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Abstract: The study of nonlinear equations and their effective numerical solutions is crucial to mathematical research 
because nonlinear models are prevalent in nature and require thorough analysis and solution. Many methodologies 
have been developed to obtain the roots of nonlinear equations, which have significant applications in several areas, 
especially engineering. However, all of these methods have certain challenges. The development of efficient and 
effective iterative methods is, therefore, very important and can positively impact the task of finding numerical 
solutions to many real-world problems. This paper presents a thorough analysis of a numerical approach for solving 
nonlinear equations using a recently proposed technique, which is a modification of the Regula-Falsi and Bisection 
numerical methods. The purpose of this work is to provide a novel and effective approach to solving nonlinear 
equations. The iterative technique for solving nonlinear equations, which has been examined in many scientific and 
technical domains, is based on the conventional Bisection and Regula-Falsi methods. The proposed approach for 
finding roots of nonlinear equations achieves second-order convergence. The performance of the newly developed 
technique was compared with conventional Bisection, Regula-Falsi, Steffensen, and Newton-Raphson methods, and 
its convergence was validated using several benchmark problems with different iterations. The results showed that, 
in terms of iterations, the newly developed method performed better than the traditional Bisection, Regula-Falsi, 
Steffensen, and Newton-Raphson approaches. This supports the credibility of the recently developed method and 
offers promise for future studies aimed at further refinement. MATLAB R 2021a is used for numerical results. Besides 
this, the newly developed technique also has certain limitations. For instance, it cannot cover all possible types of 
nonlinear equations. Further testing on a broader range of functions, particularly those arising from specific scientific 
and engineering applications, would be valuable. Additionally, our current study focuses on one-dimensional root 
finding. Extending the approach to systems of nonlinear equations is an important direction for future research. 
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1.    INTRODUCTION

Mathematical equations that model real-world 
situations are often either linear or nonlinear in 
nature. The solution to the given problem can 
be found in the roots of these equations. Since 
obtaining an accurate solution is essential for 
problem-solving, an efficient numerical technique 
for root-finding problems is crucial in mathematical 
computations. The “root-finding problem” is to 
identify root of the equation , where 

is a function of single variable. Finding root 

is challenging problem in many fields, such as 
engineering, chemistry, agriculture, biosciences. 
This is because formulas for problems involving 
real-world issues will always include unknown 
variables. Solving challenges related to identifying 
an object’s equilibrium position, a field’s potential 
surface, and the quantized energy level of a confined 
structure are pertinent scenarios in the subject of 
physics [1].

In reality, root-finding problems arise when 
determining an unknown variable that appears 



implicitly in scientific or engineering formulas, 
as reported by Ahmad [2]. The development of 
optimal eighth-order derivative-free methods for 
multiple roots of nonlinear equations was discussed 
by Sharma et al. [3]. Several numerical techniques 
exist for solving root-finding problems, including 
the Regula-Falsi method, Bisection method, Secant 
method, Newton-Raphson method, and fixed-
point iteration. These methods exhibit various 
convergence rates, such as linear and quadratic, 
with higher-order methods converging more 
quickly, as discussed by Ehiwario and Agnamie [4]. 
The solution of nonlinear models in engineering 
using a new sixteenth-order scheme and their basin 
of attraction was examined by Jamali et al. [5].

Numerous studies have been conducted to 
identify the most effective methods for solving 
root-finding problems. For example, Frontini 
and Sormani [6] explored this topic extensively. 
Similarly, Noor et al. [7] analyzed the Secant, 
Newton-Raphson, and Bisection methods before 
the research by Ehiwario and Agnamie [4] to 
determine which approach required fewer iterations 
when solving a nonlinear equation with a single 
variable, as noted by Srivastava and Srivastava 
[8]. Previous research has employed various 
numerical techniques, such as fixed-point iteration 
and Regula-Falsi methods, to address root-finding 
problems, as shown in the studies by Ebelechukwu 
et al. [9] and Issac et al. [10]. Additionally, Behl 
et al. [11] discussed a new higher-order optimal 
derivative-free scheme for multiple roots.

Mathematicians and engineers often struggle 
to find precise solutions to most real-world 
problems due to their nonlinear nature [12, 13]. 
Over the past two decades, several techniques have 
been proposed or applied in this context [13-19]. 
Since solving nonlinear equations analytically 
is highly challenging, iterative procedures based 
on numerical methods provide the only viable 
approach to obtaining approximate solutions. 
Several numerical techniques, including Secant, 
Bisection, Newton-Raphson, Regula-Falsi, and 
Muller’s methods, are available in the literature for 
finding approximate roots of nonlinear equations. 
Cordero et al. [20] discussed Steffensen-type 
methods for solving nonlinear equations.

Many polynomial equations of the form  
= where  

are constants,  are studied in mathematics.  
An equation that is transcendental is   if 

 is constant for certain other functions, such 
as logarithmic, exponential, trigonometric, etc. A 
common difficulty in scientific and technological 
activity is finding root of an equation of the form 

 [21]. If , then any number ω is 
root of . If  where 

 is bounded at ω and , then a root of 
 is said to have multiplicity . A multiple zero is 

ω if  and a simple zero if  [22]. By 
utilizing the classical Regula-Falsi (R-F) approach, 
Naghipoor et al. [23] developed an improved 
R-F method and demonstrated that the proposed 
approach was more effective than the classical R-F 
method. Shaw and Mukhopadhyay [24] introduced 
an enhanced predictor-corrector form of the R-F 
approach in their study, showing that it converges 
significantly faster than the earlier R-F method. 
Kodnyanko [25] proposed an improved bracketing 
parabolic method for the numerical solution of 
nonlinear equations. Additionally, Jamali et al. 
[26] discussed a new two-step optimal approach 
for solving real-world models and analyzing their 
dynamics.

To find the roots of nonlinear equations, 
Parida and Gupta [27] proposed a hybrid approach 
that combines the standard Regula-Falsi (R-F) 
method with Newton-like methods. Experiments 
on multiple examples demonstrate the superiority 
of this novel strategy over some existing methods 
for solving similar problems. Li and Chen [28, 
29] introduced a technique for finding single roots 
that integrates the higher-order convergence of the 
classical R-F approach with specific parameters 
of the exponential R-F technique. The proposed 
strategy exhibits good asymptotic quadratic 
convergence. Qureshi et al. [30] discussed the 
quadratic convergence of iterative algorithms based 
on the Taylor series for solving nonlinear equations.
Numerical analysis research on estimating a 
single root of nonlinear functions is crucial, as its 
applications span various fields in both applied 
and pure sciences. These applications have been 
discussed within the general framework of nonlinear 
problems [31-33], such as the nonlinear equation:

    			    (1)

Due to the significance of equation (1), one of the 
fundamental methodologies, such as the Bisection 
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technique, is used for estimating the root of 
nonlinear functions.

			   (2)

The technique (2) is a slow yet robust convergence 
method, known as the Bisection technique [34]. 
The Bisection technique is guaranteed to converge 
for a continuous function on an interval  
where . Alternatively, the Regula-
Falsi technique is another root-finding method used 
for solving nonlinear problems.

			   (3)

The technique (3) is the fast-converging Regula-
Falsi method, assessed in comparison to the 
Bisection technique. Both techniques have linear 
convergence; however, the Regula-Falsi method 
occasionally experiences slow convergence. The 
drawback of the Regula-Falsi technique is mitigated 
by the Illinois method, as reported by Golbabai 
and Javidi [35]. Furthermore, a modification of the 
Newton method was introduced by Chun [36].

Numerous numerical techniques have been 
proposed, including the quadrature formula, the 
homotopy perturbation method and its variations, 
the Taylor series, the divided difference method, 
the decomposition method, and others [37-41]. 
Likewise, some two-point algorithms have been 
developed in the literature to solve nonlinear 
equations. A similar study, reported by Allame 
and Azad [42] and Hussain et al. [43], integrated 
the well-known Bisection method, Regula-
Falsi method, and Newton-Raphson method to 
propose a more accurate approach for predicting a 
single root of nonlinear problems. In this study, a 
Modified Bracketing technique has been proposed, 
which combines classical two-point methods. 
Within the predefined interval, the Modified 
Bracketing approach performs well in solving 
nonlinear problems. The proposed method is free 
of common pitfalls and quickly converges to the 
root. Moreover, the Modified Bracketing approach 
is more straightforward and easier to use.

2.    METHODOLOGY

In numerical analysis, the Bisection and Regula-
Falsi techniques are root-finding methods. Through 
successive approximation, they use a recursive 

approach to locate polynomial roots. Let   
be the graph of an arbitrary function . Let  
be an initial approximation of roots of . Let 

 and   be two points on curve 
. Now we draw tangent by joining these 

two points and  is -axis intersection of tangent 
line of function  combining both  and 

 as shown in Figure 1. Equation of line 
in slope–intercept form joining (x0, f(x0)) & (x1, 
f(x1)) from the Figure 1 is given by:
 
y =  (x – x0) + f(x0)    	 (4)

Equation (4) has a root when y = 0.

→ 0 =  (x – x0) + f(x0)	 (5)

We have solved this equation with respect to x as 
follows:

x = xo       		  (6)

Equation (6) is known as the Regula-Falsi 
method. The newly created technique is derived 
by modifying the Regula-Falsi method formula, 
utilizing both the Bisection and Regula-Falsi 
techniques. To modify Equation (6), we first use 
the Bisection method. The Bisection technique is 
one method for solving the equation . 
Assume that  is a continuous function defined on 
the interval  Using 
this technique, the interval  is divided in half 
to select a subinterval that satisfies the Intermediate 
Value Theorem. The selected subinterval is then 

Fig. 1. Geometrical representation of the Regula Falsi 
method.
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extended at both ends and divided in half again. Repeating this process continuously results in an error 
bound that decreases with each iteration, becoming as small as the interval between successive steps.

So, for first iteration   where  is an interval in which has root with  
For better approximation, we refine the interval  into the smaller subinterval  ensuring that 

	               (7)

                	 (8)

Also, we know that f (    with  and  . Where is 
an initial approximation so we can write as  and   . Substituting this expression 
for   in Equation (6) and solving, we obtain:

        		     (9)

In general, the recursive formula is:

,                                       (10) 

Hence, Equation (10) represents the proposed modified technique, which integrates the Bisection and 
Regula-Falsi methods.

3.   CONVERGENCE ANALYSIS OF THE MODIFIED TECHNIQUE

Theorem: Let  be simple zero of sufficiently differentiable function  of an open interval I. 
If  is sufficiently close to , then technique defined by (8) is of second order and satisfied error equation 

     

Proof: Let 𝛼 be simple zero of 𝑓,   = −𝛼. Using Taylor expansion around 𝑥 = 𝛼 up - to second order 
terms and 

𝑓(𝛼) = 0, we obtained:

f(

   

0.3

[

    

]
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Substituting values of  , ,   in (6), we obtained:

  

 

 

]

][1  ] 

]

[1

]

   

     

Since the error term satisfies the quadratic form  , the method has second-order convergence. 
Thus, the equation defined by (10) exhibits quadratic convergence.
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4.    EFFICIENCY INDEX

The formula for the efficiency index is given by 
 where  represents the number of 

function evaluations required per iteration, and ω 
denotes the order of convergence of the technique. 
In this context, the efficiency index of the modified 
methodology for solving nonlinear equations is 
1.189207115. The efficiency indices of the modified 
methodology and other methods are presented in 
Table 1 below.

5.   RESULTS AND DISCUSSION

For the performance evaluation of the proposed 
modified method and some existing methods, 
several nonlinear equations have been considered, 
as listed in Table 2 along with their test conditions. 

The well-known Regula Falsi method, Bisection 
method, Steffensen’s method, and Newton-
Raphson method are used to compare the proposed 
modified technique with practical instances of 
algebraic and transcendental equation analysis. 
It has been observed that some existing methods 
have drawbacks and converge slowly, whereas, in 
certain cases, the proposed method converges more 
quickly and has no such limitations. By applying 
these existing approaches to solve nonlinear 
functions, both the theoretical impact of the 
proposed method and its experimental validation 
can be demonstrated. Based on the results, it can be 
inferred that the modified algorithm operates more 
efficiently than previously established approaches. 
Furthermore, the following data representation 
justifies the number of iterations required by the 
improved technique in comparison with existing 
sectioning methods.

Methods Order of Convergence Total Evaluations in an Iterations Efficiency Index
Bisection 1 1 1
Regula Falsi 1 2 1
Proposed Modified Method 2 4 1.189207115
Newton Raphson 2 2 1.4142
Steffensen Method 2 3 1.2311

Function Root Interval Number of Iteration Required
BM RFM SM NRM PM

                   0.259171                         40 9 8 8 7

          1.55677326439               39 26 23 19 13

1.93456                           39 7 7 7 4

1.11415714084               35 10 9 7 7

                    0.5671432904                 37 23 11 8 7

0.7047094901                 32 14 7 7 7

           0.11126415759               38 8 5 5 4

0.60710164811               28 13 12 7 5

               1.32471795724               36 28 17 11 11

                         1.5213797 [1,2] 22 15 8 6 4

    2.74064609596                38 11 11 7 6

Table 1. Efficiency indices for nonlinear equations and systems of the discussed methods.

Table 2. Comparison of iteration counts for different root-finding methods.
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In this study, we present a modified technique for 
numerically approximating the roots of nonlinear 
equations. The proposed method enhances the 
efficiency and convergence rate of the traditional 
Bisection and Regula-Falsi methods. Theoretical 
analysis and convergence results demonstrate 
that the modified method achieves a convergence 
rate of order 2, which is faster than the traditional 
Bisection and Regula-Falsi methods.
We proceed with the interpretation of our numerical 
methods for approximating solutions to nonlinear 
equations based on the results obtained. The Regula-
Falsi, Bisection, Steffensen, Newton-Raphson, and 
Modified Proposed Methods are used to solve these 
problems. Table 2 presents the approximations of 
roots obtained using these methods for nonlinear 
algebraic and transcendental equations.
The results indicate that, compared to the Regula-
Falsi, Bisection, Steffensen, and Newton-Raphson 
methods, the modified proposed method yields 
better results while requiring fewer iterations. 
Additionally, graphical analysis confirms that 
the proposed method outperforms the Regula-
Falsi, Bisection, Steffensen, and Newton-Raphson 
techniques. Hence, the modified approach 
presented in this paper offers a powerful and 
efficient numerical algorithm for solving nonlinear 
equations.

6.  CONCLUSIONS

An iterative, mathematically integrated approach 
for obtaining the roots of nonlinear equations 
has been developed and presented in this work. 
The proposed technique is a modification of 
the Bisection and Regula-Falsi methods. After 
comparing the results of this study with those of 
the Bisection and Regula-Falsi methods, it can be 
concluded that the proposed modified technique 
performs quite effectively. This modified method 
is free of impediments and rapidly converges to 
the root. Moreover, compared to the Bisection, 
Regula-Falsi, Steffensen, and Newton-Raphson 
methods, the proposed modified approach yields 
superior results in terms of accuracy and iteration 
count. However, the computational cost of each 
iteration in the newly suggested method is slightly 
higher than that of the Bisection and Regula-Falsi 
methods.
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