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Abstract: A term symbol is used to describe atomic microstate states, which give the multiplicity and total angular 
momentum of the atomic state. Russel Sauder coupling scheme is used to generate terms of equivalent and non-
equivalent electronic configurations. For equivalent electrons, the terms are calculated using Pauli’s principle, and the 
number of terms is limited and is calculated by the combination rule. The total possible electrons and total available 
electrons are used in the combination formula. In case of non-equivalent electrons, the number of terms are found by 
the permutation rule. The number of terms for equivalent electrons is less than the terms for non-equivalent electrons. 
The number of possible microstates for p2 and d5  configurations are 15 and 252 respectively. While the number of 
final microstates for 1p2p and 3d4d configurations are 36 and 100.  In the proposed study, a Python programme 
was developed that generates the microstate according to filled and half-filled subshell electronic configurations 
for equivalent, non-equivalent, and combinations of both. Examples of microstates for non-equivalent electrons of 
configuration 1s2s, sp, sd, ss, 2p3p, pd, pf, 3d4d, df, 4f5f and for equivalent electrons of configuration su, pv, dx, and  
f y are presented.

Keywords: Microstates, Term Symbols, Equivalent and Non-Equivalent Electrons, Pauli Exclusion Principle, L-S 
Coupling. 

1. INTRODUCTION

Atomic microstates are identified by a spectral term 
that specifies their multiplicity and overall angular 
momentum. Term symbols provide information 
on the spectral and magnetic properties of various 
elements [1]. These term values are helpful to 
identify coefficients of fractional parentage of 
wavefunctions of elements having complex 
structures like Praseodymium, Tantalum etc. Henry 
Russell and Frederick Saunders introduced the 
Russell-Saunders (which is abbreviated as R-S) 
scheme for the first time in 1923. Initially, it was 
used to electrons in half-filled orbits of atoms with 
lower atomic numbers since the spin-orbit coupling 
is less effective than the electrostatic effect [2]. 
However, spin-orbit coupling due to higher nuclear 
charge seems to be more important for those 
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parentage of wavefunctions of elements having 
complex structures like Praseodymium, Tantalum 
etc. Henry Russell and Frederick Saunders 
introduced the Russell-Saunders (which is 
abbreviated as R-S) scheme for the first time in 
1923. Initially, it was used to electrons in half-filled 
orbits of atoms with lower atomic numbers since 
the spin-orbit coupling is less effective than the 
electrostatic effect [2]. However, spin-orbit 
coupling due to higher nuclear charge seems to be 
more important for those elements that have a 
higher atomic number. The R-S technique is still 
useful for rare Earth elements and heavier 
transition elements. The complex spectra of 
structures containing valence electrons in distinct 
sub shells were successfully interpreted by using a 
vector model for terms that were established before 
the quantum mechanical approach [3]. The three 
vectors 𝐒𝐒⃗⃗ , 𝐋𝐋 ⃗⃗⃗  and �⃗⃗�𝐉   are produced as a result of the R-
S coupling, which is the basis for the present 
nomenclature for the specific energy level (2S+1) 
LJ, where 2S+1  is the multiplicity or spin 
multiplicity of a term, the orbital angular 
momentum vectors of the valence electrons are 
vectorially added together to form L and spin 
angular momentum vectors of valence electrons are 
vectorially summed to generate  S, and vectorial 
sum of  L and S is J. A given term produces the 
number of microstates which are simply (2S + 1) × 
(2L + 1) and by applying Hund’s rule, ground state 
term and the order of stability can be determined. 
A state of definite  J can be achieved when L and S 
coupled together and J’s allowed values range from 
|L + S| to |L – S| [4, 5]. 

𝐋𝐋 = ∑ 𝐥𝐥𝐢𝐢𝐢𝐢    (1) 

𝐒𝐒 = ∑ 𝐬𝐬𝐢𝐢𝐢𝐢    (2) 

Each term spit into (2J + 1) terms with energy 
difference proportional to the applied field 
intensity (Zeeman Effect) and a quantum number 
MJ that can have the values J, J-1, J-2, …., -J is 
used to define states. As a result,  J can take 2S + 1 
values when L ≥ S but 2L + 1 values when L  S 
and  J can only take one value when L = 0. The 
valence electrons’ energy levels may be defined if 
the possible L, S and J values are known [6]. 
Energy associated with the state of an atom taking 
part in a transition is described by an R-S spectral 
term, and  energy levels in an atom with many 
electrons are briefly described by term symbols.  

When an ion or atom is placed into a lattice, 
electronic repulsion splits the degenerate state into 
two or more states. Equivalent electrons are ones 
whose l and n values are the same such as np2, nd6, 
nf4, or nf6  configuration [7]. As a result, identical 
terms are produced  for nf4 and nf10 configurations. 
The number of microstates for the sub shell 
increases when the number of electrons in orbital 
of the incomplete sub shell increases, but the non-
equivalent electronic system produces a number of 
microstates that is much greater than that of the 
similar equivalent electronic system [8-13]. In 
2019, Javaid et al. [14] evaluated 187 spectral 
terms with 457 J values and 106 wavefunctions for 
4f2 5d2 configuration of Praseodymium II by using 
Russell – Saunders technique. Zafar et al. [15] 
determined 46 orthonormal wave functions for  4f3 
6s2 ground state configuration of Praseodymium I 
using spectral terms in 2020. 

The main purpose of our study is to develop a 
machine algorithm using the Python language to 
evaluate term symbols of equivalent and non- 
equivalent electronic configurations. This program 
provides a user input interface for saving datasets 
into the program directory. It asks either to enter 
‘0’ for equivalent electron configuration or to hit 
‘1’ for non-equivalent electron configuration. 

2. METHODOLOGY 

In this article, the term symbols and the microstates 
of filled and half-filled subshell electronic 
configurations are calculated. Microstates are the 
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states. As a result,  J can take 2S + 1 values when L 
≥ S but 2L + 1 values when L < S and  J can only 
take one value when L = 0. The valence electrons’ 
energy levels may be defined if the possible L, 
S and J values are known [6]. Energy associated 
with the state of an atom taking part in a transition 
is described by an R-S spectral term, and  energy 
levels in an atom with many electrons are briefly 
described by term symbols. 

When an ion or atom is placed into a lattice, 
electronic repulsion splits the degenerate state into 
two or more states. Equivalent electrons are ones 
whose l and n values are the same such as np2, nd6, 
nf4, or nf6  configuration [7]. As a result, identical 
terms are produced  for nf4 and nf10 configurations. 
The number of microstates for the sub shell 
increases when the number of electrons in orbital 
of the incomplete sub shell increases, but the non-
equivalent electronic system produces a number 
of microstates that is much greater than that of 
the similar equivalent electronic system [8-13]. 
In 2019, Javaid et al. [14] evaluated 187 spectral 
terms with 457 J values and 106 wavefunctions for 
4f2 5d2 configuration of Praseodymium II by using 
Russell – Saunders technique. Zafar et al. [15] 
determined 46 orthonormal wave functions for  4f3 
6s2 ground state configuration of Praseodymium I 
using spectral terms in 2020.

The main purpose of our study is to develop 
a machine algorithm using the Python language 
to evaluate term symbols of equivalent and non- 
equivalent electronic configurations. This program 
provides a user input interface for saving datasets 
into the program directory. It asks either to enter ‘0’ 
for equivalent electron configuration or to hit ‘1’ for 
non-equivalent electron configuration.

2. METHODOLOGY

In this article, the term symbols and the microstates 

of filled and half-filled subshell electronic 
configurations are calculated. Microstates are the 
numerous ways in which electrons can be arranged 
in a set of orbitals, each of which has a unique 
energy. The total number of microstates (W) of a 
system is the total number of definite arrangements 
for “e” number of electrons to be placed in “n” 
number of possible orbital positions. The number 
of microstates for equivalent electrons can be 
calculated by using a simple expression:

where e denotes the number of electrons, and n is 
the total available orbitals [16].

Spectral Term corresponds to energy states and 
provides knowledge of angular momenta. For the 
non-equivalent electrons, there are more available 
microstates than for the equivalent electrons. Some 
of the available microstates for non-equivalent 
electrons are forbidden for equivalent electrons 
because of Pauli’s principle [17, 18]. In Russell 
Saunders Coupling  Scheme, term symbols are 
provided by (2S+1) LJ, where S shows the total spin 
angular momentum, L denotes the orbital angular 
momentum and J symbolizes the total angular 
momentum [19-21]. L can have the following 
values in a term symbol: 0, 1, 2, 3, 4, 5, 6, 7, 8, 
9,…, and the English capital letters “S, P, D, F, G, 
H, I, K, K” are used to represent each value of L. 
2S+1 denotes the spin multiplicity of the spectral 
terms like singlet, doublet, triplet and so on. The 
Russell-Saunders technique makes the assumption 
that spin–orbit coupling < orbit-orbit coupling < 
spin-spin coupling [22, 23].

A computer algorithm was designed that 
generates terms of equivalent electrons and non 
equivalent electrons of any configuration. A user 
inputs either ‘0 and 1’ for generation of microstates 
of equivalent and non-equivalent electrons. An 
algorithm flowchart has been given in Figure 1. It 
further requires orbital numbers (e.g., 0, 1, 2, 3 for 
s, p, d, f respectively) as input. These inputs must 
be given for the task’s completion, or it may lead to 
the failure of the program. Permitted terms for the 
configuration of su, pv, dx, and  f y where u=1 and 
2, v = 1 to 5, x = 1 to 9 and  y =1 to 13 are found 
by considering these equivalent configuration. 
The configurations 1s2s, sp, sd, ss, 2p3p, pd, pf, 
3d4d, df, 4f5f have non-equivalent electrons. Term 
symbols for these non equivalent electronic system 
are generated by calculating total orbital angular 
momentum and total spin angular momentum. 
For non equivalent electrons, Pauli’s Exclusion 
Principle is not taken into account [24, 25]. 
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numerous ways in which electrons can be arranged 
in a set of orbitals, each of which has a unique 
energy. The total number of microstates (W) of a 
system is the total number of definite arrangements 
for “e” number of electrons to be placed in “n” 
number of possible orbital positions. The number 
of microstates for equivalent electrons can be 
calculated by using a simple expression: 

𝐖𝐖 = 𝐧𝐧!
𝐞𝐞! (𝐧𝐧 − 𝐞𝐞)! …………(𝟑𝟑) 

where e denotes the number of electrons, and n is 
the total available orbitals [16]. 

Spectral Term corresponds to energy states and 
provides knowledge of angular momenta. For the 
non-equivalent electrons, there are more available 
microstates than for the equivalent electrons. Some 
of the available microstates for non-equivalent 
electrons are forbidden for equivalent electrons 
because of Pauli’s principle [17, 18]. In Russell 
Saunders Coupling  Scheme, term symbols are 
provided by (2S+1) LJ, where S shows the total 
spin angular momentum, L denotes the orbital 
angular momentum and J symbolizes the total 
angular momentum [19-21]. L can have the 
following values in a term symbol: 0, 1, 2, 3, 4, 5, 
6, 7, 8, 9,…, and the English capital letters "S, P, 

D, F, G, H, I, K, K" are used to represent each value 
of L. 2S+1 denotes the spin multiplicity of the 
spectral terms like singlet, doublet, triplet and so 
on. The Russell-Saunders technique makes the 
assumption that spin–orbit coupling < orbit-orbit 
coupling < spin-spin coupling [22, 23]. 

A computer algorithm was designed that 
generates terms of equivalent electrons and non 
equivalent electrons of any configuration. A user 
inputs either ‘0 and 1’ for generation of microstates 
of equivalent and non-equivalent electrons. An 
algorithm flowchart has been given in Figure 1. It 
further requires orbital numbers (e.g., 0, 1, 2, 3 for 
s, p, d, f respectively) as input. These inputs must 
be given for the task’s completion, or it may lead 
to the failure of the program. Permitted terms for 
the configuration of su, pv, dx, and  f y where u=1 
and 2, v = 1 to 5, x = 1 to 9 and  y =1 to 13 are 
found by considering these equivalent 
configuration. The configurations 1s2s, sp, sd, ss, 
2p3p, pd, pf, 3d4d, df, 4f5f have non-equivalent 
electrons. Term symbols for these non equivalent 
electronic system are generated by calculating total 
orbital angular momentum and total spin angular 
momentum. For non equivalent electrons, Pauli’s 
Exclusion Principle is not taken into account [24, 
25].
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3. RESULTS AND DISCUSSION

The filling of electrons in a shell depends on the 
nature of electrons, the electrons having same 
principal quantum number and same orbital 
quantum number face the limitations in filling 
the energy level slots, As they have to follow the 
Pauli’s principle, no two electrons having same 
four set of quantum number can occupy the same 
energy level. Hence the number of microstates in 
case of equivalent electrons are less than that are 
available for non-equivalent electrons.

We used the theory of the coupling of orbital and 
spin angular momenta. Using a Python programme, 
we evaluated the term symbols for both equivalent 
and non-equivalent electrons.These configurations 
su, pv, dx, and f y have equivalent electrons (where 
u=1 and 2, v = 1 to 5, x = 1 to 9 and y =1 to 
13) and the microstates for these configurations are 
calculated by our program and are given in Table 1. 
Moreover, the configurations 1s2s, sp, sd, ss, 2p3p, 
pd, pf, 3d4d, df, 4f5fhave non-equivalent electrons, 
the microstates for these configurations are found 
by using combination rule for two non-equivalent 
orbitals. Table 2. shows the some of the microstates 
for two non-equivalent orbitals. 

For example l1 = 1, l2 = 1 then L= 2, 1, 0 using 
L = |l1 + l2|,…, |l1 - l2| so the states D, P, and S will 
be generated. To find the multiplicity, we find the Fig. 1.    Algorithm flowchart
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= 1 to 5, x = 1 to 9 and y =1 to 13) and the 
microstates for these configurations are 
calculated by our program and are given in 
Table 1. Moreover, the configurations 1s2s, sp, 
sd, ss, 2p3p, pd, pf, 3d4d, df, 4f5f have non-
equivalent electrons, the microstates for these 
configurations are found by using combination 
rule for two non-equivalent orbitals. Table 2. 
shows the some of the microstates for two non-
equivalent orbitals.  

For example l1 = 1, l2 = 1 then L= 2, 1, 0 
using L = |l1 + l2|,…, |l1 - l2| so the states D, P, 
and S will be generated. To find the multiplicity, 
we find the total spin generated by two electrons 
each having spin half. The total spin will be 1 
and 0, that would lead to a multiplicity of 3 and 
1. Therefore, the terms generated by two non-
equivalent p-electrons are 3D, 3P, 3S, 1D, 1P, and 
1S. The GitHub program repository can be 

Table 1. Term symbols for equivalent electrons

Orbitals No. of  
Electrons

Total No. of  
Microstates Final No. of Microstates Term Symbols

S 1 2 (0, 0.5) 2S
2 1 (0, 0.0) 1S

P 1 6 (1, 0.5) 2P
2 15 (2, 0.0), (1, 1.0), (0, 0.0) 1D, 3P, 1S
3 20 (2, 0.5), (1, 0.5), (0, 1.5) 2D, 2P,  4S

D 1 10 (2, 0.5)] 2D
2 45 (4, 0.0), (3, 1.0), (2, 0.0), (1, 1.0), 

(0, 0.0)
1G, 3F, 1D, 3P, 1S

3 120 (5, 0.5), (4, 0.5), (3, 1.5), (3, 0.5), 
(2, 0.5), (2, 0.5), (1, 1.5), (1, 0.5)

2H, 2G, 4F, 2F, 2D, 2D, 4P, 2P

F 1 14 (3, 0.5) 2F
2 91 (6, 0.0), (5, 1.0), (4, 0.0), (3, 1.0), 

(2, 0.0), (1, 1.0), (0, 0.0)
1I, 3H, 1G, 3F, 1D, 3P, 1S

3 364 (8, 0.5), (7, 0.5), (6, 1.5), (6, 0.5), 
(5, 0.5), (5, 0.5), (4, 1.5), (4, 0.5), 
(4, 0.5), (3, 1.5), (3, 0.5), (3, 0.5), 
(2, 1.5), (2, 0.5), (2, 0.5), (1, 0.5), 
(0, 1.5)

2L, 2K, 4I, 2I, 2H, 2H, 4G, 2G, 
2G, 4F, 2F, 2F, 4D, 2D, 2D, 2P, 
4S
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total spin generated by two electrons each having 
spin half. The total spin will be 1 and 0, that would 
lead to a multiplicity of 3 and 1. Therefore, the 
terms generated by two non-equivalent p-electrons 
are 3D, 3P, 3S, 1D, 1P, and 1S. The GitHub program 
repository can be accessed at https://github.com/
AhmedAliRajput/Term-Symbol-Calculation.git.
 
4. CONCLUSIONS

A computer program is developed in Python 
to generate term values of various electronic 
configurations of atoms and ions. Russell Saunder 
coupling scheme is implemented for equivalent, 
non-equivalent, and combinations of both electrons 
in open and close shells of atoms and ions. It is very 
complicated to calculate terms using pen and paper, 
even for three equivalent electrons in a d shell. With 
the help of this program the task can be completed 
in a few seconds. This term calculator is useful for 
students working in the field of spectroscopy or 
quantum chemistry. For example, if students require 
to determine the microstates of np2 configuration 
that is the case of equivalent electrons, generates 
3 microstates that accommodates 18 electrons, 
wherease for np-(n+1)p configuration of non-
equivalent electrons, program will generate 6 
microstates that accommodate 36 electrons. If 
microstates for higher orbitals is to determine, it 
would cost a lot of time, therefore, this programs 

would be handy tool to deal with such lengthy 
calculations. The code can be downloaded from 
https://github.com/AhmedAliRajput/Term-
Symbol-Calculation.git.
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