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Abstract: We have investigated the Laplacian equation in fractional dimensional space (FDS) that is widely used 
in physics to describe many complex phenomena. Using this concept, we have applied it on a cylindrical shell of 
permeable material to find the analytical solution of electric potential in FDS. The derivation of this problem is 
performed by applying Gegenbauer polynomials. The general solution has been obtained in a closed form in the FDS 
and can be applied to the cylindrical shell for different materials inside the cylinder core and outside the shell. By 
setting the fractional parameter α = 3, the derived solution is retrieved for the integer order.
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1. INTRODUCTION

The concept of fractional-dimensional space (FDS) 
has been applied in many areas of physics for 
the last many years. It has been investigated and 
cited by many theoretical physicists [1-19] Wilson 
[3] has utilized FD space to explain the quantum 
field theory. Stillinger [4] has formulated Gibbsian 
statistical mechanics and Schrodinger wave by 
using this novel idea of the FD space. In the Ising 
domain [6], the quantum field theory FD space can 
be utilized as a parameter. Zeilinger and Svozil 
[10] have elaboratedthe meaning of the dimension 
of space time by which space-time dimension 
may be predicted. By using this concept, it has 
also been estimated that the FD of space-time is 
approximately less than 4 Gauss law [11] has been 
derived in α-dimensional fractional space. Various 
electrostatic issues have been resolved [13-18] in 
the fractional-dimensional space for (2 < α ≤ 3).
This problem has been studied from Jackson [13] 
for permeable material for the FDS. The main 
objective of this paper is to evaluate the electric field 

and potential due to a permeable cylindrical shell 
by applying the Laplacian equation in FD space. 
The summary of this paper is described as follows. 
First of all, we have formulated the boundary 
value problem. Then in a host medium of uniform 
electrical field, a permeable cylindrical shell is 
placed Then, we have evaluated a general solution 
for the given problem by applying the separation 
variable method, next we have constructed the 
solution for the three regions accordingly. Here, 
we apply boundary conditions, and finally, we 
have calculated unknown constants, by using the 
boundary conditions as well as known values. 
Now we are able to find the complete solution in 
form of electric potential due to the cylindrical 
shell of highly permeable material for fractional 
dimensional space.

2. MATHEMATICAL MODEL

A cylindrical shell of infinite length filled with 
permeable material µ1/µ0 having outer and inner 
radii ‘b’ and ‘a’ respectively has been considered 
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cylinder. We have investigated the potential in NID space 
(2  α ≤ 3), in the three regions. For an appropriate 
solution the cylindrical coordinates (r, ) are employed. 

𝛻𝛻2𝛹𝛹(𝑟𝑟, 𝜃𝜃) = 0 (1) 

This is Laplace equation in cylindrical coordinates. 
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As this problem is considered in magneto statics, where 
 = 0 it means k = 0 and for the symmetry of the problem 
about the z-axis,  is independent of z, therefore, the 
above wave equation reduces to: 
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Fig. 1. Cylindrical Shell of Permeable Material Placed in 
Fractional Space. 

 

Eq. (3) is solved by separable method 
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Suppose the solution is: 

𝛹𝛹(𝑟𝑟, 𝜃𝜃) = 𝑅𝑅(𝑟𝑟)𝛩𝛩(𝜃𝜃) (5) 

The obtained angular and radial part of the differential 
equations (4) in NID Space by following the previous 
research work [18, 19], we find: 
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Here, the generalized solution of the scalar potential of 
cylindrical shell in fractional space followed by Morse 
and Feshbach [17] can be expressed as: 

 (8) 

For the physical solution, we find a close form solution 
inside and outside of the cylindrical region. But, we are 
interested only in the solution for l = 1, that is P(α/2-1)

l(cos 
=(α-2)cos()) As there is uniform symmetry with respect 
to the external field for each region, we find the potential 
outside region. 

𝛹𝛹(𝑟𝑟, 𝜃𝜃) = (−𝐸𝐸0𝑟𝑟 + 𝐴𝐴1𝑟𝑟−(𝛼𝛼−2))(𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃, 𝑟𝑟 > 𝑏𝑏 (9) 

In between the cylinders: 

 (10) 

and inside the cylinder: 

𝛹𝛹(𝑟𝑟, 𝜃𝜃) = 𝐷𝐷1𝑟𝑟(𝛼𝛼 − 2)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃, 0 < 𝑟𝑟 < 𝑎𝑎 (11) 

Here, we have imposed boundary conditions at r = a and 
r = b These four boundary conditions lead to the 
following equations in the simplified form such that  

𝐴𝐴 = 𝐸𝐸0𝑏𝑏𝛼𝛼−1 + 𝐵𝐵𝑏𝑏𝛼𝛼−1 + 𝐶𝐶 (12) 

𝑎𝑎1𝐴𝐴 = −𝐸𝐸0𝑏𝑏𝛼𝛼−1 − 𝜅𝜅1𝐵𝐵𝑏𝑏𝛼𝛼−1 + 𝑎𝑎1𝜅𝜅1𝐶𝐶 (13) 

Where α1=(α-2) and 1=/0  

𝐷𝐷 = 𝐵𝐵 + 𝑎𝑎−(𝛼𝛼−1)𝐶𝐶 (14) 

𝐷𝐷 = 𝜅𝜅1(𝐵𝐵 − 𝑎𝑎1𝑎𝑎−(𝛼𝛼−1)𝐶𝐶) (15) 

By solving these equations simultaneously, we find the 
required unknown constants: 

𝐵𝐵 = −(𝛼𝛼−1)(𝜅𝜅1𝑎𝑎1+1)𝐸𝐸0𝑏𝑏(𝛼𝛼−1)
(𝜅𝜅1+𝑎𝑎1)(𝜅𝜅1𝑎𝑎1+1)𝑏𝑏𝛼𝛼−1−𝑎𝑎1

 (16) 

𝐶𝐶 = (𝛼𝛼−1)(1−𝜅𝜅1)𝐸𝐸0𝑎𝑎(𝛼𝛼−1)𝑏𝑏(𝛼𝛼−1)
(𝜅𝜅1+𝑎𝑎1)(𝜅𝜅1𝑎𝑎1+1)𝑏𝑏𝛼𝛼−1−𝑎𝑎1

 (17) 

𝐷𝐷 = −(𝛼𝛼−1)(𝛼𝛼−1)𝐸𝐸0𝑏𝑏(𝛼𝛼−1)
(𝜅𝜅1+𝑎𝑎1)(𝜅𝜅1𝑎𝑎1+1)𝑏𝑏𝛼𝛼−1−𝑎𝑎1

 (18) 

And 

𝐴𝐴 = 𝐸𝐸0𝑏𝑏(𝛼𝛼−1) +
(1−𝜅𝜅1)𝑎𝑎(𝛼𝛼−1)−(1+𝜅𝜅1𝑎𝑎1)𝑏𝑏(𝛼𝛼−1)
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3. RESULTS AND DISCUSSION

In this article, we have solved a boundary value 
problem analytically by using the Laplace equation 
for NID Space. Here, we have applied four boundary 
conditions on a cylindrical shell that is made of 
magnetic material. Then we have calculated an 
electric potential due to the permeable cylindrical 
shell. Using the electric potential, we can find 
electric field. In this article we have extended the 
classical solution of electric potential in FDS due 
to the spherical shell of highly permeable material 
from Jackson [13]. Further, this solution can be 
applied for various materials. For an example, 
we can take plasma material as a host medium, 
also we can fill the cylindrical shell with plasma 
media like magnetized plasma, anisotropic plasma, 
isotropic plasma, uniaxial plasma, bi-axial plasma, 
cold plasma, hot plasma, un magnetized plasma. 
Similarly, we can also use meta materials as host 
medium as well as material between the cylindrical 
shell. The shielding effect due to the highly 
permeable material causes enough reduction in the 
field inside cylinder, even if the cylindrical shell 
is thin. Further, we have also discussed its special 
cases, (i) If its radius α approaches to zero, we find 
a solution for a uniform magnetic cylinder, (ii) as 
we allowed radius b approach to infinity, we find a 
solution for a cylindrical cavity. 

4. CONCLUSIONS

In this paper, the analytical solution has been 
calculated for the permeable cylindrical shell in non-
integer dimensional (NID) space. Considering α = 
3, the classical results are retrieved. The shielding 
effect due to the highly permeable material causes 
enough reduction in the field inside cylinder, even if 
the cylindrical shell is thin. We may apply it further 
for multiple materials like meta-materials, plasma 
etc. as the host medium and core medium. 
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Then we recover the exact solution [13] by setting α = 3 
and α1 = (α-2) that is given below: 

𝐵𝐵 = −2𝐸𝐸0𝑏𝑏2(1+𝜅𝜅1)
𝑏𝑏2  (20) 

𝐶𝐶 = 2𝐸𝐸0𝑎𝑎2𝑏𝑏2(1−𝜅𝜅1)
𝑏𝑏2  (21) 

𝐷𝐷 = −4𝐸𝐸0𝑏𝑏2

𝑏𝑏2  (22) 

Similarly, we find constant A for α=3  

𝐴𝐴 = 𝐸𝐸0𝑏𝑏2 + 2𝐸𝐸0𝑏𝑏2 𝑎𝑎2(1−𝜅𝜅1)−𝑏𝑏2(1+𝜅𝜅1)
𝑏𝑏2  (23) 

 

Special Cases 
 

For a magnetic cylinder, if we allow a → 0, we obtained 
the solution such that for the fractional-dimensional 
space.  

𝐴𝐴 = 𝜅𝜅1−1
𝜅𝜅1+1 𝐸𝐸0𝑏𝑏𝛼𝛼−1 (24) 

For Integer order 

𝐴𝐴 = 𝜅𝜅1−1
𝜅𝜅1+1 𝐸𝐸0𝑏𝑏2, 𝑓𝑓𝑓𝑓𝑓𝑓 𝛼𝛼 = 3 (25) 

In FD Space 

𝐵𝐵 = −(𝛼𝛼−1)𝐸𝐸0
𝜅𝜅1+1 , 𝑓𝑓𝑓𝑓𝑓𝑓  𝛼𝛼 = 3 (26) 

In Integer order 

𝐵𝐵 = −2𝐸𝐸0
𝜅𝜅1+1 , 𝑓𝑓𝑓𝑓𝑓𝑓  𝛼𝛼 = 3 (27) 

𝐶𝐶 = 0 (28) 

In FD Space 

𝐷𝐷 = −(𝛼𝛼−1)(𝛼𝛼−1)𝐸𝐸0
(𝜅𝜅1+1)2  (29) 

𝐷𝐷 = −4𝐸𝐸0
(𝜅𝜅1+1)2 , 𝑓𝑓𝑓𝑓𝑓𝑓  𝛼𝛼 = 3 (30) 

For the cylindrical cavity, if we allow b → , we find 

𝐵𝐵 = −(𝛼𝛼−1)𝐸𝐸0
𝜅𝜅1+1  (31) 

𝐵𝐵 = −2𝐸𝐸0
𝜅𝜅1+1 , 𝑓𝑓𝑓𝑓𝑓𝑓   𝛼𝛼 = 3 (32) 

In FD Space 

𝐶𝐶 = (𝛼𝛼 − 1)𝐸𝐸0𝑎𝑎𝛼𝛼−1 1−𝜅𝜅1
(1+𝜅𝜅1)2 (33) 

𝐶𝐶 = 2𝐸𝐸0𝑎𝑎2 1−𝜅𝜅1
(1+𝜅𝜅1)2 , 𝑓𝑓𝑓𝑓𝑓𝑓  𝛼𝛼 = 3 (34) 

In FD Space 
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(1+𝜅𝜅1)2  (35) 

𝐷𝐷 = −4𝐸𝐸0
(1+𝜅𝜅1)2 , 𝑓𝑓𝑓𝑓𝑓𝑓  𝛼𝛼 = 3 (36) 

 

3. RESULTS AND DISCUSSION 

In this article, we have solved a boundary value problem 
analytically by using the Laplace equation for NID 
Space. Here, we have applied four boundary conditions 
on a cylindrical shell that is made of magnetic material. 
Then we have calculated an electric potential due to the 
permeable cylindrical shell. Using the electric potential, 
we can find electric field. In this article we have extended 
the classical solution of electric potential in FDS due to 
the spherical shell of highly permeable material from 
Jackson [13]. Further, this solution can be applied for 
various materials. For an example, we can take plasma 
material as a host medium, also we can fill the cylindrical 
shell with plasma media like magnetized plasma, 
anisotropic plasma, isotropic plasma, uniaxial plasma, bi-
axial plasma, cold plasma, hot plasma, un magnetized 
plasma. Similarly, we can also use meta materials as host 
medium as well as material between the cylindrical shell. 
The shielding effect due to the highly permeable material 
causes enough reduction in the field inside cylinder, even 
if the cylindrical shell is thin. Further, we have also 
discussed its special cases, (i) If its radius α approaches 
to zero, we find a solution for a uniform magnetic 
cylinder, (ii) as we allowed radius b approach to infinity, 
we find a solution for a cylindrical cavity.  
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In this paper, the analytical solution has been calculated 
for the permeable cylindrical shell in non-integer 
dimensional (NID) space. Considering α = 3, the classical 
results are retrieved. The shielding effect due to the 
highly permeable material causes enough reduction in the 
field inside cylinder, even if the cylindrical shell is thin. 
We may apply it further for multiple materials like meta-
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