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Abstract: A highly complex nonlinear Reactor Regulating System (RRS) of Canadian Deuterium Uranium Pressurized
Heavy Water Reactor (CANDU-PHWR) based Nuclear Power Plant (NPP) simulated in the present research.
The internal design of RRS is secured and vendor controlled which is embedded in AC-132 Programmable Logic
Controller (PLC). Therefore, the problem of the identification of the RRS controller model is addressed. A data-driven
Fractional Order Nonlinear MIMO Hammerstein Model (FO-NC-MIMO-HM) of NPP is identified using an Adaptive
Immune Algorithm (AIA) based on a Global Search Strategy (GSS) and Auxiliary Model Recursive Least Square
Method (AMRLSM). Parameters of FO-MIMO-HM are identified using Innovative Real-Time Plant Operational Data
(IRTPOD). The original PLC-based controller is replaced with a new Fractional Order Convolutional Neural Network
(FO-CNN) based Fractional Order Nonlinear Controller (FO-NC). Therefore, a visual Simulator is developed for
detailed modeling, control, simulation, and analysis of the proposed design scheme for RRS in Visual Basic (VB)
Software. The performance of the proposed design scheme is tested and validated for different modes of RRS against
benchmark data obtained from Plant Data Recorder (PDR) and found in close agreement well within the design
bounds.

Keywords: Fractional Order, Convolutional Neural Network, Nonlinear Control, MIMO System, Visual Basic,
Simulator, Reactor Regulating System, CANDU-PHWR.

1. INTRODUCTION designed using multiple DE strategies by Qiuzhen
et al. [4]. An attempt is made using subspace
identification for FO Hammerstein systems by

Zeng et al. [5]. An iterative method is devised for

The reactor regulating system is a discrete logic
base multivariable reactor power controller. This

controller uses various inputs from primary and
secondary side of CNADU-PHWR NPP. An
auxiliary least squares identification method for
Hammerstein model is discussed by Feng et al.
[1]. ARX based LS algorithm is developed for
multivariate output system by Qinyao et al. [2]. The
concept of adaptive immune genetic algorithm is
introduced for multivariable system using global
optimization by Dai et al. [3]. Later an adaptive
immune inspired multi-objective algorithm is

online FO and parameter identification of system
by Oliver et al. [6]. A parameter identification
method for FO Hammerstein systems is formulated
by Zhao et al. [7]. A FO Hammerstein state space
model is developed for nonlinear dynamic system
using input-output measurement data by Rahmani
et al. [8]. A system identification method is
suggested for hybrid fractional order Hammerstein-
Wiener model in continuous time domain by Allafi
et al. [9]. A recursive identification approach
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is chosen for FO Hammerstein model based on
Adaptive Differential Evolution with the Local
Search strategy by Jin et al. [10]. Later, a real time
semantic segmentation network is introduced using
the concept of Proportional Integral Derivative
(PID) controller algorithm by Xu et al. [11]. A
computer vision control based Convolutional
Neural Network- Proportional Integral Derivative
(CNN-PID) scheme is devised for mobile robot
by Farkh et al. [12]. Research is further explored
in which a PID controller approach is adopted for
stochastic optimization of DNN based systems by
An et al. [13]. Further research is addressed for
CNN back propagation neural network optimized
by a fractional order gradient method by Taresh
et al. [14]. An investigation is performed for the
realization and comparative analysis of fractional
order controllers using different discretization
techniques by Calderon [15]. A convolutional
neural network based on FO order momentum term
is trained and tuned by Kan et al. [16]. A fractional
order integral sliding mode controller is designed
for Pressurized Water Reactor (PWR) type NPP by
Surjagade et al. [17].

In this research work, a new fractional order
convolutional neural work based fractional order
nonlinear sliding mode reactor power controller
is designed for a nonlinear MIMO model of
CANDU-PHWR NPP. The suggested methodology
is the new algorithm which is synthesized for the
first time in Visual Basic for the NPP with special
emphasis on CANDU-PHWR type nuclear power
with state-of-the-art Graphical User Interface
(GUI) for modeling and controller design. The
proposed scheme provides optimal solution with
fast convergence and stability. The FO gradient
method is chosen to enhance the dynamic
significance of neural parameters for CNN. The
fractional order nonlinear sliding mode controller is
used for fast convergence and stability and is much
better than conventional sliding mode controller
because it offers minimum or smaller steady state
error and the control law is more flexible due to the
variable order of the fractional term with a great
advantage of scalability of the fractional order to
the sliding mode surface. The proposed design is
a novel design with a coupled FO convolutional
neural network and FO-SMC for a fractional order
multivariable nonlinear model of CANDU-PHWR
reactor regulating system optimized by AIA based
on a GSS and AMRLSM.

2. MATERIALS AND METHODS
2.1. Reactor Regulating System

The reactor regulating system (RRS) uses three
type reactivity mechanisms. One is fine reactivity
insertion mechanism called moderator level
variation method while two are coarse reactivity
insertion mechanism called absorber rod method
and booster rod method. Both coarse reactivity
insertion method operates in a specific moderator
level band. These all methods in turn are responsible
for reactor power level change from 0% to 100%.

The reactor regulating system is designed on five
control modes such as:

1. SD mode
2. ML mode
3. LL mode
4. NP mode
5. SPmode

These modes work in parallel as group of overrides.
Thus, a mode controlling low power is always
backed up by the modes ready to control high power
levels. The automatic mode reductions provided in
the event of loss of permissive for the activated
mode. In addition, three overrides are present in all
modes.

1. The high rate of log power override also called
the rate log N override.

2. The Neutron power override also called the
high linear N override.

3. The high moderator level override.

The reactor regulating system is made by CEGLEC
ACEC Company of Belgium. This is a 186-machine
consisting of bus driver, memory expander,
Ethernet (LN1, LN2, and LN3) each of 256 Kbps.
Its operating system is RNM-86 based on COGITO
configuration.

2.2. CANDU-PHWR Modeling

The reactor regulating system is a multivariable
CANDU power control system. It is the most
important, critical and most complex control
system of CANDU-PHWR type NPP. It is
coupled with many other important systems of
nuclear power plant. Various parameters/symbols
and variables used hereafter in the process
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of RRS modeling are defined in Annexure I.

a, are variable FO of differential p and integral
[, operators used for the model identification of the
reactor regulating system. In system identification,
the first step is to use AIA based on a GSS called
AIAGS for initialization. Once the coefficients are
calculated then second step is to use these model
coefficients to identify the actual or true ones of
FO-NC-MIMO-HM using AMRLSM. The AIAGS
algorithm which is an intelligent optimization
algorithm consists of stimulation function, mutation
function and simulated annealing function [4].

fx;) = min fln (t),2,m,M,2,6,8,y) (1)

Subject to the linear constraints:

gr(®*) =0
y{E)E = )T

Where x, is i individual of population and y(¢) is
a variable vector, f(y(¢) is the objective function
or cost function, y(t)k’m‘”‘ is the upper bound of
variable (¢ )kand g(y(®*)is the inequality
constraint of output variable in an intelligent
optimization problem.

Fractional order HM is a nonlinear fractional order
model consisted of cascaded fractional order static
nonlinear model and fractional order dynamic
linear model. The fractional order dynamic linear
model can be defined as:

Yielt) = Gty " + Graud +... +Gr il (2)

The static nonlinear model can be defined as [8]:
ugt = apfo1 (Up(0)) + ap o fp 2 (Up (D) +.. .o

a5 fop(Up(2)) (3)

The fractional order Hammerstein model can be
modeled as:

Vie(t) = G quy + G,;J:u:+...+5,;qup 4)

The dynamic linear model with Gaussian White
Noise can be defined as:

YN () = () + £(t) (5)

Now, with Gaussian White Noise, the auxiliary
model is computed as:

AM oy AM. AMNL | ~AM, AMNL AM_ AMNL
¥ = Gy Uy + Gy 5 U5 +...+£F,{Jp Uy

(6)

The static nonlinear model can be modified as:

ug.MNL- il ﬂ‘;f fp‘q:w {u;”‘" N+ ﬂﬂ: fp“_];w {ug"" tH+......

+afi A (¥ (1) o

The fractional order Auxiliary Hammerstein model
can be modeled as:

AM AM AM
Yielt) = Grauf™ + G up™ 4. +G o ud™ (8)

Now, by using the Recursive Least Square Method,
the value of model parameter vector 0, and the
value of auxiliary model parameter vector H‘,f‘” are
estimated using input-output data and defining a
cost function in terms of 8. Then, using the accurate
values of coefficients, the value of fractional order
of auxiliary model a is estimated by minimizing
another cost function defined in terms of « [2]. The
accuracy of the estimated model is computed using

Mean Square Error (MSE).

2.3. Fractional Order Convolutional Neural
Network Modeling

The fractional order deep convolutional neural
network (FO-CNN) is a four-layer network. One is
input layer, two convolution layers and one output
layer. The convolution layer is an important part
of FO-CNN and its main function is to extract
dynamic modes of transient behavior. The two
convolution layers have been chosen depending
on the complexity of problem, size of dataset and
specific architecture being used. However, there
is no fixed number of layers that is optimal for all
tasks. The output of FO-CNN is given as [14]:

£ = folea) = wpea + by )

The weights and biases are optimized using
fractional order gradient method [16].

2.4. Fractional Order Nonlinear Controller
Modeling

Now, FO-SMC is modeled as fractional order
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nonlinear controller. The novel fractional order
siding surface can be designed for fractional order
nonlinear system as:
: =

S=hoD} e+ hyD;“Hed (10)
Where,

H = diag(hy, hs,.-...., 0.) (11)
2.5. Coupling Between FO-CNN and FO-NC

Now, the weights and biases described in equation
(9) are updated as:

1 .
Wyrw =1r—;f;}D[‘,u-' (12)
il
bygw = b‘ahuﬂéb (13)

Now, the weights and biases described in equation
(9) are calculated as:

REEWS? =S¢ (14)

bh = hoI®S, (15)

The modeling error vector given as:
A=A A A AT (16)

Where A is the modeling error in each output
variable affected by noise which is implemented
using the concept of Gaussian White Noise. In the
subsequent derivation, the dealing of modeling
error in terms model uncertainties are described in
detail.

The output of FO-CNN without any Gaussian
White Noise is the ideal behavior which is given as:

Ideal _ ,, Jdeal Ideal
5 =wy £+ by 17

The uncertainty is addressed in terms of noise in
the modeling which is responsible for uncertain
dynamics in plant operation and control. Therefore,
the lumped noisy parameters can be modeled as:

glumped _ “,é:ismgj + bédam + A (18)

The estimated noise error function is given as:
= glumped _ o

£
&= (wp™ —wo)er + (bp™" — bo)+4  (19)

The error weights and biases matrices are given as:

W, = 1—v§d§a"— W, (20)
bo = g™ — by 21)

Now, equation (19) becomes:
E=1ilge,+ by +4 (22)

The Lyapunov function can be defined as:
V= —5T5+ T..II'I.-\. Z{ “T}} +— ﬁbbl} bu (23)

The control law can be deduced from the following
inequality as:

hoDEV < ST (e + He ) +1,, ) (05 ) hoDE )

b
+T]|b bl} |i|.l'|} D:.rbu (24)

The error dynamics of FO-NC is given as:

Referance

i }"JfM N }_‘k ., Reference

el JI-‘,{ = (25)

On modifying equation (24) based on equation (22)
and hence on simplifying using equation (25) with
an assumption that Caputo fractional derivative for
a constant is zero, the desired FO-CNN based FO-
NC control law is given as:

(j::'af erence _ HEE) _i4 (?}S : KSMCHH

(26)

ugyy(t) = (G r:‘;)

2.6. Controller Simulator Development

The controller simulator is developed in Visual
Basic (VB) 6.0. VB supports well for event driven
programming. In GUI various active X controls are
designed dedicated to specific functions. For single
and multiple graphs, tee chart active X control is
used. As power Regulating system run on different
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sample time intervals, so timer control is used to
show real time simulation of the transients scenarios.
But for long time transients, fast simulation options
are available with multipliers of 2, 5, 10, and 25.

3. RESULTS AND DISCUSSION

The entire synthesis of reactor regulating system is
carried out in closed loop in the subsequent sections.

3.1. Design Analysis of Proposed Configuration
and Simulator Development

The proposed designed scheme of FO-CNN-FO-
NC based reactor regulating system is shown in
Figure 1. The proposed framework is composed
of CANDU-PHWR type nuclear power plant,
structure of existing reactor regulating system,
proposed modeling and controller synthesis scheme
in testing and evaluation phases. The testing loop
incorporates the estimated model and proposed
controller while the validation loop incorporates
the actual plant and the proposed controller. There
are five set points for five different operational and
control modes of nuclear power plant for RRS. Each
control mode represents a sub-controller in RRS
design. It takes several inputs from the plant and
generates various control and output signals which
are defined in detail in section 2.2. As reactor power
increases from 0% to any desired power level or

-

Fig. 1. Proposed configuration of FO-CNN-FO-NC
based reactor regulating system.

maximum up to 100%, the modes are configured
sequentially, and signals are generated accordingly
as the interlocks are met.

The proposed controller design scheme is shown
in Figure 2 for neutron power mode as example
for better understanding of problem formulation.
Error and error rate signals are specially design to
cater the requirements of proposed control design
scheme.

The GUI for controller and simulation
configuration is shown in Figure 3. Different GUI
features such as mode selection, analysis selection,
mode comparison, transient analysis, transient
initialization schemes, online parameter adjustments
and simulator administrative controls are provided
in Figure 3. The transfer functions are solved using
discrete factional order Tustin Approximation [15]
as shown in Figure 4. Recursive solver uses previous
value of input, output variables and previous value
of output variable with sample time.

There are three different type of reactivity insertion
mechanism. Booster rods method is one of the
coarse power transient mechanisms as shown in
Figure 5. More the booster rods inserted in the
reactor core more will be power generated as
introduces positive reactivity.

Fig. 2. Design configuration of FO-CNN-FO-NC in
neutron power mode.
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Fig. 3. GUI for controller and simulation selections.
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Absorber rods method is another coarse power
transient mechanism as shown in Figure 6. More
the absorber rods inserted in the reactor core lesser
will be power generated as introduces negative
reactivity.

The GUI for the selection of transient is
shown in Figure 7. Three transient mechanisms
are provided for the insertion or withdrawal of
reactivity depending on the type and direction of
motion.

The GUI for the selection and design of
standard and patent transients is shown in Figure
8. Reactivity transient selection menu is one of
the unique features of the simulator. Once the type
reactivity mechanism is chosen, the detailed menu
will pop up for parametric adjustment and transient
design.

~INPUT DATA
Pivious Value of X (X 1-T) r

Cument Value of X p<0) [7—

Prvious Value of ¥ Y +T) fm

Time Intesval (T) [T

- COMMAND OFTIONS

BEALT0R
o

 COMMAND OPTIONS
| Ear

SET SET
BHTLAL FIHAL
AL LIE

Fig. 6. GUI for absorber rod transients.

3.2. Evaluation of Proposed Controller Design
for Moderator Level Controller

The proposed closed loop system is initialized
using functions programmed using equation (1).
The initialization of moderator level controller in
reactor regulating system is shown in Figure 9.

The dynamics of existing and proposed RRS in
the simulation framework is designated as Plant
Data Recorder (PDR) and Simulator respectively
and hence act like legends for entire simulator
development and display system. Initialization
is performed at 35 inches of moderator level and
various parameters of interest are observed against
it. New controller is initialized in moderator level
mode as shown in Figure 9.

Now, the transient simulation of moderator level
controller is shown in Figure 10. A special plant
operational transient is configured in moderator
level mode and various parameters of interest are
visualized. There is a high level of fluctuations on
parameters X04 and X05 but final control demand
signal YOIl and X02 are tracking excellently.
This proves the successful realization of proposed

Moderatoer Level and
Low Log Modes

[CHODERATOR LEVEL ]
CONTROL RODS |

BOO0STER RODS |

Fig. 7. GUI for reactivity transient selection of
moderator level mode in low power operation.
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Fig. 8. GUI for selection and design of transients for
moderator level controller.
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Fig. 9. Initialization of moderator level controllers.

moderator level controller and optimal design
performance of parameters.

3.3. Evaluation of Proposed Controller Design
for Neutron Power Controller

Now, the dialed reactor power is dropped from 70%
to 30% via step change as shown in Figure 11. In
this simulation scenario, a transient is configured
in neutron power mode and various parameters
of interest are visualized. In neutron power mode,
under step down power transient, the dynamics of
X08, Y061, Y083, Y112 and X12 with proposed
scheme follows the benchmark transient data. This
dynamic behavior proves the excellent trackability
of proposed controller. This optimal performance
is achieved due to a transient followed by step
change in dialed reactor power. In this transient, the
requirements or constraint imposed on the controller
is that power ramp down for X08, Y061 and X12
must not exceed -0.25 % RP/sec. This proves the
successful realization of proposed neutron power
controller and design parameters are optimal in

saEHsERAREE
[ EEERE R 8

> SHUATOH
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20

ML

Li -

«ENNBEEIREH

Fig. 10. Transient simulation of multiple parameters for
moderator level controller.

performance in high power operation of the plant.

3.4. Evaluation of Proposed Controller Design
for Steam Pressure Controller

The front panel design for steam pressure mode
is shown in Figure 12. The front panel design for
steam pressure mode is meant for steam pressure,
steam flow, primary system temperatures and
primary system flows on representative channels.

A special plant operational transient is configured
in steam pressure mode as shown in Figure 13 and
various parameters of interest are observed. There is
a very smooth tracking and very close performance
of X08,Y061, X07,Y112 and X12 is achieved. This
proves the successful realization of proposed steam
pressure controller and optimal design performance
of parameters.

The zoomed simulation comparison of X04 and
XO05 are shown in Figures 14 and 15 respectively.
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Fig. 11. Simulation of multiple parameters for neutron
power controller.
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Fig. 12. Front panel design for steam pressure mode.
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Fig. 13. Transient simulation of multiple parameters for
steam pressure controller.
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Fig. 14. Simulation of X04 in steam pressure mode.

The comparison is assessed based on the degree
of relative errors in distribution of performance
and found 0.43% and 0.42% respectively. The
optimized design parameters of model and
controllers’ framework are obtained using proposed
design modeled in equations (1) through (25). The
optimized parameters are tabulated in Table 1.

4. CONCLUSIONS

The reactor regulating system of CANDU-
PHWR is composite complex power controller of
nuclear power generating station. A data driven
nonlinear MIMO model of NPP is developed with
desired parameters of interest. Model parameters
are optimized using adaptive algorithms.
Constrained fractional order CNN based FO-SMC
is synthesized for RRS. Controller parameters
are optimized for five modes of plant operation.
Synthesized controller is evaluated and compared
with  permissives, interlocks, compensators
and conventional controllers oriented RRS. A
simulator is developed with visual environment

SIHULATHIN OF REQUIRED TRASIEHT

[TREI T

TIRITRITRITRITRIN

TME fREC)

Fig. 15. Simulation of X05 in steam pressure mode.

Table 1. Optimized parameters of model and controllers.

Parameters Values Parameters Values
Q 1 4, 20
S 0.11 C 3
y 0.21 D 7
Vi; 0.64 A 0.333
MSE 0.012 ", 14
P 2 - 16
A, 10 K. 7.7

for parametric analysis and simulation. Simulator
is developed with advanced features of zooming,
steady state analysis, transient analysis, customized
transient design, fast simulation, multiple plots and
online controller parameters adjustment. Therefore,
the proposed control design scheme exhibits much
robust performance against the model uncertainties
and online controller parameters adjustments.
The effectiveness and robustness of the proposed
manifolds are proved by different configured modes
of control to verify their efficacy. This simulator is
a step towards other plant systems, controllers and
new configuration schemes for advanced research
and development in nuclear industry.
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Annexure 1. Symbols/parameters of RRS.

Parameters Definitions

X02 Moderator Level Controller Output

X03 Low Log Controller Output

X04 Dynamic Power Mismatch Compensator Output

X05 Transient Compensator Output corresponding to Reactivity Effects

X07 Compensator Power Correction Factor corresponding to Moderator Level and Power Mismatch of
Thermal and Actual Reactor Power

X08 Turbine Power

NSETD /X09  Demanded Reactor Power

X081 Rate of Change of Reactor Power

X12 Reactor Power corresponding to Steam Pressure

YO11 Equilibrium Helium Valve Position

Y061 Actual Reactor Power

Y122 Compensated Rate corresponding to Steam Pressure

U, Equilibrium Helium Valve Position for Shutdown Mode

u,, Equilibrium Helium Valve Position for Moderator Level Mode

u, Equilibrium Helium Valve Position for Low Log Mode

u, Equilibrium Helium Valve Position for Neutron Power Mode

Ug, Equilibrium Helium Valve Position for Steam Pressure Mode

Upes Control Signal of Reactor Regulating System

Uiy Control Signal of Fractional Order Convolutional Neural Network based Fractional Order Nonlinear
Controller

S Sliding Surface

E Gaussian White Noise Compensation Vector

£, Vector of Feature Map of Convolutional Kernel Layer 2

W, Weights of Output Layer

b, Biases of Output Layer

o, Variable Fraction Orders

m Current Iterations

) Total Iterations

) Design Parameter for Current Population

S Parameter Estimation Error

Y:; Adaptive Operator

y Adaptive Variable for Mutation

P Number of Inputs of FO-MIMO-HM

L Number of Outputs of Static Nonlinear Model

K Output Variables of FO-MIMO-HM



Fractional Order Convolutional Nonlinear Controller

L-th Output of Nonlinear Model

L-th Output of Linear Model

Coefhicients

Basic Functions

Fractional Order Transfer Function of Dynamic Linear Model

Fractional Order Transfer Function of Hammerstein model

Fractional Order Transfer Function of Auxiliary Hammerstein model

Positive Constant
Learning Rate associated with Weights
Learning Rate associated with Biases

Sliding Mode Controller Switching Gain

Design Positive Constant

First Positive Odd Number

Second Positive Odd Number
Number of Convolution Layers = 1, 2
Number of Feature Maps = 1,2, ..., Ap

Number of Convolution Kernels ina Layer=1, 2, ....,n

Amount of Kernels in a Layer
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