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Abstract: Focusing on sentiment analysis and medical image processing, this paper assesses Convolutional Neural 
Networks performance across different datasets.  Emphasized are recent developments in deep learning models 
for segmentation and picture categorization as well as other purposes.  Using contemporary Convolutional Neural 
Network architectures, this work seeks to get good performance in medical diagnosis and sentiment analysis.  The 
paper emphasizes how well Convolutional Neural Networks perform in domain-specific tasks.  Using the same 
data preparation techniques, appropriate designs, and strategies to split the data, this paper investigates how well 
Convolutional Neural Network algorithms perform on medical data and sentiment analysis.  Convolutional Neural 
Network models are optimized using hyperparameter tweaking and cross-validation techniques.  While guaranteeing 
patient privacy, data anonymization, and bias reduction, the research seeks to highlight strengths, weaknesses, and 
patterns.  Focusing on ethical concerns and offering suggestions for improvement, it tackles problems in sentiment 
categorization and medical imaging anomaly detection.  This work attains 96 percent accuracy using Convolutional 
Neural Networks across four datasets.  Common measures in the performance assessments of Sentiment Analysis, 
Skin Cancer Detection, Brain Tumour Detection, and Kidney Stone Detection include F1 scores, recall, and accuracy.  
With 0.97, Brain Tumour Detection had the highest accuracy; Kidney Stone Detection and Skin Cancer Detection 
both had 0.95; Sentiment Analysis scored 0.96.  The consistently high recall and accuracy scores across all domains 
indicate good classification capabilities; an F1 score between 0.95 and 0.96 guarantees outstanding performance in 
both detection and analysis tasks. 
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1.    INTRODUCTION

CNNs are special neural networks that can process 
inputs that resemble grids, such as images. CNNs 
leverage a basic design of connected layers to 
enable tasks like object recognition and picture 
categorisation. These activities rely on the input 
data to extract key attributes. CNNs excel in 
part because they can learn feature hierarchies 
from input pictures automatically and efficiently. 
Convolution layers do this by applying filters to 
the input picture to identify different patterns and 
characteristics [1]. To further reduce computational 
complexity while preserving critical information. 
In the end, the learned representations in Figure 
1 are used to make predictions, and the retrieved 
features are integrated by fully linked layers. 

The figure shows CNN architecture for image 
processing or recognition tasks. It consists of an 
input, convolutional, max-pooling, hidden, and an 
output layer. Compared with 125 x 125 pixels, the 
input layer takes color pictures. Max-pooling layers 
downscale feature maps; convolutional layers 
shrink spatial dimensions. Compared with 784 and 
16 neurons, the hidden layers enable the learning 
of intricate patterns. The S neurons in output layer 
reflect classes in the classification challenge [1].

Although very effective, CNNs have several 
shortcomings. One disadvantage of vanishing 
gradients in deep networks with several layers 
is that the gradients required changing network 
parameters decrease, thereby either delaying or 
ceasing learning. Usually, proper network weight 



initialization, specialized activation functions, 
batch normalization, and skip connections help to 
encourage gradient flow throughout the network. 
Current deep learning methods depend on CNNs, 
which also drive image analysis and related fields 
to unprecedented heights despite challenges. 
CNNs shine in NLP and computer vision. CNNs 
are the foundation of healthcare image analysis in 
disease detection and identification [1]. CNNs can 
assist in the image data analysis for public opinion 
and sentiment trends. This work will evaluate 
the performance of the CNN algorithm in skin 
cancer detection [2], emotion analysis [3], renal 
stone detection [4], and brain tumor diagnosis [5]. 
The joint study of these domains clarifies CNN 
efficiency in various situations and shares obstacles 
and discoveries are shown in Figure 1.

Figure 1 presents Convolutional Neural 
Network (CNN) architecture where input layer 
receives raw image data, which is passed through 
convolutional layers that apply filters to extract 
local features like edges and textures. These features 
are then passed through activation functions such 
as ReLU to introduce non-linearity, followed by 
pooling layers that reduce the spatial size and retain 
important information. This feature extraction 
process is repeated to form a deep representation of 
the input. The resultant feature maps are flattened 
and transmitted to fully linked layers, which identify 
high-level patterns and connections. The output 
layer uses methods such as softmax to categorise 
the input into established classifications. The 
significance of the study lies in the comprehensive 
assessment of CNNs in two crucial areas: sentiment 
analysis [3] and medical image processing [4, 5]. 
This work improves diagnostic accuracy, fraud 
prevention, and sentiment analysis by addressing 

the limitations of existing approaches and exploring 
creative concepts, such as optimisation algorithms 
and hybrid models. The results suggest implications 
for the creation of reliable, effective, and scalable 
practical deep learning systems. Correlation of 
datasets to research work is given below:

•	 Sentiment Analysis Datasets: Datasets for 
sentiment analysis, including emotion, opinion, 
and sentiment analysis image data, are available 
here. Highlighting sentiment classification and 
feature extraction, they establish a foundation 
for assessing CNN’s image processing 
capabilities [3].

•	 Medical picture Datasets: The capabilities of 
CNNs in picture segmentation and classification 
are assessed using datasets for kidney stone 
detection, brain tumour identification, and skin 
cancer diagnosis. These datasets facilitate the 
assessment of the algorithms’ proficiency in 
accurately classifying illnesses and identifying 
outliers [4, 5].

In similar way the correlation of research studied to 
present research work are given below:

•	 Image Classification and Segmentation: CNN’s 
performance might be enhanced by using 
the content-based image retrieval techniques 
suggested by Alrahhal and Supreethi [6] and 
by Zohra et al. [7] segmentation-based image 
classification.

•	 Medical Image Processing: This study in 
line with Silambarasan et al. [8] on PCOS 
diagnosis and Pandiyarajan and Valarmathi [9] 
on dementia classification using VDRNet19 
seeks to enhance sickness diagnosis using deep 
learning.

Input Convolution Pooling Output

Fully Connected

Feature Extraction Classification

Fig. 1. CNN architecture.
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•	 Security and Network Analysis: New hybrid 
methods to resilient classification issues are 
inspired by the work of Bandu et al. [10] on 
counterfeit detection.

The present study’s research gap highlights the 
remarkable efficacy of CNNs in various tasks, 
including image classification, object identification, 
and feature extraction. But the majority of 
contemporary research focuses on their application 
within a particular domain or dataset. The existing 
study aims to assess CNN efficacy on homogenous 
datasets, including medical pictures or natural 
language tasks converted into image-like formats. 
Nonetheless, there is a significant deficiency in 
thorough research evaluating the generalizability 
and comparative effectiveness of CNNs across 
many datasets spanning multiple industries, such 
as medical imaging and Image-based sentiment/
emotion categorization. Differences in data types, 
uneven class distribution, and specific features 
of different fields make it hard for CNNs to work 
well across various situations, like comparing 
grayscale and RGB images or low-resolution and 
high-resolution scans. Few studies investigate the 
functioning of CNN designs or the modifications 
required when applying them to diverse data 
types. This disparity hinders our comprehension 
of the flexibility, transferability, and resilience of 
CNN design while transitioning across various 
data environments. Filling this research gap will 
improve our understanding of how adaptable CNNs 
are, help us choose the right models for different 
applications, and support the development of more 
flexible neural network designs. 

This study cannot emphasize the significance 
of CNNs in medical image processing. Healthcare 
workers urgently want automated methods to aid in 
interpreting intricate pictures, given the substantial 
rise in medical imaging data. CNNs can extract 
important details from basic pixel data, making it 
easier to identify, categorize, and locate problems 
in medical images. The primary convolutional 
neural network employed in healthcare is for 
brain tumor identification. Convolutional neural 
networks help find and treat cancers early by 
accurately identifying and describing them using 
magnetic resonance imaging. Convolutional 
Neural Networks analyze CT images to detect and 
assess kidney stones. CNNs proficiently identify 
skin cancer in dermatological applications. They 

accurately diagnose benign and malignant tumors 
using microscope pictures. CNNs have been shown 
to be beneficial in sentiment analysis, particularly in 
extracting sentiment from images, as well as their 
use in medical imaging. Sentiment analysis with 
the Flickr30k dataset entails deriving emotional 
meaning from photographs by correlating visual 
areas with descriptive captions. Models acquire the 
ability to concurrently evaluate visual signals and 
words to forecast underlying attitudes. This study 
analyzes current works using CNNs for various 
tasks, focusing on their techniques, experimental 
configurations, and performance measures. This 
paper offers significant insights into the advantages 
and drawbacks of CNNs in medical image analysis 
and sentiment analysis. This study examines 
previous research and highlights prevalent themes 
and issues. The study then talks about possible 
future research directions, such as looking into 
new CNN architectures, combining different types 
of data, and creating models that are easier to 
understand and improve clinical decision support 
and sentiment analysis. This paper enhances the 
current discourse on the utilization of CNNs in 
healthcare and NLP, aiming to progress to the 
forefront of medical image analysis and sentiment 
analysis fields.     

In their study, Debnath and Mondal [11] 
recommended CNN and PCA for dynamic 
variance control in audio compression. The GCN-
based intelligent network traffic analysis and 
classification model by Olabanjo et al. [12] was 
designed to handle complicated, interconnected 
network traffic data. Alrahhal and Supreethi 
[13] improved content-based image retrieval 
with machine learning. Silambarasan et al. [14] 
improved SVM and DenseNet for PCOS detection. 
SVM’s classification and DenseNet’s deep learning 
enhance PCOS diagnosis. Mishra et al. [15] used 
neurosymbolic AI to predict how much energy 
CoCrMo-architected materials can absorb in 
material science. Alzubaidi et al. [16] provided a 
detailed look at deep learning methods, focusing 
on CNN architectures and explaining important 
parts such as convolutional layers, pooling 
methods, activation functions, and fully connected 
layers. They addressed problems and prospective 
approaches. Zhao et al. [17] highlighted the uses of 
CNNs in computer vision, providing a comparative 
examination of cutting-edge architectures and their 
performance measures. Cong et al. [18] grouped 
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CNN architectures based on their features, pointing 
out how quickly CNNs are being developed and 
adjusted for specific tasks. 

Despite significant advancements in deep 
learning, the application of CNNs across diverse 
datasets poses challenges, particularly in achieving 
consistent performance in sentiment analysis and 
medical image processing. Existing models often 
struggle with generalization, robustness, and 
accuracy in handling complex, high-dimensional 
datasets. This research aims to evaluate the 
applicability and limitations of CNNs for diverse 
tasks while integrating insights from related studies 
to enhance their efficacy. The objective and scope 
of the present study is to evaluate the performance 
of CNNs in sentiment analysis and medical image 
processing across diverse datasets. Research has 
integrated advanced optimization techniques 
and hybrid models for improving classification 
accuracy and robustness. Upcoming research is 
supposed to set benchmark CNN performance 
against conventional techniques and state-of-the-
art models in related fields. The focus of research 
work is to identify domain-specific challenges and 
propose strategies for overcoming them using deep 
learning.

2.    RESEARCH METHODOLOGY

The objectives, are defined pertinent medical 
datasets are selected, data preprocessing steps 
are standardized, appropriate CNN architectures 
are selected, datasets are divided into training, 
validation, and test sets, cross-valuation or 
bootstrapping is implemented, and hyperparameter 
tuning forms the basis of the research methodology 
for a comparison of CNN algorithm performance 
on medical datasets and sentiment analysis. 

Because in presvious research Campos et 
al. [19] concentrated on enhancing CNNs for on-
device implementation, prioritizing energy-efficient 
architectures while maintaining accuracy—
essential for edge computing and mobile systems. 
Khan et al. [20] conducted a comprehensive survey 
of the evolution of CNN architectures, ranging from 
LeNet and AlexNet to more intricate networks such 
as ResNet and DenseNet, highlighting innovations 
including skip connections, depth-wise separable 
convolutions, and attention mechanisms that have 
markedly enhanced architectural design. Through 

cross-validation or bootstrapping, the experimental 
design divides datasets into training, validation, 
and test sets and hyperparameter adjustment via 
grid search BO approaches. CNN models are 
trained on every dataset via specified procedures 
and hyperparameters; performance is accessed via 
predetermined metrics. CNN algorithm strengths, 
shortcomings, and trends across medical datasets 
and sentiment analysis tasks are identified via 
comparative study findings. Patient privacy and data 
anonymizing in medical databases guarantee ethical 
issues. The research guarantees adherence to ethical 
standards, thereby offering insightful analysis for 
both fields. Researchers with objective definitions 
provide medical datasets, sentiment analysis 
challenges, CNN performance measures, and other 
goals. Choosing a dataset entails finding appropriate 
medical records for many imaging modalities and 
diseases. Preprocessing then provides medical 
image format and content data format compatibility 
for sentiment analysis by standardizing data 
handling across all datasets. With respect to both 
fields of Model Selection, researchers choose 
CNN architectures. Datasets should be statistically 
partitioned into training, validation, and test sets in 
order to achieve a balance in class representations 
in the experimental design. In the assessment, 
interpretation, and discussion stages, trained 
models are used to uncover strengths, weaknesses, 
performance trends, and CNN architectures/
datasets comparisons. Finally, the method ensures 
patient privacy, data anonymization, and bias 
minimization by considering ethical considerations. 
Using this technique, we can evaluate how well 
CNN algorithms perform in sensing and medical 
imaging.

However, Bandu et al.  [21] fought counterfeit 
banknotes with image analysis and machine 
learning to boost financial security and fraud 
prevention . But deep learning model supposed 
to provide better accuracy. Sanjay et al. [22]
studied smart home automation security using 
deep learning. Considering this research, the 
idea of smart home automation is used in present 
research. Tran et al. [23]examined filter widths and 
GCN reception information extraction enhances 
document processing. This research article provided 
the idea of image pre processing.  Pandiyarajan 
and Valarmathi [24] introduced VDRNet19, dense 
residual DL network for dementia classification 
using VGG architecture improves dementia 
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classification. But these models provide limited 
accuracy thus present study is considering advance 
CNN model. Jaganathan et al. [25] design novel 
style transfer method increases CNN generalization 
and model resilience. Figure 2 shows a thorough 
method for assessing the performance of CNN 
algorithms.

In Figure 2, the objectives are defined, dataset 
is selected. Then preprocessing and model selection 
takes place. The experimental design is developed 
for evaluation then interpretation and discussion is 
made for ethical considerations.

2.1. Contribution of Present Research

The current approach significantly advances CNNs 
in sentiment analysis and medical picture processing. 
It combines hybrid techniques combining CNNs 
[23, 24] with optimization techniques like dense 
residual networks and stochastic gradient descent 
to improve performance. Using results from related 
studies, this work addresses issues particular 
to several fields, like face expression sentiment 
classification and medical imaging anomaly 
detection. It also evaluates the weaknesses of 
present deep learning models and proposes fresh 
approaches to increase their generalizability and 
resilience. Apart from bridging some of the gaps 
in current approaches, this study provides a guide 
on how CNNs need to be used in different kinds of 
datasets going forward. 

2.2. Hyper Parameters Configuration

Essential hyperparameters used in sentiment 
analysis CNN model design and optimization 
across many datasets as well as in medical imaging 
[30]. These hyperparameters have to be tuned to 

provide optimum performance:
i.	 Learning Rate: The learning rate finds the step 

size by repeatedly approaching the minimum of 
the loss function.
•	 Relevance: A slower learning rate provides 

continuous convergence; a quicker one speeds 
training but runs the danger of overshooting.

•	 Values Tested: Typical ranges include 
0.001 to 0.01, with adjustments during 
hyperparameter tuning.

ii.	 Batch Size: The number of samples processed 
before the model’s internal parameters are 
updated.
•	 Relevance:While smaller batches provide 

for more frequent updates, which increases 
model generalization, larger batches increase 
computation efficiency.

•	 Values Tested: 32.
iii.	 Epochs: The total count of times the training 

dataset has been passed is the number of epochs.
•	 Relevance:The model could avoid overfitting 

and grasp the data’s trends with enough 
training cycles.

•	 Values Tested:Usually tested values fall 
between 10 and 100; early termination 
strategies are given if necessary.

iv.	 Optimizer: Training loss might be reduced using 
weight-adjusting algorithms such RMSprop, 
Adam, or SGD.
•	 Relevance:The characteristics of the dataset 

define which optimizers fit the best.
•	 Choices Explored: Adam (default for most 

tasks), SGD with momentum, and RMSprop.
v.	 Dropout Rate: A regularization technique 

to prevent overfitting by randomly setting 
a fraction of the input units to zero during 
training.
•	 Relevance: Enhances model robustness and 

generalization.

Fig. 2. Research methodology.
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•	 Values Tested: Common rates include 0.2, 
0.4, and 0.5.

vi.	 Activation Function: specifies, for the next 
layer—ReLU, Sigmoid, or Softmax—the 
neuronal output transformation.
•	 Relevance: ReLU is often used for hidden 

layers, while Softmax is ideal for the output 
layer in classification tasks.

•	 Choices Explored: ReLU for hidden layers; 
Softmax or Sigmoid for output layers, 
depending on task type.

vii.	Kernel Size: Specifies the filter size in 
convolutional layers.
•	 Relevance: Determines how the model 

captures spatial features in images or 
sequential dependencies in text.

•	 Values Tested:5x5.
viii.	Regularization (L2, L1): Penalty terms added 

to the loss function to prevent overfitting by 
discouraging large weights.
•	 Relevance: Ensures simpler models and 

better generalization.
•	 Values Tested: L2 regularization using 

lambda values 0.001 and 0.01 tests values.
ix.	 Cross-Validation/Bootstrapping: Methods for 

reliably assessing models by splitting data into 
training and validation sets in various ways 
include bootstrapping and cross-valuation.
•	 Relevance: Provides reliable predictions for 

many datasets.
•	 Choices Used: Bootstrapping in addition to 

5-fold cross-valuation was used for smaller 
datasets.

x.	 Metrics: Precision, accuracy, recall, and F1-
score, are among the measures of model 
performance employed here.
•	 Relevance: It denotes that the model’s 

efficacy is seen holistically.
•	 Focus: Consider medical dataset precision, 

sentiment analysis accuracy, and F1-score.

2.3. Process Flow of Proposed Work

Emphasizing sentiment analysis and medical 
imaging, the work’s process flow seeks to identify 
challenges of evaluating CNN performance on 
different datasets. For relevance-that is, for skin 
cancer, kidney stones, brain tumors, and sentiment 
analysis-specific datasets are selected. Two 
preparation techniques that fit well include resize and 
adding content for sentiment analysis; furthermore, 
scaling and normalizing images for medical data 

Appropriate CNN [25]  architectures like VGG, 
ResNet, and DenseNet are chosen based on the task 
criteria. Training, validation, and test include three 
sections to the datasets. Class balance is maintained 
and rigorous evaluation is done via cross-valuation 
or bootstrapping. Hyperparameter tuning—using 
grid search or Bayesian optimization—allows 
one to maximize learning rate, batch size, and 
other factors. CNN models trained with updated 
hyperparameters using optimization techniques like 
Adam or SGD are evaluated in part by accuracy, 
precision, recall, and F1-score. CNN performance 
as well as its strengths and shortcomings may be 
shown by means of comparison between CNNs 
on sentiment analysis and medical imaging 
datasets [30]. We give ethical issues like data 
anonymization and privacy great importance so 
that research complies with all the guidelines. We 
analyze the data to demonstrate how well CNNs 
perform in these particular contexts and provide 
recommendations on how to enhance them and 
where to go in terms of research shown in Table 1.

2.3.1. Steps in the process flow

i.	 Problem Identification: Determine the 
challenges in evaluating CNN performance 
on sentiment analysis and medical imaging 
datasets [30].

ii.	 Selecting and getting ready the database
•	 Select suitable medical imaging databases, 

including those for brain cancer or kidney 
stones detection.

•	 Select datasets for sentiment analysis—
movie reviews, product reviews, etc.

•	 Resizing photos or tokenizing content can 
help you to ensure compatibility by means of 
any required preparatory actions.

iii.	 CNN Architecture Selection: Choose 
CNN architectures [31] suitable for image 
classification, segmentation, and content 
analysis.

iv.	 Dataset Splitting
•	 Divide datasets into training, validation, and 

test sets with balanced class representation.
•	 Implement cross-validation or bootstrapping 

for robust evaluation.
v.	 Hyperparameter Tuning: Optimize key 

hyperparameters (e.g., learning rate, batch size, 
dropout rate) using grid search.

vi.	 Model Training: Use algorithms such as Adam 
or SGD to train CNN models with optimal 
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hyperparameters.
vii.	Model Evaluation: Consider measures like 

recall, accuracy, precision, F1-score, and AUC 
when assessing performance.

viii.	Comparative Analysis: Conduct a comparative 
analysis to see patterns in performance and 
find areas of strength and improvement across 
different datasets.

ix.	 Ethical Considerations
•	 Protect the privacy of patients and guarantee 

that their medical records are anonymized.
•	 Eliminate prejudice from the process of 

selecting and evaluating datasets.

The Table 1 outlines key aspects of the 
machine learning model development. It includes 
CNN architectures such as VGGNet, which serves 
as a simple baseline, ResNet, which uses residual 
connections to address vanishing gradients, and 
Inception, which captures multi-scale features 
for better image understanding. The dataset 
preprocessing involves resizing images to 224 × 
224 pixels, normalizing pixel values, augmenting 
data with transformations like flip and rotation, 
encoding labels, and using a stratified train-test 
split to maintain class balance. For hyperparameter 
tuning, a learning rate of 0.001, a batch size of 
32, and early stopping with patience between 
5-10 epochs are used, alongside SGD and Adam 
optimizers, and dropout rates ranging from 0.3 to 
0.5. Evaluation metrics include overall accuracy, 
class-wise precision, recall, and F1-score, along 
with a confusion matrix for detailed performance 

analysis and tracking training/inference time to 
ensure efficiency. These elements work together to 
optimize model performance across tasks.

3.    RESULTS AND DISCUSSION

The current study examines Skin cancer , Kidney 
Stone Detection, Brain MRI Tumor Detection, 
and Emotion Analysis datasets. The Skin cancer 
dataset [26] comprises dermatoscopic pictures 
of skin lesions, rendering it significant for image 
classification and segmentation in skin cancer 
diagnosis. Comprising medical images-ultrasound 
and CT scans-the Kidney Stone Detection [28] 
collection helps to categorize and diagnose kidney 
stones. Composed of MRI pictures categorized 
by tumor kind, the Brain MRI Tumor Detection 
[29] collection allows exact identification and 
classification of brain tumors. Comprising images 
of faces expressing emotions like as pleasure and 
rage, the Sentiment Analysis [32] collection in 
natural language processing is appropriate for 
categorizing emotions and studying sentiments. 
Developing research in medical imaging and 
natural language processing applications depends 
on these datasets.

3.1. Dataset

This paper offers a carefully selected collection 
of publicly accessible datasets pertinent to several 
fields of medical imaging and natural language 
processing. For experts and academics working on 

Aspect Details
CNN Architectures Used •	 VGG Net: Simple, deep network - good baseline.

•	 ResNet: Uses residual connections to handle vanishing gradients.
•	 Inception: Captures multi-scale features efficiently.

Dataset Preprocessing •	 Image resizing to 224 × 224 pixels
•	 Normalization of pixel values
•	 Data augmentation: flip, rotate, zoom, contrast
•	 Label encoding for categorical outputs
•	 Stratified train-test split (e.g., 80/20)

Hyperparameter Tuning •	 Learning rates: 0.001 
•	 Batch sizes: 32
•	 Epochs: early stopping with patience 5-10
•	 Optimizers: SGD, Adam
•	 Dropout: 0.3-0.5

Evaluation Metrics •	 Accuracy for overall performance
•	 Precision, Recall, F1-Score for class-wise insight
•	 Confusion matrix for detailed class performance
•	 Training/inference time

Table 1. CNN-based model design considerations.
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machine learning and deep learning applications 
within healthcare and affective computing, these 
datasets are very useful. The table below offers a 
brief summary of datasets connected to emotion 
identification, skin cancer detection, kidney stone 
diagnosis, and brain tumor analysis. Every entry 
has the dataset name, a short explanation stressing 
its contents and possible applications, and a direct 
access link to the dataset shown in Table 2.

Many datasets used for various machine 
learning applications are shown in Table 2. Valuable 
for skin cancer diagnosis by image classification and 
segmentation, the Skin Cancer dataset consists of 
dermatoscopic photos of skin lesions. Comprising 
medical images used to identify kidney stones via 
ultrasound or CT scans, the Kidney Stone Detection 
collection supports detection and classification 
activities. Comprising MRI pictures categorized by 
tumor kinds, the Brain MRI Tumor identification 
dataset helps to identify and classify brain cancers. 
Appropriate for emotion classification and 
sentiment analysis projects, the Emotion Analysis 
dataset finally consists of face samples marked 
with emotions like pleasure and fury. Advancing 
studies in natural language processing and medical 
imaging depends on these datasets.

3.2. Simulation 

The conventional CNN approach makes use of 
testing and training data sets. Evaluation across 
tasks like Skin Cancer Detection [26], Kidney 
Stone Detection [28], Brain Tumor Detection [29], 
and Sentiment Analysis [32] reveals that CNN 
models often show good performance across all 

criteria. In brain tumor diagnosis, the model shows 
outstanding performance with an F1-score of 
95%, recall and accuracy of 97%, and precision of 
96%. With few false positives and negatives, these 
studies show the model’s effectiveness in correctly 
categorizing brain cancers. With an F1-score of 
95%, recall rates of 96% and 95%, and accuracy 
rates of 96%, Kidney Stone Detection shows 
consistent case identification and categorization. 
With a 95% accuracy rate, 95% recall and accuracy, 
and a little higher F1-score of 96%, Skin Cancer 
Detection shows quick and exact performance. 
With an F1-score of 95% and both recall and 
accuracy of 96%, the CNN model performs well 
in Sentiment Analysis, hence confirming its 
dependability in sentiment categorization. The 
results show that the CNN model can adapt and 
perform well in many areas; hence, it efficiently 
handles medical imaging and text-based sentiment 
classification. The findings show that CNN is a 
flexible and strong method for solving difficult 
classification tasks. Table 3 shows the outcomes 
for accuracy, precision, recall, and F1 score; Figure 
3 offers a graphical depiction of the simulation. 
The table shows the performance measures of 
models across four separate detection tasks: Brain 
Tumor Detection, Kidney Stone Detection, Skin 
Cancer Detection, and Sentiment Research. With 
an accuracy of 97%, the model performs very well 
in Brain Tumor Detection, indicating its ability to 
precisely categorize most cases. A recall of 96% 
indicates that it effectively identifies most actual 
brain tumor cases; a precision of 96% indicates that 
when it forecasts a tumor, it is mostly right. A 95% 
F1-score shows a well-balanced effectiveness in 
tumor identification and categorization. The model 

S. No. Dataset Name Description Reference

1 Skin Cancer 
Detection

Dermoscopic pictures categorize cutaneous lesions as melanoma, 
nevus, and keratosis. These pictures are used for categorization and 
segmentation purposes.

[26, 27]

2 Kidney Stone 
Detection

Medical imaging and diagnostic criteria for the detection of 
nephrolithiasis via ultrasound or computed tomography. This method is 
particularly useful for tasks involving classification and detection.

[28]

3 Brain MRI 
Tumor 
Detection

MRI pictures classified as glioma, meningioma, pituitary tumor, and 
absence of tumor. These images are beneficial for the identification, 
segmentation, and categorization of brain tumors.

[29-31]

4 Sentiment 
Analysis 

Facial picture examples annotated with emotions such as pleasure, 
rage, sadness, etc. These examples are ideal for tasks related to natural 
language processing, specifically sentiment and emotion categorization.

[32]

Table 2. Dataset and its description.
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indicates reliable classification with 95% accuracy 
in Kidney Stone Detection. At 95% and 96%, the 
recall and accuracy show the ability of the model to 
find most kidney stones and lower false positives. A 
F1-score of 95% underlines even more the model’s 
effectiveness in correctly classifying and spotting 
kidney stones. Ensuring correct identification of 
cases, the model achieves 95% accuracy and 95% 
recall in skin cancer detection. While an F1-score 
of 96% emphasizes the general effectiveness of 
the model in balancing detection and accuracy, a 
precision of 95% shows a low false positive rate. 
With 96% accuracy and 96% recall and accuracy, 
the Sentiment Analysis model shows its strong 
ability to properly classify feelings. The F1-score 
of 95% indicates that the model effectively balances 
recall and accuracy. The models exhibit outstanding 
performance in all challenges, underscoring their 
efficacy in practical applications for medical 
diagnosis and content analysis.

Table 3 is presenting comparative analysis of 
accuracy parameters in case of various applications 
such as retailer, logistic providers, manufacturers, 
suppliers. Considering the table’s data, the figure 
would likely visualize the comparison of these 
performance metrics across all tasks. A bar chart 
could be used to depict accuracy, recall, precision, 

and F1-Score for each task, with each metric 
represented by a separate bar for clarity. Figure 3 
highlights the consistency in performance across 
tasks, illustrating how well each model is trained 
to detect specific conditions (brain tumors, kidney 
stones, skin cancer) or analyze sentiment in 
facial expression. For example, the Brain Tumor 
Detection model might show the highest accuracy, 
while the Skin Cancer Detection model could have 
a slightly higher F1-score. This comparison would 
help emphasize the effectiveness of the models in 
various domains, showcasing their potential for 
real-world applications in both medical imaging 
and natural language processing.

3.3. Error Analysis

While the CNN model [25] performed well across 
all domains, some observations include:

•	 Class Imbalance: In medical datasets 
(especially skin cancer [26]), rare classes may 
still be underrepresented, leading to marginally 
lower recall in minority categories.

•	 Overfitting Risk: In some cases, especially with 
smaller datasets, the model showed signs of 
overfitting, which was mitigated using dropout, 
data augmentation, and early stopping.

Brain tumor detection Kidney stone detection Skin cancer detection Sentiment analysis
Accuracy 0.97 0.95 0.95 0.96
Recall 0.96 0.95 0.95 0.96
precision 0.96 0.96 0.95 0.96
F1-score 0.95 0.95 0.96 0.95

Table 3. Comparison of accuracy parameters of CNN.

Fig. 3. Comparative analysis of accuracy parameters for various applications.
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•	 Text Data Challenges: For sentiment analysis, 
sarcasm or nuanced emotional tones were 
sometimes misclassified, highlighting 
limitations in handling contextual ambiguity.

3.4. Model Limitations

Despite strong overall performance, the study 
acknowledges the following limitations:

•	 Domain-specific Optimization: CNN 
architectures [23] may require tuning or 
modifications for optimal performance across 
distinct domains, such as 2D medical imaging 
[30] vs. sequential text. Lack of Explainability: 
CNNs are often viewed as black boxes. 
Interpretability techniques (e.g., Grad-CAM 
for images or attention maps for text) were not 
implemented here.

•	 Cross-dataset Generalization: The current 
study does not explore transfer learning across 
datasets, which could reveal deeper insights 
into CNN flexibility.

•	 Computational Cost: Training deep CNNs, 
especially on large image datasets, is resource-
intensive and may not be feasible in low-
resource environments without optimization.

3.5. Aspect-Based CNNs Comparison  

The current study demonstrates the remarkable 
performance of CNNs in many domains including 
content-based sentiment analysis and medical 
imaging (skin cancer detection [26], Kidney stone 
[28], brain tumor [29, 30]). The strong results 
achieved for accuracy parameters confirm the 
efficacy and flexibility of CNN architectures. 
Notwithstanding the encouraging results, certain 
significant limitations and areas for improvement 
still have to be acknowledged.   One of the most 
major limitations of this study is the absence 
of comparison with evolving deep learning 
architectures. Reflecting a paradigm shift in 
computer vision, these models have now attained 
state-of-the-art performance on multiple test sets. 
Unlike CNNs, which rely on local receptive fields, 
transformers utilize self-attention methods to grab 
global connections in data, usually producing 
superior results, especially in large-scale datasets. 
Including such models in future studies would 
provide a more whole view of how CNNs function in 
respect to the most current advancements. The study 

also makes no particular reference to biases in the 
datasets used. Common dataset imbalance occurs, 
particularly in medical applications where certain 
disease categories might be underrepresented. 
Uneven model performance in which the classifier 
favors dominant classes and does not correctly 
generalize might follow from this. Linguistic or 
cultural disparities in the content corpus might lead 
to sentiment analysis biases. Without a thorough 
bias investigation, it is impossible to assess the 
fairness and reliability of the models across various 
populations or unknown data distributions.   Future 
work should incorporate model performance audits 
across demographic groups, bias detection tools, 
and class balancing techniques to help to lower 
this. Another significant concern is overfitting, 
particularly in models trained on rather small 
data sets. Although the study employs traditional 
countermeasures like as dropout, early pausing, and 
data augmentation, it provides no comprehensive 
analysis or visualization of training vs validation 
performance trends. Without this, one struggles to 
know if the test set performance of the model is 
really generalizable or a consequence of overfitting 
shown in Table 4. 

4.    CONCLUSIONS

This study concentrates on assessing CNN 
efficacy across diverse datasets, particularly in 
sentiment analysis and medical imaging. The 
process includes issue identification, database 
selection, CNN architecture selection, dataset 
partitioning, hyperparameter optimization, model 
training, assessment, and comparative analysis. 
The work highlights ethical aspects such as data 
anonymization and privacy, aiming to illustrate 
CNN performance in certain circumstances and 
offer ideas for enhancement. The process includes 
class equilibrium maintenance, bootstrapping, 
and cross-validation. The study shows that CNNs 
are suitable for a number of uses, including 
brain tumor identification, renal stone detection, 
skin cancer diagnosis, and sentiment analysis. 
Compared to other approaches, CNN performs 
best in text-based sentiment classification and 
medical imaging. CNN is accurate, flexible, and 
rather strong. Often exceeding 95% in accuracy 
measures, the research shows CNN’s dependability 
in generating accurate categorization outcomes. 
Addressing important issues like data preparation, 
model selection, hyperparameter optimization, and 
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ethical concerns, the paper provides a thorough 
approach for evaluating CNN models. Apart 
from showing how CNNs may be used in many 
sectors, these results support the development of 
artificial intelligence systems for crucial tasks like 
medical diagnosis and emotion interpretation. This 
work adds notably to current understanding on 
deep learning by implying that it might increase 
accuracy and efficiency in addressing challenging 
real-world issues. Future developments in NLP 
and healthcare provide great promise to increase 
CNN algorithm performance in medical datasets 
and sentiment analysis. Future studies tackling 
problems including data scarcity, class imbalance, 
and medical dataset interpretability could focus 
on enhancing CNN architectures and techniques. 
Combining various data kinds with CNN models 

might provide a more complete view of patient 
information, hence supporting improved diagnosis, 
outcome prediction, and therapy planning.
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