= 1
√2

[0 1
1 −1] [sin(√2)

sin(0)] = 1
√2

[0 1
1 −1] [√2

0]

|Yo >= 1
√2

[0
√2] = [0

1] = |1 >

As |t> = |1>, |Yo> = |1> calculate

|Er> = QSub(|t>,|Yo>)

to Estimate error= ‖QSub(|t >, |Yo >)‖2=0.

For this pattern weights will not again be updated
because error=0. In the same way, next input will be

processed i.e. (|B> = |0〉 = [1
0] , |A> = |1〉 = [0

1]) and

the fourth pattern (|A> = |1〉 = [0
1] , |B> = |1〉 = [0

1])

for XOR Gate. If four patterns yield no error, the
processing will be stopped; if not, it will resume with
first pattern of truth table by using updated weights and
will continue until acceptable error is obtained.

There is no information loss or copying since the
circuit for quantum neurons or neural networks has an
equal number of input and output lines. Therefore, the
suggested approach qualifies all limitations of quantum
computing by considering the architecture's processing
power, which is used to run the proposed algorithm’s
simulation. The findings and execution of the
suggested method make it evident that the limitations
discussed in this study are resolved. The suggested
quantum neuron’s corresponding circuit and algorithm
satisfy all the fundamental laws and theorems of
quantum computing. The simulation findings also
demonstrate that it can learn many phenomena.
Therefore, the proposed quantum circuit and algorithm
is it is suggested, for the solution of Partial differential

equations (PDEs) and Ordinary Differential Equations
(ODEs), to implement quantum neural correlates of
consciousness into machines, to calculate mass
spectroscopy, and in high energy physics instead of
using existing quantum or classical artificial neural
networks. The related detail can be seen in author's PhD
thesis [30] for further information.

A prominent work on the non-linear learning of
XOR gate through quantum neural network is by Li Fei
[22]. The algorithm used by Li Fei [22] violates the
quantum computing principles such as no-loss of
information, reversibility, and no-cloning theorem etc.
The algorithm explained in the present study is free of
such drawbacks and ensures that principles of quantum
computing are fully satisfied.

4. CONCLUSION

The present study proposes and implements a novel
paradigm of quantum neural networks for the XOR
gate’s nonlinear learning. It is demonstrated that the
proposed method follows all quantum computing
constraints. Therefore, it is recommended to utilize the
suggested QNNs circuit and corresponding algorithm
for the modelling and employment of higher-level
characteristics in conscious robots if the brain functions
are in accordance with the principle of quantum
mechanics. Additionally, the suggested quantum neural
network and its associated circuits and algorithms may
be employed to address certain high-energy physics
issues.

5. CONFLICT OF INTEREST

Authors declare no conflict of interest.

6. DATA AND CODE AVAILABILITY

On reasonable request, the corresponding author will provide
the code along with data sets created and used in the present
work.

7. REFERENCES
1. B.J. Baars. A Cognitive Theory of Consciousness.

Cambridge, MA: Cambridge University Press (1988).
2. B.J. Baars. The conscious access hypothesis: origins and

recent evidence. Trends in Cognitive Sciences 6(1): 47-
52 (2002).

FT = 1
√2

[0 1
1 −1] [sin (•) 0

0 sin (•)]

Final output is calculated as |Yo> =FT*|Out>

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] |Out〉

Here we may get |Out〉 aa a mixed quantum state

|Out〉 = [±a
±b]

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] [√2

0]

= 1
√2

[0 1
1 −1] [sin(√2)

sin(0)] = 1
√2

[0 1
1 −1] [√2

0]

|Yo >= 1
√2

[0
√2] = [0

1] = |1 >

As |t> = |1>, |Yo> = |1> calculate

|Er> = QSub(|t>,|Yo>)

to Estimate error= ‖QSub(|t >, |Yo >)‖2=0.

For this pattern weights will not again be updated
because error=0. In the same way, next input will be

processed i.e. (|B> = |0〉 = [1
0] , |A> = |1〉 = [0

1]) and

the fourth pattern (|A> = |1〉 = [0
1] , |B> = |1〉 = [0

1])

for XOR Gate. If four patterns yield no error, the
processing will be stopped; if not, it will resume with
first pattern of truth table by using updated weights and
will continue until acceptable error is obtained.

There is no information loss or copying since the
circuit for quantum neurons or neural networks has an
equal number of input and output lines. Therefore, the
suggested approach qualifies all limitations of quantum
computing by considering the architecture's processing
power, which is used to run the proposed algorithm’s
simulation. The findings and execution of the
suggested method make it evident that the limitations
discussed in this study are resolved. The suggested
quantum neuron’s corresponding circuit and algorithm
satisfy all the fundamental laws and theorems of
quantum computing. The simulation findings also
demonstrate that it can learn many phenomena.
Therefore, the proposed quantum circuit and algorithm
is it is suggested, for the solution of Partial differential

equations (PDEs) and Ordinary Differential Equations
(ODEs), to implement quantum neural correlates of
consciousness into machines, to calculate mass
spectroscopy, and in high energy physics instead of
using existing quantum or classical artificial neural
networks. The related detail can be seen in author's PhD
thesis [30] for further information.

A prominent work on the non-linear learning of
XOR gate through quantum neural network is by Li Fei
[22]. The algorithm used by Li Fei [22] violates the
quantum computing principles such as no-loss of
information, reversibility, and no-cloning theorem etc.
The algorithm explained in the present study is free of
such drawbacks and ensures that principles of quantum
computing are fully satisfied.

4. CONCLUSION

The present study proposes and implements a novel
paradigm of quantum neural networks for the XOR
gate’s nonlinear learning. It is demonstrated that the
proposed method follows all quantum computing
constraints. Therefore, it is recommended to utilize the
suggested QNNs circuit and corresponding algorithm
for the modelling and employment of higher-level
characteristics in conscious robots if the brain functions
are in accordance with the principle of quantum
mechanics. Additionally, the suggested quantum neural
network and its associated circuits and algorithms may
be employed to address certain high-energy physics
issues.

5. CONFLICT OF INTEREST

Authors declare no conflict of interest.

6. DATA AND CODE AVAILABILITY

On reasonable request, the corresponding author will provide
the code along with data sets created and used in the present
work.

7. REFERENCES
1. B.J. Baars. A Cognitive Theory of Consciousness.

Cambridge, MA: Cambridge University Press (1988).
2. B.J. Baars. The conscious access hypothesis: origins and

recent evidence. Trends in Cognitive Sciences 6(1): 47-
52 (2002).

There is no information loss or copying since
the circuit for quantum neurons or neural networks
has an equal number of input and output lines.
Therefore, the suggested approach qualifies all
limitations of quantum computing by considering
the architecture’s processing power, which is used
to run the proposed algorithm’s simulation. The
findings and execution of the suggested method
make it evident that the limitations discussed in
this study are resolved. The suggested quantum
neuron’s corresponding circuit and algorithm
satisfy all the fundamental laws and theorems of
quantum computing. The simulation findings also
demonstrate that it can learn many phenomena.
Therefore, the proposed quantum circuit and
algorithm is it is suggested, for the solution of
Partial differential equations (PDEs) and Ordinary
Differential Equations (ODEs), to implement
quantum neural correlates of consciousness into
machines, to calculate mass spectroscopy, and
in high energy physics instead of using existing
quantum or classical artificial neural networks. The
related detail can be seen in author’s PhD thesis
[30] for further information.

A prominent work on the non-linear learning
of XOR gate through quantum neural network is
by Li Fei [22]. The algorithm used by Li Fei [22]

 Quantum Circuit Based Quantum Neural Networks 51

violates the quantum computing principles such as
no-loss of information, reversibility, and no-cloning
theorem etc. The algorithm explained in the present
study is free of such drawbacks and ensures that
principles of quantum computing are fully satisfied.

4. CONCLUSION

The present study proposes and implements a novel
paradigm of quantum neural networks for the XOR
gate’s nonlinear learning. It is demonstrated that the
proposed method follows all quantum computing
constraints. Therefore, it is recommended to utilize
the suggested QNNs circuit and corresponding
algorithm for the modelling and employment of
higher-level characteristics in conscious robots if the
brain functions are in accordance with the principle
of quantum mechanics. Additionally, the suggested
quantum neural network and its associated circuits
and algorithms may be employed to address certain
high-energy physics issues.

5. CONFLICT OF INTEREST

Authors declare no conflict of interest.

6. DATA AND CODE AVAILABILITY

On reasonable request, the corresponding author will
provide the code along with data sets created and used
in the present work.

7. REFERENCES

1. B.J. Baars. A Cognitive Theory of Consciousness.
Cambridge, MA: Cambridge University Press
(1988).

2. B.J. Baars. The conscious access hypothesis: origins
and recent evidence. Trends in Cognitive Sciences
6(1): 47-52 (2002).

3. R. Prakash, O. Prakash, S. Prakash, P. Abhishek,
and S. Gandotra. Global workspace model of
consciousness and its electromagnetic correlates.
Ann Indian Acad Neurol:146-153 (2006).

4. B.J. Baars. Global workspace theory of
consciousness: toward a cognitive neuroscience of
human experience. Progress in Brain Research 150:
45-53 (2005).

5. B.J. Baars. The Global Workspace Theory of
Consciousness. The Blackwell Companion to
Consciousness, Second Edition, John Wiley & Sons
Ltd: 227-242 (2017).

6. W.M. Qazi, K. Ahmed, Y. Saeed, A. Athar, and
M. A. Saeed. Cybernetics Approach towards the
Development of Cognitive Model for Machine.
International Conference on Intelligence and

Information Technology (2010).
7. W.M. Qazi, and K. Ahmad. Building Conscious

Cybernetic Entities using QuBIC Model and
Framework Based on Unified Theory of Mind. The
11th Islamic Countries Conference on Statistical
Sciences (ICCS-11), Lahore, (2011).

8. I. Aleksander. Designing Conscious Systems, Cogn
Comput 1: 22–28, (2009).

9. B.J. Baars, and S. Franklin. An Architectural Model
of Conscious and Unconcious Brain Functions:
Global Workspace Theory and IDA. Neural
Networks 20: 955-961 (2007).

10. S. Frankin, and F. G. Patterson, The LIDA
Architecture: Adding New Modes of Learning To An
Intelligent, Autonomous, Software Agent. Society
for Design and Process Science, USA (2006).

11. S. Franklin. Building life-like conscious software
agents. AI Communication :183-193 (2000).

12. D. Gamez. The Development and Analysis of
Conscious Machines. University of ESSEX (2008).

13. S.R. Hameroff. The Brain is Both Neurocomputer
and Quantum Computer. Cognitive Science 31:
1035-1045 (2007).

14. Y. Kinouchi. A Logical Model of Consciousness on
a Neural Network System with a Simple Abstract
Brain-like Structure. Nokia Workshop on Machine
Consciousness (2008).

15. J.A. Starzyk, and D.K. Prasad. A Computational
Model of Machine Consciousness. International
Journal of Machine Consciousness 3: 255-281
(2011).

16. R. Sun. The Importance of Cognitive Architectures:
An Analysis Based on CLARION. Journal of
Experimental and Theoretical Artificial Intelligence
19(2): 159-193 (2007).

17. R. Sun. Motivational Representations within a
Computational Cognitive Architecture. Cognitive
Computation 1: 91-103 (2009).

18. J.G. Taylor. CODAM: A Neural Network Model
of Consciousness. Neural Network 20: 983-992
(2007).

19. K. Sgarbas. The Road to Quantum Artificial
Intelligence. 11th Panhellenic Conference in
Informatics (2007).

20. B. Aoun, and M. Tarifi. Quantum Artificial
Intelligence, Quantum Information Processing,
ArXiv:quant-ph/0401124 (2004).

21. W.M. Qazi. Modeling Cognitive Cybernetics From
Unified Theory Of Mind Using Quantum Neuro-
Computing For Machine Consciousness (2012).

22. L. Fei, D. Xiaoliang, Z. Shengmei, and Z. Baoyu. A
Learning Algorithm for Quantum Neuron. ISCP’04
Proceedings (2004).

23. A. Ezhov, and D. Ventura. Quantum Neural
Networks (2000).

24. M.A. Nielsen, and I.L. Chuang. Quantum
Computation and Quantum Information. Cambridge
University Press (2000).

25. D. Deutch. Quantum Theory, the Church–Turing

52 Mahmood et al

principle and the universal quantum computer.
Proceedings of the Royal Society of London 400:
97–117 (1985).

26. K. Raedit, K. Michielsen, H. Raedt, B. Trieu, G.
Arnold, M. Richter, T. Lippert, H. Watanabe, and
N. Ito. Massively Parallel Quantum Computer
Simulator, Computer Physics Communication 176:
121-136 (2007).

27. L.K. Grover. Quantum mechanics helps in searching
for a needle in a haystack. Physical Review Letters
79: 325–328 (1997).

28. R.C. Jaeger. Microelectronic Circuit
Design. McGraw-Hill. 226–233. ISBN 0-07-
032482-4 (1997).

29. M.M. Mano, and M.D. Ciletti, Digital Design.
Pearson (1927).

30. T. Mahmood. Neural Network Based Study of
Charmonium Spectrum. PhD Thesis, submitted to
Centre for High Energy Physics, University of the
Punjab, Lahore-Pakistan (2022).

31. CERN, Physics at CERN, [Online]. Available:
https://home.cern/science/physics. [Accessed 20
September 2019].

32. A. Radovic, M. Williams, D. Rousseau, M. Kagan,
D. Bonacorsi, A. Himmel, A. Aurisano, K. Terao,
and T. wongjirad. Machine learning at the energy
and intensity frontiers of particle physics. Nature
560: 41-48 (2018).

33. CERN, CERN accelerating science, [Online].
Available: https://home.cern/science/physics/
standard-model. [Accessed 24 September 2019].

34. B.H. Denby, Neural network and cellular automata
in experimental high energy physics. Computational
physics communication 49: 429-448 (1988).

35. C. Peterson, T. Rognvaldsson, and L. Lonnblad.
JETNET 3.0: a versatile artificial neural network
package. Computational Physics Communication
81: 185-220 (1994).

36. P. Baldi, K. Crammer, T. Faucett, P. Sadowski, and
D. Whiteson. Parametrized neural networks for
high energy physics. Europian Physical Journal C
76(05): (2016).

37. G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M.
Schuld, N. Tishby, L. Vogt-Maranto, and L.
Zdeborová. Machine learning and the physical
sciences. arXiv:1903.10563, (2019).

38. H. Mutuk. Energy levels of one-dimensional
anharmonic oscillator via neural network. Modern
Physics Letters A 34(12): 1950088 (2019).

39. H. Mutuk. A Neural Network Study of Blasius
Equation. Neural Processing Letters 51: 2179-2194
(2018).

40. H. Mutuk. Cornell Potential: A Neural Network
Approach. Hindawi: Advances in High Energy
Physics 2019(3): 1-9 (2019).

41. H. Mutuk. Neural Network Study of Hidden-Charm
Pentaquark Resonances. arXiv:1904.09756v3 [hep-
ph], (2019).

42. H. Mutuk. Mass Spectrum of Exotic X (5568) State

via Artificial Neural Network. arXiv:1901.01154
(2019).

43. D. Collaboration. Classification of hadronic decays
of Z0 into b and c quark pairs using neural network.
Physics Letters B 295(3-4):383-395 (1992).

44. H. Kolansoki. Application of artificial neural
networks in particle physics. Nuclear Instruments
and Methods in Physics Research Section A: 14-20
(1995).

45. A. collaboration, and I. Caprini. A neural network
clustering algorithm for the ATLAS silicon pixel
detector. Journal of Instrumentation 9(09): (2014).

46. C. Peterson. Track finding with neural networks.
Nuclear Instruments and Methods in Physics
Research Section A: 279(3): 537-545 (1989).

47. L. Lonnblad, C. Peterson, and T. Rognvaldsson.
Finding gluon jets with a neural trigger. Physics
Review Letters 65: 1321-1324 (1990).

48. H. Bruce, M. Denby, F. B. Campbell, N. Chriss,
C. Bowers, and F. Nesti. Neural networks for
triggering, IEEE Transactions on Nuclear Science
37(2): 248-254 (1990).

49. R. Frhwirth, M. Regler, R. K. Bock, H. Grote, and
D. Notz. Data analysis techniques for high energy
physics. Cambridge monographs (1990).

50. A. Strandlie, and R. Frhwirth. Track and vertex
reconstruction: From classical to adaptive methods.
Review of Modern Physics 82(2): (2010).

51. G. Carleo, and M. Troyer. Solving the quantum
many-body problem with artificial neural networks.
Science 355(6325): 602-606 (2017).

52. E.I. Lagaris, A. Likas, and D.I. Fotiadis. Artificial
neural network for solving ordinary and partial
differential equations. IEEE transactions on neural
networks 9: 987-1000 (1998).

53. D.W. Berry. High order quantum algorithm for
solving linear differential equation. Journal of
Physics A: Mathematical and Theoretical 47:
(2014).

54. Y. Cao, A. Papageorgiou, I. Petras, J. Traub, and S.
Kais. Quantum algorithm and circuit design solving
the poison equation. New Journal of Physics 15:
013021 (2013).

55. K.K. Sharma. Quantum Machine Learning in High
Energy Physics: the Future Prospects. High Energy
Particle Physics 06: (2018).

56. S. Carrazza. Machine learning challenges in
theoretical HEP. Journal of Physics Conference
Series 1085: (2017).

57. A.J. Silva, T. B. Ludermir, and W. R. Oliveira.
Quantum perceptron over a field and neural network
architecture selection in a quantum computer.
Neural Networks 76: (2016).

58. F. Tacchino, C. Macchiavello, D. Gerace, and D.
Bajon. An artificial neuron implemented on an
actual quantum processor. Nature partner journal:
Quantum information 5: 8 (2019).

59. K.H. Wan, O. Dahlsten, H. Kristjánsson, R.
Gardner, and M.S. Kim. Quantum generalization

 Quantum Circuit Based Quantum Neural Networks 53

of feedforward neural networks. npj Quantum
Information 3(1): (2017).

60. P. Rebentrost, T.R. Bromley, C. Weedbrook, and S.
Lloyd. Quantum Hopfield neural network. Physical
Review A 98: 042308 (2018).

61. Y. Cao, G. G. Guerreschi, and A. Aspuru-Guzik.
Quantum Neuron: an elementary building-block
for machine learning on quantum computers.
arXiv:1711.11240 (2017).

62. F. Neukart, and S.-A. Moraru. On Quantum
Computers and Artificial Neural Networks. Journal
of Signal Processing Research 2: 1-11 (2013).

63. M. Schuld, I. Sinayskiy, and F. Petruccione. The
quest for a Quantum Neural Net-work. Quantum
Information Processing 13(11): 2567–2586 (2014).

64. M. Schuld, I. Sinayskiy, and F. Petruccione.
Simulating a perceptron on a quantum computer.
Physics Letters A 379(7): 660–663 (2015).

65. N. Wiebe, A. Kapoor and K. M. Svore. Quantum
Perceptron Models. Adv. Neural Inf.Process. Syst.
(NIPS) 29: 3999–4007 (2016).

66. S. Lloyd, M. Mohseni, and P. Rebentrost. Quantum
algorithms for supervised and unsupervised machine
learning. arXiv:1307.0411 (2013).

67. L. Lamata. Basic protocols in quantum reinforcement
learning with super-conducting circuits. Scientific
Reports 7(1): 1609 (2017).

68. J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick,
M. Block, B. Bloom, S. Caldwell, N. Didier, E.
Schuyler Fried, S. Hong, P. Karalekas, C.B. Osborn,
A. Papageorge, E.C. Peterson, G. Prawiroatmodjo,
N. Rubin, C.A. Ryan, D. Scarabelli, M. Scheer, E.A.
Sete, P. Sivarajah, Robert S. Smith, A. Staley, N.

Tezak, W. J. Zeng, A. Hudson, Blake R. Johnson, M.
Reagor, M. P. da Silva, and C. Rigetti. Unsupervised
Machine Learning on a Hybrid Quantum Computer.
arXiv:1712.05771 (2017).

69. M. Schuld, Xanadu, I. Sinayskiy, and F. Petruccione.
Viewpoint: Neural Networks Take on Open
Quantum Systems. Physics 12: (2019).

70. A. Nagy, and V. Savona. Variational Quantum Monte
Carlo Method with a Neural-Network Ansatz for
Open Quantum Systems. Physical Review Letters
122(25): (2019).

71. M.J. Hartmann, and G. Carleo. Neural-Network
Approach to Dissipative Quantum Many-Body
Dynamics. Physical Review Letters 122: 250502
(2019).

72. F. Vicentini, A. Biella, N. Regnaul, and C. Ciuti.
Variational Neural-Network Ansatz for the Steady
States in Open Quantum Systems. Physical Review
Letters 122: 250503 (2019).

73. N. Yoshioka, and R. Hamazaki. Constructing neural
stationary states for open quantum many-body
systems. Physical Review B 99: 214306 (2019).

74. C.P.D.S. Gonçalves. Quantum Neural Machine
Learning: Theory and Experiments. Applications in
Medicine and Biology (2019).

75. B. Ricks, and D. Ventura. Training a Quantum
Neural Network. Advances in neural information
processing systems (2004).

76. X.L. Wang, X.D. Cai, Z.E. Su, M.C. Chen, D. Wu,
L. Li, N.L. Liu, C.Y. Lu, and J.W. Pan. Quantum
teleportation of multiple degrees of freedom of a
single photon. Nature 518(7540): 516-9 (2015).

54 Mahmood et al

